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We have examined the effect of an arbitrary number of diffractive channels on absorptive eikonal elastic

scattering amplitudes. Diffraction is assumed to be turned on by some coupling constant, well above threshold.
We find that the absorption of the scatterer is decreased at all impact parameters, leading to a decrease in the
elastic, nondiffractive inelastic, and total cross sections. Ratios of cross sections are also ex~~ined. Finally, we

find that the peripheral nature of diffractive production directly affects the nature of elastic scattering
amplitudes near the center of the scattering region.

I. INTRODUCTION

It has been known for some time that a complete
description of high-energy scattering processes
should include the existence of diffractive states. '
Since the validity of the (s-channel unitary) ab-
sorptive eikonal model as a description of these
processes is well established, it is of interest to
investigate the effect of diffractive production pro-
cesses on the model.

Much work has been done in this area, but two

restrictive assumptions seem to be prevalent.
Some authors limit the number of diffractive par-
ticles to one, and others choose particular func-
tional forms for the high-energy elastic scattering
profile function in the absence of diffraction. In

this work we have lifted these restrictions.
One assumption underlying our calculation is

that only terms of order v s are kept in the numer-
ators of fermion propagators. In particular, then,
our results do not include the effects of the differ-
ent masses of the diffractively produced particles,
since all masses are assumed to be small in com-
parison to the center-of-mass energy. Therefore,
the behavior we discuss is not expected to prevail
near the threshold for the production of the dif-
fractive states, a region of great interest in the
interpretation of experimental data. Rather, we
are examining the purely theoretical case in which
diffractive channels are introduced at high ener-
gies via the turning on of some diffractive cou-
pling constant. However, we feel that the present
work is a small step towards the theoretical un-
derstanding of the full behavior of the cross sec-
tions.

The effect of diffractive channels is not intui-
tively obvious. The relation among the cross sec-
tions which must be satisfied is a, + o„+o,. = 0, .
(These are, respectively, the elastic, diffractive,
nondiffractive inelastic, and total cross sections. )
As crd changes one could imagine many ways the
other three cross sections could change in order
to satisfy the equation. We find, among other re-

suits, that as od increases just above zero, all
three of the other cross sections will decrease.
Such an effect can be attributed to s-channel uni-
tarity.

The behavior that we predict for eikonal models
modified to include diffraction is consistent with
the features found by other authors using different
models and approaches, where the results overlap.
Blankenbecler showed that at high energies dif-
fractively produced inelastic states will decrease
the total cross section. ' His proof used a Feynman
diagram technique in which certain classes of dia-
grams were summed. Fried and Soh have illus-
trated this in the context of a particular field-the-
oretic eikona1. model in which the existence of
one diffractive state was postulated. ' For the case
of black disk scattering they find o,/o, & 1/2 and

(o, + o,)/o, =1/2. These results are also reported
by Chang and Yan. ' They used a simplified eikon-
al-Regge model in the black disk limit but included
an infinite number of diffractive states. Pumplin
has used a model similar to the one we describe
in this paper and concluded that (o, +o,)/o, ~ 1/2
for black disk scattering. '

Skard and Fulco have considered a unitary mul-
tiperipheral model with diffractive production. '
They find that the profile function is modified by
an energy-dependent function 1(s}&1 which cannot
grow faster than ln2(s}. For black disk scattering
they find that o,/o, = I/2I(s). In the absence of dif-
fraction the eikonal model with a grey disk profile
of absorption c ~1 gives o,/v, ~ c/2. ' Thus the in-
terpretation of the function f(s) is that diffractive
channels will decrease the absorption of the pro-
file.

In these papers two approaches have been fol-
lowed. The first is explicit calculation of graphs
in various field theories. The second is the in-
clusion of diffraction in absorptive eikonal models
by making the S matrix (1 —e'") a true matrix of
amplitudes, with off-diagonal elements describing
diffractive production. Recent work has demon-
strated that the matrix method is equivalent to the

13 740



13 DIFFRACTIVE CHANNELS IN ABSORPTIVE EIKONAL MODELS 741

summation of certain contributing graphs in the
eikonal approximation if the existence of only one
resonant state is postulated. ' The most straight-
forward way to include an arbitrary number of
diffractive states would be to extend the size of
the matrix describing scattering. In this paper we
have made this generalization, calculated the
cross sections, and then found limits on them.

We hasten to point out that the methods used
here are not new. The matrix generalization of
the eikonal amplitude has been described by other
authors. ' Also there exist excellent descriptions
of the application of Lagrange extremization pro-
cedures to the solution of problems involving
bounds on scattering amplitudes in the presence
of various constraints. ' Our work has been mo-
tivated in part by these earlier papers.

The remainder of this section is a presentation
of our results. A complete description of the
methods employed follows in the next section.

We find that when diffractive channels are turned
on as indicated above, the absorption of the elas-
tic profile is decreased at all impact parameters.
Since the elastic and total cross sections are in-
tegrals of this profile function over all impact
parameters, we find that both o, and cr, are re-
duced in the presence of diffractive production.
This decrease in absorption is also responsible
for the decrease in v, .

The value of the ratios of cross sections is also
of interest. We find, for real. profile functions,

peripheral nature of diffractive production and the
behavior of elastic scattering profiles near the
center of the scattering region. We find that at
impact parameters where diffractive production is
least likely to occur, the two-body elastic scatter-
ing processes of any combination of states that
exist in the problem are all described by the same
profile function. For example, if diffractive pro-
duction is zero out to some radius r, then there
is one profile function which describes all elastic
scattering processes for impact parameters less
than r, . Since the total scattering cross section is
the integral of the elastic profile function, differ-
ences among the total scattering cross sections for
the various states must be due to the nature of the
interactions at large impact parameters.

II. CALCULATIONS

~ =2fe bdbr(b) Z.(bV ~),
0

I'(b) = I —e"", 0 & I' & 1. (2)

I' is the profile function, and g(b) is the eikonal
phase. The cross sections are

bdbIrl',

First we describe the incorporation of diffraction
into an absorptive eikonal. model. The elastic scat-
tering amplitude is given by

CT~ 0' (Xq + Vg 1

a, (x' cr,
2'

0, = 4n'Re Ada 1",

bd b(2IteI —Ir I')
(The superscript zero refers to the case of zero
coupling to the diffractive channels. )

The leftmost inequality is a consequence of the
fact that the elastic cross section decreases fas-
ter than the total cross section as the profile func-
tion decreases. The middle inequality means that
elastic plus diffractive production processes will
make up more of the total cross section than will
elastic processes in the absence of diffraction.
The factor of & is the familiar limit in the case of

purely imaginary amplitudes.
It has been observed that diffraction is a peri-

pheral process. For example, in Glauber theory
one expects diffractively produced particles to
come from collisions which occur at the edge of
the nucleus. " Also one ean indirectly observe the
diffractive profile function, whose integral. over
impact parameters is a~. For P-p scattering it
has been experimentally determined that this func-
tion peaks at an impact parameter of about 0.6
fermis. " This is to be contrasted to the elastic
profile function which is largest at the origin.

Our calculation shows a relationship between the

q2 R«+~ (5)

This form arises from many sources, both classi-
cal multipl. e scattering theory in the optical limit"
and field-theoretic calculations, for example,
@ED." All these make different predictions for
specific form of g(b)

Diffractive channels are included by writing
g(b) as a matrix in the following way. Let N, be
the "ground state" particle, and N, ~ N be the
m-1 diffractive states. There are. m' distinct
two-particle states I N, N, ). Then g(b) is a square
matrix of dimension m~, whose elements
(N,Na I g(b) I NP', ) are the eikonal phases which de-
scribe the elementary processes &,+ N~ -N, +&,
in the absence of all other processes. Buried in

the exponentiation of the matrix g(b) is the de-
scription of the way these elementary processes
combine to generate the physically observed am-

plitudes�.

Applications of this exponentiation procedure to
scattering processes with the inclusion of only one
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diffractive state exist in the literature. Diffraction
was included in the Chou- Yang optical model in

this way by Elitzur and Lipes. " In the field-theo-
retic eikonal model previously mentioned' the ele-
mentary amplitudes were assumed to be mediated
by the exchange of some leading (e.g. , vector) po-
tential, with some diffractive coupling constant at
production vertices. In this paper it was demon-
strated that exponentiation of the matrix of ele-
mentary amplitudes was equivalent to summing of
the leading behavior of all multiple-exchange
graphs.

It is important to remember that this procedure
is valid only at energies well above the threshold
for diffraction. This is because the eikonal form
and its matrix generalization are valid only when

the masses of all. particles can be neglected with
respect to the center-of-mass energy. As previ-
ously discussed, when we refer to the onset of dif-
fraction we imagine that this happens via some dif-
fractive coupling constant which appears in the el-
ementary production amplitudes.

The matrix generalizations of Eq. (1) and (2) are

M, , =2zs bdb J bv-t I';, ,
0

(6)

r =(I-e'"');~ =- Q —,(g') .1
(~)

$=1

To exponentiate the matrix g(b) and therefore find
the elements I'„one first diagonalizes g. The uni-
tary transformation U does this.

gD=U 'gU,

1(rg„= — —„(g,),,t=1

The subscript D denotes a diagonal matrix. The
elements of g~ are the eigenvalues ~~ of g, so
(gD);, =A.!5,;, giving (I'D), , =1 —e '.

Now we transform back to get I'... the matrix of
profiles for the physical processes:

"1
,, =(UI' U '),;= —g —,U, (g') U

1=1

Using the unitary properties of U,
2

UiP~PS =~)i ~

agonal elements. The profile function 1 —e P de-
scribes the absorption of the Pth eigenstate. The
eigenfunctions Q(b) are in general different, so
the scattered wave is different from the initial
wave. The final wave is then written as a linear
combination of the physical states [ N, N, ) .

The profile function describing the elastic pro-
cess N, +N, -N, +N, is r» of Eq. (10). We insert
the expression I;, into Eqs. (3) and (4), getting

OO m2 2

a, =2n bdb 1- U» 2e P

P =1
0

0, =4~Re bdb 1 — U~ 2e~P .
=1

(12)

The diffractive production cross section is cal-
culated as follows. Label the states from ( 1) to
( m'). ( 1) is the state [&,N, ). The profile I'„
describes the production of ( I ) from

~
1). The

cross section for the production of this state is

Using the fact that
m2

P l U]) = Pl —U P 1 Ulled
=2

we can simplify the expression for o~:

m

u, = 2v bdb+U~e & U ', ,e "~(6» —U '»U„)
0 P=1

2 2

=2n' bdb U e "P — U e P

P =1 —1

(13)

The inelastic cross section is calculated from the
expression c; =o, —(o, +o, ).

a' = 2m bdb I'„'.
0

The total diffractive production cross section is
the sum over all possible diffractive states;

m

0'g — 0'g
=2

2 I
OO m

bdb+ U~e & U ~, ~e i U '~, U„.
P=1

P =1

we find
g; =2n' bdb 1 — U~ 2e2

0 P=1
(14)

I;., =6,, —QU~U ',e ~.
P =1

This formalism is consistent with the ideas of
Good and Walker. ' The incident wave is written as
a linear combination of the eigenstates of the ma-
trix g. These eigenstates are only elastically
scattered by the absorber, since gD has no off-di-

The cross sections are formally functions of the
elements of the unitary transformation

~ U~ ( and
the eigenValueS AP Of the matriX g. We Vary the
cross sections with respect to these parameters to
find the extrema. The constraints which are used
in the Lagrange procedure are those of the unitar-
ity of the transformation U; that is, the rows and
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columns of U are orthonormal and the trace of g
is invariant under the rotation. This gives us the
two constraint equations;

2

=1
2 2

Trg= Trgnm g» = A(b—) = A~ (b).
=1 =1

(16)

where u~=-
) ff~ [') 0 for simplicity. The Lagran-

gian is, with multipliers a and P and the con-
straints from Eqs. (15) and (16),

2 2

I.= 1 — upe P + n 1 — up + P A — ~p ~ 18
=1 =1 P=1

The first and second derivatives of L are

=-e p —a p-1 " re2
'7

p

= —ue'p —p p=1 "' m2
p

~ L -0 qp=1 o ~ o m2
7 7 7 7

a p

(20)

(21)

=-ccrc p5 ~0 q p=1" m 2

sa,sg (22)

=-e P5 &0
au a~a p

q, P=1,",m2. (23)

In principle it is the elements of the matrix g(b)
which are known. The diagonal elements describe
all elementary elastic scattering processes, and
the off-diagonal elements describe elementary dif-
fractive production processes. As we stated be-
fore, elementary elastic and diffractive processes
are assumed independent of one another. It is the
exponentiation that contains the physics of the way
they interfere. Therefore we assume that the
elastic eikonal phases g, , (b) are independent of the
diffractive production coupling constant, so the
function A(b) in Eq. (16) is not altered as the
strength of the diffractive production is changed.
Therefore we may use A as a constant constraint
in the Lagrangian.

Up to this point the eigenvalues A~(b) have been
assumed to be complex. However, at high ener-
gies one expects diffractive amplitudes (both elas-
tic and production) to be imaginary, meaning that
the eikonal phases are real. . For the rest of this
paper we make this simpl. ifying assumption.

We are now ready to calculate the bounds. We
start with consideration of the elastic scattering
profile function.

Equation (10) with i =j =1 is the function we
need. It is

2

I 11 = 1 — 'LCp&

Normally we wouM set the first derivatives of the
Lagrangian to zero in order to find the local ex-
trema. However, it is also necessary that all the
eigenvalues of the matrix of second derivatives
have the same sign and be nonzero. This is not
the case here, so there are no local extrema.

Consider that all. the ~p are given, so the sum in
the expression for F„[Eq. (17)] is a linear func-
tion of the up. Since the relationship among all the
u~ themselves is linear [Eq. (15}j, the sum remains
a l.inear function of each of the up when the con-
straints are taken into account. Thus the extrema
of I 11 must occur when the up assume their end-
point values. The only way for this to occur and
simultaneously satisfy Eq. (15) is to choose one of
them equal to one and the rest zero. Therefore,
to extremize I'» we choose u, =1 and all other
ccp =0.

The minimum value I'«can have is zero. This
corresponds to no interactions, since all the cross
sections would then be zero. The physically inter-
esting extreme of I'„ is its maximum value, which
means we are looking for the minimum value of
e"' subject to the constraint of Eq. (16}. Since all
the Ap are negative, choose 4, =A and all other
A =0. Then we have (I'„)„,„=1—e .

This can be seen more simply in the following
way. The sum in the expression for I'» can be
written with the constraints on the up included;

S =
upe

"p

u,e'~+e'& 1 — u,
~P=1 =1

1 -1
gp u ~1.p

=1 =1

To minimize S, choose the ~p so that &™is the
smallest of all. the & p. Then the first term in S is
positive, so we can minimize it by choosing up = 0,
P ~ m' - 1. Then S;„=& ~ where ~~ =A, the most
negative value it can have.

Therefore we are let to the conclusion that the
elastic scattering profile function is decreased at
the onset of diffraction. Since the eigenvalues Ap

are functions of 6, this decrease occurs at all im-
pact parameters. As we stated before, this means
that o„o„and o,/g, are all decreased.

The reader can easily see that o& is also de-
creased. Replace the function F» in Eq. (18) by
the integrand of Eq. (14), which determines the in-
elastic cross section. The proof goes as before,
and we conclude that the contributions to the non-
diffractive inelastic cross section are reduced at
al.l impact parameters.

We wish to consider the ratio (o, +o,)/o, . The
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easiest way to approach this is to examine the
function o', +o, —&o,. From Eqs. (11)-(13)we find

Eq. (10). Similarly, we note that o, is the integral
of the dispersion of the I"~;

cr, +a~- &cr, =2@' bdb u~e
"& e "~ —1 . 24

0 P
cr =2m bdb I'~ —I 2,„. (27)

This expression is a linear function of the u~, ex-
actly as we found when we considered the elastic
scattering profile function. Therefore the extre-
mum exists when u, =1 and all other u, =0. As be-
fore, this condition on the u, makes U the unit ma-
trix, and this in turn makes the physical and diag-
onal. spaces the same; the off-diagonal elements of
g are zero. Thus the extremum exists when there
is no coupling among the different channels, or
equivalently when o~ = 0 [Eq. (13}]. The extremum
is 2r f~"bdb & ~(e ~-I) =o~n —qo~e~.

The trivial extremum is a maximum, when 4, = 0.
This corresponds to all cross sections being zero.
Thus we are interested in the minimum value, and
we have shown that

0'~+0'g —20t ~ 0 ~ —20' t .(0) i &0) (25)

If we define the ratios R = (o, +o~)/o, , R, =o'o/o'o, ,
we may write Eq. (25) as

(R -~)&~ - (R, —a)&"t'. (26}

This inequality, plus the two relations Ao ~ —,
' and

0&0 & g&o allows us to write this as Ao&R& g,
which is the result discussed in the first section of
this paper.

Finally we wish to discuss the implications of the
peripheral nature of diffractive production. As
previously noted, the finction I'~ =1-e & describes
the elastic scattering of the Pth eigenchannel. The
elements of the unitary transformation ( Uu, [' =u~
can be interpreted as the fraction of the Pth eigen-
channel which is in the initial state. Thus the
elastic scattering profile in the physical system,

is just the average value of the elastic scat-
tering eigenprofiles. That is, I'„=Q~N I'~ =—I; hy

Since diffraction is expected to be peripheral, con-
tributions to o„are expected to be small in the
central region and largest near the edge of the
scattering region. Thus Eq. (27) means that the
I'~(b) all behave alike near the center (I'~ = I" for
all P). Now

r, ,(b}= (Ur, U-'), ,

U„r „U-'„

U„r,0-'„.

If all I', =(I'~),= I'(b), then I",
~ (b}=I'(b)Q„U ',

= I'(b}b(,.
In other words, all elastic scattering profiles

I'«(b) are approximately the same in the central
region. Thus around the center of the scatterer
the profile for the process N, +N~-W, +N, is near-
ly independent of the particular particles N, and
N, which are being scattered, and this behavior is
a consequence of the experimentally observed pe-
ripheral nature of diffractive production. Whether
the correct handling of thresholds will affect the
strong result expressed here is not known to us.
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