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A regular solution of 't Hooft's magnetic monopole model in curved space is presented. As in flat space, an

analytical solution seems impossible, but by using the Einstein equations to eliminate the gravitational degrees
of freedom, a positive-definite energy functional is constructed, which at its minimum gives both the required
solution and the energy of the system. To first order in the gravitational constant G, the energy can be
expressed in terms of the flat-space solutions only, whereas for general G a positive lower bound is derived.

I. INTRODUCTION

The interest in nonperturbative solutions of
classical nonlinear field theories (solitons) is
due to the expectation that they might provide a
better starting point for quantum corrections than
the usual plane-wave solutions. In this article
we consider a simple model of general relativity
with dynamical sources: 't Hooft's magnetic
monopole model in curved space. ' This model
has such a high degree of symmetry, even in
curved space, that one may expect that the form-
alism becomes simple and will yield explicit re-
sults. The aim of this article is to find a non-
perturbative, regular, and localized static solu-
tion in curved space which is the extension of 't
Hooft's flat -space solution.

In flat space the field equations of the model are
already so nonlinear that only in a limiting case
(the case of vanishing self-coupling of the Higgs
scalars) is an analytical solution known. ' The
strategy adopted by 't Hooft to prove the existence
of a solution in flat space was to use the negative-
definite character of the Lagrangian density for
this static problem. The function which maxim-
izes the Lagrangian is a solution of the Euler-
Lagrange equations and at the same time the en-
ergy is obtained because, for this static system,
the Lagrangian is the negative of the energy. In
curved space the Lagrangian of our static system
is not negative-definite. In this article we con-
struct a positive-definite energy functional which
yields at its minimum both the required solution
and its energy, precisely as in flat space.

The model that we consider has been discussed
previously by Bais and Russell, ' by Cho and
Freund, 4 and by Cordero and Teitelboim. ' Bais
and Russell observed that the asymptotic solution
of the field equations actually satisfies the field equa-
tions everywhere, as in the case of flat space. The
result is the Reissner-Nordstrdm metric which

is singular at the origin. We are here interested
in a solution which is everywhere regular. Cho
and Freund noted that one can transform by a
singular gauge transformation the Wu-Yang gauge
field' asymptotically to the usual Dirac magnetic
monopole vector potential. ' They concluded that
any solution in curved space must yield far away
a Reissner-Nordstrom geometry. Our solution
satisfies this criterion. Cordero and Teitelboim
have used this model to apply Dirac's techniques
for constrained Hamiltonian systems to a simpler
and more tractable subclass of motions. Whereas
in their approach the emphasis is on a canonical
formulation rather than on particular solutions,
we will restrict ourselves to the ground-state
solution only, in the hope that this narrowing of
subject will be profitable for the explicit cal-
culations we will have to perform.

Our conventions are as follows. The Yang-
Mills coupling constant will be denoted by e. The
Einstein equations read G„, = -8mGT„, , where

G„, =—R„, ——,g„,R, G = Newton's constant, and

T„, = —2( g) '~'(6l/5g"') is t—he energy tensor
with Tpp non -negative. We set ~ =c = &, and our
flat -space metric is ( —1, + l, + 1, + 1).

II. THE MODEL

We consider 't Hooft's magnetic monopole model'
in curved spacetime. It describes interacting Yang-
Mills bosons 8'„', an SO, triplet of Higgs scalars
Q', and gravitons g„, . Since we seek a static solu-
tion, all properties of the system may be de-
scribed by a Lagrangian which is the sum of the
usual Einstein Lagrangian L and the covariant
matter Lagrangian I.~,

L = —(16n'G) '
t d x(-g)'~'R, (])

L"= —t4 )
' I d' t-g)'~'[ G' G"'

+ k(&p Q') (D"Q') + 1'(Q)]
(2)
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where p, & 0& 0 and p' =——2p. /k. We have added a
constant term to V(Q) so that we may use Ein-
stein's equations without cosmological constant,
with energy tensors which vanish asymptotically.
We look for time-independent solutions of the
Wu-Yang -'t Hooft" form

q (r)=r 'r'P(r),

W;=0, W; = ;e, , r'r '[ —e '+v(r)],
where the Cartesian index i runs from 1 to 3.
Since the energy tensor of our system is rotation-
ally symmetric in flat space (see Appendix), we
assume that in curved space the metric is also
rotationally symmetric and given by

g„, =( —e', e, r', r'sin't(), p, = v=t, r, 8, @. (5)

Evaluating G'„, and D„Q' in polar coordinates
and substituting these expressions into L"in (2)'
yields (see Appendix)

L"= — dr e" '~'r' e U, +U»
0

(6)

where U, and U, do not depend explicitly on the
metric,

2~112+ 1
p f 2

1e-2r-4{e 2v2 1}2+r-2e 2v2p2

Lorentz indices are raised by g"', G'„„=-B„W',
—B,W& +ee'"W'„W', is the Yang-Mills tensor, and
D„Q'=—~„Q'+ec'''W„Q' is the Yang-Mills co-
variant derivative. Both G'„, and D„Q' are also
gravitationally covariant. The potential U(Q}
leads to spontaneous symmetry breaking and con-
tains the dimensional parameter p. needed in order
to obtain a classical solution with nonzero energy,

LE (4G )
-1 (frr{( +'X')(e" '/' -e'" '/')

(10)

Since the integrands of L, and L differ by a
total derivative

r -i*'=-(4G(-' J ~.((2.-*'&.~"-'~~
0

( v+ k') /2]l

they give the same field equations. Introducing
the convenient gravitational variables x =-', (v -X)
and y = (v+X) one obtains the total Lagrangian

L, '+L~= — dr 2G 'ry' e" -e"
0

+r'(e' U, + e" U, ) ] . (12)

Variation of the Lagrangian with respect to x,
y, v, and p yields the field equations

y' = 2Gr

[r(e' -e')]' =2Gr'e'(U, +U,},
(v'e*)' = e" [r 'v(e'v' —1}+e'vp'],

(18)

(~4)

(15)

p-+F, &-0, y-0, x-0 as r-~.

(r'p'e*)' = e" [2e'v'p +2kr'p(p' -F')] . (16)

These equations are invariant under v- —v; this
discrete symmetry corresponds in the original
Lagrangian to a gauge rotation about the radial
direction over an angle 7t. A second discrete sym-
metry, under p- -p, cannot be related to a gauge
transformation because, for example, the gauge-
invariant Q'G'„, would change sign.

The boundary conditions at infinity follow from
the requirement that our solutions be localized.
The metric is therefore asymptotically flat and
the Lagrangian converges for large r if the flat-
space boundary conditions hold:

+ & k(P2 F2)2 (8)

The primes in these equations denote differentia-
tion with respect to r. The structure of the matter
Lagrangian L" in Eq. (6) is clear; the derivatives
are "covariantized" by means of g"" =f. , and a
factor ~-g multiplies the integrand in order to
make a scalar density.

The gravitational part of the Lagrangian is given
in polar coordinates by'

r. = — (4G) ' J d ( '*( ' " "'*('~ 4 (P

+ 2{e(v- &(/2 e(u+ &)/2)] (9)

Actually, the last condition x -0 follows from the
three other conditions, as the reader may verify
from Eq. (14). The sign P at infinity distinguishes
between magnetic monopoles and antimonopoles;
from now on we choose the plus sign. We specify the
boundary conditions at the origin by the requirement
that the Lagrangian L +L" be stationary with
respect to arbitrary variations of v, p, x, and

y at r =0. The Lagrangian determines in this way
its own "natural" boundary conditions at the
origin, arising from the partial integration used
in deriving the Euler -Lagrange equations

For purposes to be explained below we prefer the
alternative gravitational Lagrangian

r (e" -e') =0 at r =0,
v'e" =0, r'p' e" = 0 at r = 0.

(18)

(19)
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v=0, P=F,
(20)

As found previously by Bais and Russell' and
Cho and Freund, ' an exact solution of the four
field equations (13-l6) is given by the Reissner-
Nordstr5m solution for a magnetic point charge
of strength I/e and arbitrary mass M,

P for which this minimum value is attained. In
Sec. IV we briefly discuss this assumption and
show that 8 & 0 for any value of the gravitational
constant G. We now show that E is the total en-
ergy of the system, as suggested by the notation.
From the integrated Einstein equation (22} we
have

y=0, e" =1 —2GMr '+Ge 'r '.
This solution satisfies our boundary conditions at
infinity, (17), but at r =0 it is singular and vio-
lates the boundary condition (18). We are rather
interested in a regular solution for which the
total energy is calculable.

III. POSITIVE-DEFINITE ENERGY FUNCTIONAL

dp pU (p), (21)
r

~r
r(e' -e') = 2G dp p'e''~'[U, (p) +U, (p)] (22)

Inserting the first of these equations (21) into the
Lagrangian L +L" in (12) we obtain the curiously
simple result

E(v, P)

dr[r'(U, + U, }e'],
0

(23)

where Y, U„and U, are given explicitly in terms
of v and P by Eqs. (7), (8), and (21). Note that the
dependence of L +L" on the variable x has drop-
ped out completely, without using Eq. (22) to ex-
press x in terms of v and p. Since e" =~g, the
effect of adding L to L" has just been to "de-
covariantize" the derivative terms (v') and (p')
in L~.

The functional E(v, p) is manifestly positive for
any functions v, P and so has a greatest lower
bound E. We assume that there exist functions v,

Unlike the case in flat space, the total curved-
space Lagrangian L +I." in (12) is not a negative-
definite functional. If we can find for our curved-
space system a negative-definite Lagrangian which
attains its supremum, then there exists a solution
because at the extremum the Euler-Lagrange
equations are satisfied. In order to construct
such a Lagrangian we will eliminate the gravi-
tational degrees of freedom x and y by using the
two Einstein field equations (13}and (14). Then
it will turn out that L +L'", as a function of the
matter variables v and P only, is negative-
definite.

We now proceed to eliminate the gravitational
degrees of freedom. Integration of the two Ein-
stein field equations in (13) and (14) with the
boundary conditions in (17) and (18) yields

lim(2G) 'r(e' -e*)= dr r'e" (U, +U, }= E,

(24)

since the integral is just the energy functional
E(v, p). From the asymptotic boundary conditions
(17) and the field equations (13)-(16)we easily
find that the asymptotic form of the metric is
the Reissner-Nordstr5m solution (20). Inserting
these asymptotic values of x and y into Eq. (24),
we see that E is indeed the total energy.

In the literature' there exist two expressions
for the total energy of a system in terms of the
energy tensor T„,

Z = -4m drr'T,',
0

(25)

E d x g TD Ty T2 Tp) (26)

(r T„")'=r'(T„"+Te+T~~) . (27)

Contrary to the situation in point-particle mech-
anics, in our system the stress components T~~

do not vanish in flat space. However, the total
stress fr'T' , vanishes, as expected, for an iso-
lated system. For our magnetic monopole system
it is shown in the Appendix that T', = —(e U, +U, ) ~

4m, so that in flat space both our formula 8
= —(L +L") and Eq. (25) give the same result
E = fa drr (U, +U,).

which hold for rotationally symmetric or static
systems, respectively. For systems such as
ours, which are both rotationally symmetric and

static, these formulas may be verified by using
the Einstein equations G„, = -8mGT„, in polar
coordinates to express the integrands in terms
of the gravitational variables A. and v. In each
case the result is a total derivative which may be
related to the energy using the asymptotic prop-
erty X = - v = 2GEr ', provided the solution is suf-
ficiently regular at the origin. Our formula
E = —(L +L") follows only from the particular
dependence of the matter Lagrangian on the gravi-
tational variables X and v [see Eq. (6)]. Of course,
formulas (25) and (26) also hold in flat space; in

this case their equivalence may be proved direct-
ly, using energy-momentum conservation in flat-
space polar coordinates
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V=e +V& + ~ ~ ~

2

p —p y'+ ~ ~ ~

where the other parameters (y„x„etc.) can be
expressed in terms of v, and P, . [That the func-
tions v, rP, x, and y contain only even powers
of r follows from (13)-(16).t The three boundary
conditions at infinity (17) will then determine our
regular solution. Note that the scale of e" and e"
is undetermined by the boundary conditions at the
origin and the field equations.

IV. PROPERTIES OF THE ENERGY FUNCTIONAL

In the preceding section we showed that a solu-
tion of the field equations (13)-(16) is given by the
functions v and P, which realize the infimum of
the energy functional E(v, p}

E(v, P) = dr ~'(U, +U, )exp —2G pU, dp
r

(28)

The functions U, and U, are positive-definite and
were given in (7) and (8); U, is quadratic in v'

Finally we investigate whether the solution we
have found, i.e., the one determined by the mini-
mum of the energy functional E(v, P), is regular.
In the next section we will demonstrate that this
solution does satisfy the field equations (13}-(16)
and the boundary conditions (1'l)-(19). The most
general solution of the set of field equations is
a six -parameter function. The three boundary
conditions at the origin (18)-(19}leave a regular
solution which still depends on three parameters
y„v„and P„

e' = y, (1 +y,r'+ ~ ~ ~ ),
e" =y,(1+x,r'+ ~ ~ ~ ),

E,(a, 6) = inf «O'U (v, p)],v, P
(29)

which is positive and nonzero since U, is a sum
of three positive terms. ' Let 5 & 0 be such that

6 = 2GE2(6, ~) . (30)

Such a 6 certainly exists, since E,(6, ~} is a de-
creasing function of 5 which tends to zero as 6

goes to infinity. We now show that E,(6, ~) is a
lower bound for the functional E(v, P}. Observing
that the first term in E(v, P), which involves only

U„ is almost a total derivative, we obtain

and p' while U2 contains only v and p. In this
section we discuss the following aspects of this
functional:

(1) We construct a nonzero lower bound for
E(v, P), so that the energy E of the ground state
is positive for any value of G. We also show
that the minimizing functions v and P are bounded

by levl - ll and lpl -F everywhere.
(2) We derive an exact expression for the en-

ergy E to first order in G in terms of the flat-
space solutions v, and P, only.

(3) We verify explicitly that v and p minimize
E(v, p) then they do solve the original field equa-
tions and boundary conditions.

The form of the functional E(v, P) in (28) might
lead one to believe that its value could come ar-
bitrarily near zero when v and P are trial func-
tions which, though bounded, oscillate so rapidly
that they make U, arbitrarily large. In this case
the greatest lower bound on E(v, P) would be zero,
and no minimizing functions v and p could exist.
We show that this cannot happen by constructing
a nonzero lower bound for E(v, P). For any 5 & a
we define a quantity

R
E" (v, p, R) -=de r'~J, exp —2G pU, d'p

O r

R R
= (2G) 'exp —2G pU, dp d'r & —exp —2G pU, dp

R 0 r

Since the term in square brackets is a positive decreasing function of r, a lower bound is obtained by
replacing t~ by (0 and then taking the value of the integrand at r =6,

( lR)= 2G)-I,..,P {, 2G qU dP 5 ~'i -P -~
I P~~P (32)

A similar manipulation on the second term in E(v, p), which contains both U, and U„ leads to

R 30

E ' (v, p, R)== d& r'U2exp —2G pU, dp
0 l r

R 00

dr r'U, exp —2G pU, dp ~ exp —2G pU, dp E~(6,R) .
r

(33)
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Adding E")(v,p, R) and E(2)(v, p, R) we obtain F= drr'U~' +U' '
0

+ [a,(5,R) —(2G)-'5]

x exp -2G p U,dp (34)

Taking the limit R — and recalling the definition
of 5 in Eq. (3) gives the required result

E(v, P) ~ E,(5, ~) . (35)

ev=2 -ev if ev& I,
ev = —2 -ev if ev& —i . (36)

We now show that the minimizing functions v and

p are bounded by [eve &1 and fpJ & F. When fevf»
we may define a new function v by reflecting v

about the axes ev =+ 1,

—2G dr r'(U, +U, ) pU, dp,
0 r

where the superscripts in the first term indicate
that we must consider U, and U, to be expressed
in terms of the curved-space solution to first
order in G, whereas in the second term the zero-
order flat-space functions v„P„are sufficient.
Now the first term, regarded as a functional of
v and p, is just the functional which we would
have to minimize in flat space, and so it is sta-
tionary with respect to arbitrary variations of v

and P about the flat-space solution. Thus the value
of the first term is the flat-space energy Fo, plus
corrections of order G'. Using spherical sym-
metry to rewrite the second term we then have,
correct to first order in G,

G I, , [U,(r) + U, (r)]U, (p)

After repeated reflections one obtains ~ev~ & 1.
Since v' =+ v' except at the reflection points we
have U, (v, p) = U, (v, p), but U, (v, p) ~ U, (v, p), as
one easily verifies. Hence replacing the function
v by v yields a lower value of the energy func-
tional. By reflecting the function P about the lines
P =+ F in the same manner, we may restrict the
space of trial functions by JevJ & 1 and Jp[ & F.

Next we calculate the energy of our system in
the weak-field limit G —0. We find that the first-
order terms in G may be computed exactly in
terms of the flat-space solution, without performing
an explicit firstwrder calculation. Expanding the
exponential in the energy functional in (28), we
obtain

in which U, and U, are expressed in terms of the
flat-space solutions v, and p, .

Finally we verify that if v and P minimize the
energy functional E(v, p) then they do yield a so-
lution of the original field equations (13)-(16)
with the boundary conditions (17)—(19). For the
gravitational variables this is evident: Equations
(21) and (22) define functions y and x which satisfy
the Einstein field equations (13) and (14) and the
boundary conditions (17) and (18). The minimizing
functions v and P satisfy the Euler-Lagrange equa-
tions and natural boundary conditions at r =0
obtained by varying the energy functional E(v, P).
For brevity writing only the results for v, we
obtain the integro-differential equation

r I
v' e' —2Gr ' dp p'e' (U, (p) +U, (p)) =e'[r 'v(e'v' —1}+e'vp'], (39)

and the boundary condition at the origin
r

v' e' —2Gr ' dp p'e" (U, (p) +U, (p)) = 0 at r = 0.
0

(40)

In these equations y is expressed in terms of v

and P by Eq. (21). Inserting the second integrated
Einstein equation (22} into this result, we see that
v satisfies the original matter field equation (15)
and its boundary condition at the origin in (19);
the boundary condition v- 0 at infinity is clearly
required in order that the functional E(v, p) be con-
vergent. Note that the boundary condition (18)
at the origin, which leads to the integrated Einstein
equation (22), is essential for verifying the ori-
ginal field equations, even though only the first

Einstein equation (2l) was used to eliminate the
gravitational variables from the Lagrangian.

V. CONCLUSIONS

We eliminated in closed form the gravitational
variables from the total Lagrangian L~'+L~, where
L" describes 't Hooft's magnetic monopole in
curved space and L~', which differs from the
usual Einstein Lagrangian LE by a total divergence,
contains only first-order derivatives. The result-
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ing functional is particularly simple; it is the flat-
space Lagrangian multiplied by —.(-g)'~',

is not positive-definite and is different from minus
the energy.

E (v, p) = 4v
~

dr r'T«(v, p, X = v = 0)

x exp —2G happ (v + —p p'
r

It is positive-definite, and the functions v and p
which minimize it yield a regular and localized
solution. The minimal value of E(v, p) is the ener-
gy of the ground state, and we derived a positive
lower bound for it. Physically this means that
although bringing matter closely together yields a
large negative Newtonian energy, this is
compensated for by the positive energy which
resides in the curving of space. In particular the
vacuum is stable for any value of G, in agreement
with general theorems. " By inserting the flat-
space solutions as trial functions into E(v,p), we
see that the over-all effect of gravitation is to
bind the ground state better. The solution is stable
according to the usual topological arguments. "
We found an explicit expression for the order-G
corrections to the ground-state energy. It is not
of the usual form fp(r)p(r')~r-r'~ 'd'rd'r', nor of
the form T„„x(graviton propagator) x T» because
the flat-space solution also has, apart from a given
energy density, internal structure, as witnessed
by the nonvanishing of the stress components T,, .

In the text we restricted ourselves to the two
Einstein equations which determine the radial and
time components A. and p of the metric, although
there exists a third Einstein equation for static
solutions. In source-free gravitation this third
equation (involving G,'= G,3) follows from the other
two by means of the Bianchi identities. In our
problem, this third equation follows from the other
two Einstein equations and energy-momentum con-
servation. "

The boundary conditions at infinity followed by
requiring that the solution be localized and the
Lagrangian convergent. The boundary conditions
at the origin, both in the original problem and in
the reduced problem with functional E(v, p), were
obtained by letting the functional determine its
own "natural" boundary conditions.

The role of spontaneous symmetry breaking is
to set a scale for a nonzero energy solution. If
all fields would tend to zero asymptotically, the
minimum value of E(v, p) would be zero. The fix-
ed nonzero asymptotic value of the Higgs field
serves as a peg to prevent this trivial solution.

Our results do not hold for an electrically char-
ged magnetic monopole (a dyon) with Wo of the
Julia-Zee" form W;= e 'r'r 'y(r) The reaso.n is
that in this case even in flat space the Lagrangian

APPENDIX

Below we give a few steps in the derivation of
the Lagrangian and energy tensors in polar coor-
dinates.

The Yang-Mills and Higgs fields in polar coor-
dinates are obtained by transforming the Lorentz
indices but not the isospin indices. Evaluating
W' (r') = (gx"/gx'" )W'„, one has

W, =W„=O,

We = (- sing, cosp, 0)(-e '+ v),
(A1)

W~ = (- cosP cosg, —singcosg, sing) sing(- e '+ v),

Q= (cosp sing, sing sin8, cosg)p.

The tensors D„Q' are given in polar coordinates
by

D, Q=O,

D,Q= (cosp sing, sing sing, cosg)p',

QQ= (cosp cosg, sing cosg, —sin8)evp,

D&Q= (- sing sing, cosp sing, 0)evp

(A2)

This tensor is of course traceless. The terms
proportional to C with v set equal to zero constitute
the Maxwell energy tensor for an electric or mag-
netic" "pointcharge e '. [Weintroducedin Eq. (2)
the factor (4v) ' in order that the energy density
for a, point charge e ' be equal to (8v) '(er') '. ]
Hence the one massless Yang-Mills mode behaves
asymptotically as a (magnetic) point charge e
The fields v fall off exponentially for large r, as
in flat space; this is due to the mass of the two

The nonvanishing components of the Yang-Mills
tensor in polar coordinates are equal to

G„e = (- sing, cosp, 0)v',

G„q = (- cosP cosg, —sing cosg, sing)singv', (A3)

Ge~= (cosP sing, sin@ sing, cosg)sing(- e '+ ev')

Note the orthogonality relations between the iso-
vectors in (A2) and (A3). From Eqs. (A2) and (A3)
one obtains the Lagrangian L~ given in (6).

The energy tensor T„,= —2(-g) '~'(6'/gg"") is
rotationally invariant, hence it is diagonal in polar
coordinates and satisfies Tee = T@~. For the Yang-
Mills energy tensor one finds

T„'(vM) = (4 ) '(F+c,--F+-c, -c, -c),
Q= &= tr~~0) 0

F =r 'e p( xX)(v')', -C= ,'e 'r '(e'v-' —1)'.
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remaining Yang-Mills modes.
For the energy tensor of the Higgs fields one

finds in polar coordinates

T&'(Hig gs} = —(4v) '(P+I+ V, -P+I+ V, P+ V, P+ V),

(A5)

P = —,'exp(- A)(p')', I= e'r 'v'p', V= -k(p' -P')'.

All components vanish exponentially fast for large
x, in agreement with the massive character of the
Higgs fields. Consequently, the term V in Eq. (2)
is also convergent. (The 1/r term in p, found in

Ref. 2, is due to the limiting case k = p,
'= 0 con-

sidered there. ) This is due to our handling of the
constant term in V; had we not included it in V it

would have given a cosmological constant. (Note
that V contributes to T„" as —V6"„.)

It is interesting to note the implication of the
equality of the two energy formulas in (25) and

(26). Consider flat space. The first equation
reduces to the volume integral of the energy den-
sity, as expected. The second formula, however,
yields twice the Yang-Mills terms and only the
self-interaction term of the Higgs scalars

—4wTOO= (E+C)+ (P+I+ V),

—4w(TO —T~ —T2 —Tg= 2(F+C) —2V.
(A6}

This is thus equipartition of energy between the
Yang-Mills and Higgs modes, which becomes
exact in the limit of vanishing scalar self-coupling.
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