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The properties of a phenomenologically useful dual amplitude and its similarity with composite-particle
scattering amplitudes are discussed.

I. INTRODUCTION

In this paper we present a dual model for the
elastic scattering of two scalar particles. This
model gives a very good description of the differ-
ential cross section for pp and pp at high energies
and large momentum transfers. ' The scattering
amplitude of this model has many of the proper-
ties expected of an amplitude describing the scat-
tering of composite particles. The underlying
dynamical basis for this model is not fully under-
stood and in this paper we will describe how it
was arrived at using considerations of duality. In
order to do this we first briefly review the prop-
erties of a factorizable dual Born term 8„( ese

Ref. 2) containing nonlinear trajectories n(t) of
the form

log 7''"-l.g(.- )

where

T' =a't+ b, (1.2)

and a', b, and q are parameters where 0& q& 1.
In the limit q- 1 the tlat-point function B„of this
model becomes the Veneziano N-point function V„.
Although this model contains all the desirable
formal properties of the Veneziano model, the
form (1.1) of the trajectory function gives rise to
a number of unacceptable properties except in the
limit q-1. These properties of 8, are reviewed
in Sec. II.

In Sec. III we note that if we let the parameter q
in Kq. (1.1} become greater than unity some quali-
tative changes must occur in the model and the
physically unacceptable properties disappear. The
resulting n(t ) then becomes a physically possible
trajectory function with properties similar to those
determining relativistic bound states of two mass-
ive particles interacting via the exchange of mass-
less particles. However, since the N-point dual
Born term B„with q& 1 has a natural boundary at

~ q ~
=1, we cannot construct an N-point function

for q& 1 by simple continuation in q of the q&1
amplitude. For this reason we can only use the
q& 1 amplitude B4 as a guide in postulating a four-
point function l74 having trajectory functions of the
form (1.1) with q& 1. Such a dual amplitude D4 is
written down in Sec. III.

In Sec. IV the mathematical and physical proper-
ties of D, are discussed. D„unlike B„has cuts in
s and t and therefore cannot be regarded as a Born
term in a field theory with an infinite number of
particles. Instead it can be regarded as the first
approximation to the scattering amplitude of a
composite system. However, this amplitude, just
like V, and B4, does contain an infinite number of
poles on the real axis and in order to compare it
with experiments in the region of these poles one
must also find a smoothing procedure which re-
places f, by a smooth function f,. This procedure
is carried out and the physical properties of the
resulting smoothed amplitude are discussed.

The problem of constructing an N-point function
is not dealt with in this paper. This problem is
more complicated than in the case of pure pole
models with no constituent particle thresholds.

In Sec. V the physical significance of this model
xs discussed.

II. THE DUAL MODEL WITH q ( I

The dual four-point function B, with trajectories
(1.1) is given by

G(q)G(&'T ')
4( 7 }

G( l)G( I
)

7

where

G(x}= II(1 —q"x)
n=0

and

v' =a's+b.

(2.1)

(2.2)

(2.3)

The only singularities of 8, are poles in s and t.
The poles in s are at v'=—a's+b=q ~ for j=0, 1, 2, . . .

13
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with residues which are polynomials in t of order
j. As s- ~ in a suitable direction in the complex
plane B,(s, t) behaves essentially like s '". Furth-
ermore, the N-point function 8„ is a meromorphic
function of all the N(N 3)-/2 invariants whose res-
idues are polynomials in the overlapping vari-
ables. ' B„factorizes' and possesses multi-Regge
behavior. ' The explicit form of the triple Regge
vertex has been calculated. 4

The difficulties with the amplitude (2.1) arise
from the form of the trajectory function (1.1)
which is plotted in Fig. 1. The branch cut in the
logarithmic trajectory function is taken between
v =0 and v =-~, and from f = b/a' -to t=-~. o.(f)
is then real for r&0 and the equations n(t„)=n
determine the energies of the lowest-lying states
with angular momentum n. Since Reo. (t) increases
as t becomes large and negative B,(s, t) increases
as s-~ for t sufficiently large and negative. "
Now although there is no compelling reason that
a dual Born term should give a good quantitative
fit in the large-s, large-t region, it should at
least have a reasonable extrapolation in this reg-
ion. This property is particularly important in
calculating loop diagrams from the Born term.
In the limit q-1, B,- V, does not rise for large
negative t. On the contrary it falls off exponen-
tially in t which is a much too rapid decay to de-
scribe the large-angle data.

A second problem with the trajectories (1.1) is
the fact that they do not rise sufficiently rapidly
as t-+~. One can show from elementary kine-
matic considerations that if a(t) & cd as t- ~,
then there must be ghosts on some daughter tra-
jectories. ' In fact we have explicitly verified that
although the amplitude (2.1) gives rise to no ghosts
on the leading trajectory, there are ghosts on the
first daughter trajectory for t sufficiently large.

&i Rea

( )
logT

logq
'

where

v. =b-at.

(3.1)

(3.2)

Before constructing a scattering amplitude
having the trajectory function (3.1), we will first
just examine the features of the trajectory itself.
ln Fig. 2 we plot the function Rea(f) determined
from Eq. (3.1). The branch cut in logr from r=0
to 7 = —~ now corresponds to a branch cut from
t=b/a to t=+~. For t&b/a, o.(t) is real The.
equations o.(t„)= n or equivalently

b-at„=q", n=0, 1, . . . (3 3)

determine the energies t„of the infinite number of
bound states lying between to = (b/a) (1 —1/b) and
t„=b/a. Since t„=(b/a) (1 —q"/6), there are
clearly an infinite number of bound states lying
in any neighborhood to the left of t„=b/a. Thus
the branch point in a(t} at t =b/a is an accumula-
tion point of poles. Furthermore, for t&b/a the
trajectory function a(t) is complex and Rea(t)
is decreasing. Since Reo'(t} is decreasing, we
do not expect the amplitude to have any resonances
for t&b/a. The trajectory function (3.1) thus gives
rise to an infinite number of bound states of arbi-
trarily high spin below the accumulation point at
f„=b/a and a nonresonant amplitude for t & t„.
Such a spectrum is similar to that produced by the
binding of two particles of mass M= —,'(b/a)' ' via

III. THE DUALMODEL WITH q) 1

The above two difficulties arise from the behav-
ior of the trajectory function (1.1) for large posi-
tive and negative t. Both of these difficulties dis-
appear if we have a trajectory function of the same
form (1.1}but with q '& 1. Furthermore, we take
the parameter a' to be less than zero, which
moves the singularity at 7' =0 to positive values of
t. We thus consider a trajectory function

Rea 1~

lo'
I

I

I

I

I

I

I

I

I

I

b/o = 4M

FIG. 1. Logarithmic trajectory associated with an un-
bounded mass spectrum.

FIG. 2. Logarithmic trajectory associated with a
bounded mass spectrum.
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the exchange of massless quanta. The trajectory
function (3.1) thus suggests a composite model for
the hadron and there is no problem with ghosts
in J34 produced by the fact that the trajectory func-
tion of Fig. 1 rises too slowly as t-+~. Instead
a(t) —~ for t near b/a, the limiting mass on the
trajectory.

In the scattering region t& p the trajectory func-
tion a(t) of Eq. (3.1} is real and decreases to —~
like —log(- t) at t —-~. Thus an amplitude with
Regge behavior s" would have acceptable be-
havior for large negative t. In fact the amplitude
would fall off for large t much more like the elas-
tic scattering data than the Veneziano g = 1 limit
which drops off exponentially in t and hence falls
orders of magnitude below the data. The high-s
behavior s" ', where a(t) --log(- t) for t- —~,
also turns out to be the behavior of the amplitude
for the scattering of two massive particles inter-
acting by the exchange of massless particles in the
ladder approximation. ' Thus the same physical
picture which explains a possible mechanism for
the accumulation point at t =+b/a =4M' also can
account for the large-t behavior of the high-energy
scattering amplitude.

We have thus seen that letting q - q ' in Eq. (1.1)
produces a trajectory function (3.1) which not only
no longer has the undesirable behavior of (1.1) for
t-+~ and t- —~, but also suggests a simple com-
posite-particle model for the hadron. We now

want to construct a dual amplitude with trajectory
(3.1). We cannot simply analytically continue the
amplitude (2.1) to values of q &1 since the circle

~ q (
= 1 is a natural boundary for B,. This is be-

cause there are poles in &4 at ~'=g " or at
q =(r'} ' " for arbitrarily large n Thus .for any
fixed value of r' the unit circle (q ~

= 1 contains a
dense set of poles and analytic continuation to
~q~&1 is impossible. This is not surprising since,
as we have seen, there is a great difference be-
tween the physics of trajectories of Figs. 1 and 2.
We can thus only use the amplitude &4 as a guide
in constructing a D4 with the trajectories of Fig.
2. We will also be guided by our composite-par-
ticle picture for the trajectories (3.1).

We begin with the infinite-product representa-
tion (2.1) and (2.2) for B, and rearrange the in-
finite products so that they converge when o'-0',
v'- r, and q-g '. That is, the individual infinite
products

(1 —aq ') (1 —rq ')

(1 —a)(1 —r), , (1 —aq ') (1 —rq ') (3.4)

do not converge when &&1. However, by factor-

1 1 ~ (r q-)
1 —q&or~ ~~ (1 —q') (3.6)

The residue (3.6) of the pole at a =q' can be
written as (1/r') P~(r, q '), where P~(r, q ') is a
polynomial in ~ of order j obtained from the resi-
due of B,(a', r', q) [Eq. (2.1)] at a' = q ~ by replac-
ing p by ff)' '. We can construct a function which
has polynomial residues at o =q' by multiplying
B,(a ', r ') by a factor r" ', where a(s) is the
trajectory function (3.1). This factor cancels the
7. ' factor in the residue (3.6) where a =q', or
equivalently n(s) =j, and at the same time does
not destroy the st crossing symmetry of the am-
plitude, since ~ ' =e" @"'=q ~' ' =o '. Fi-
nally, we note that if we want the o.(0) =logb/logq
to be positive we must have b &1. From (3.2} this
means that the lowest-lying energy t, is negative.
To eliminate this negative (mass)' particle we
must replace G(x) by G(qx) everywhere in the ex-
pression for B,. The first zero in G(qx) is at
x=q ' instead of x=1. The poles of G(q/a') are
then at

(3."t)

The (energy)' s„of the nth state is then

s = — 1 —— n=12. . .
b

(3.8)

which is positive provided g &b. We are thus led
to consider the amplitude D,(s, t) defined by

G(qiar) q"""
D(s, t)=

G(qir) G(q/a)
(3 8)

where

and

and

v =b —as, ~=6 —at,

a&P, P&q&b&1

(3.10)

n(s}=, a(t }=logo log7
logg ' logg

The arguments leading to the expression (3.9}
were motivated by the desire to incorporate as

ing out factors o'vg "from the numerator and de-
nominator of each factor in Eq. (3.4) we are led
to consider the infinite product

(1-a 'r ') ~(1- a'r 'q')(1 —q')
(1 —a ')(1 —r ') ~~~(1 —a 'q') (1 —r 'q')

=-B,(a ', r ') (3 6)

—B,(a ', r '} has poles in a at a =q and near
g -q~ behaves like
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many as possible of the dual features of B4 while
changing the trajectory function from the expres-
sion (1.1) depicted in Fig. 1 to the expression
(3.1) depicted in Fig. 2. The simplest such mod-
ification (3.5) which accomplishes this has the
nonpolynomial residues (3.6). These nonpolyno-
mial residues are then eliminated by the crossing
symmetric factor q

' ' =0 ', which at the
same time introduces a cut into D, for «0 or for

to the amplitude becomes smaller is very similar
to the situation in which y rays are scattered by
an atom near the ionization threshold. In this case
the averaged amplitude below the ionization energy
connects smoothly to the amplitude in the continu-
um above the ionization energy. We will now show
that the amplitude (3.9) possesses this same prop-
erty.

From (4.1) we conclude that

6
s & —=4'' .

a (3.1 1)
G(&) G(a)5(o- q")q"~ G(q) G(q) G(«)

This means that our amplitude D„unlike &„ is
not meromorphic but has a branch cut for 4M'
&s & . This threshold branch cut is what would
be expected if our previous bound-state interpre-
tation of the trajectory function (3.1) is correct.
Scattering amplitudes which involve bound states
produced by the exchange of massless particles
always have an accumulation of poles and then a
branch cut. (The usual nonrelativistic Coulomb
scattering amplitude is an example of such be-
havior. ) The motivation for postulating (3.9) as a
dual model for the scattering of composite par-
ticles follows the reasoning by which (3.9) was
originally obtained. We could just as well have
postulated (3.9) and then worked out all its pre-
dictions for scattering. In the next section of this
paper we discuss what modifications must be in-
troduced when we take account of the fact that our
bound states are really resonances which decay
with a finite lifetime.

IV. THE SMOOTHED AMPLITUDE IN THE
RESONANCE REGION

G(7)G(q")q"

..G'(q)G(&q")(a-q") ' (4 1)

Thus as 0„-0, or as s„-41K', the residue of
D, (s, t) at s„vanishes like q". The case in which
near the accumulation point the poles become
denser while the contribution of an individual pole

The amplitude D, of Eq. (3.9) is a smooth func-
tion of s except in the resonance region,
4M (1 —q/b) &s &4M'. The individual factors in
(3.9) are singular as s-4M' from above or equiv-
alently when p -0 . However, the resulting func-
tion D,(s, t) is smoothly behaved in this limit and

one can use (3.9) to calculate D, for all values of
s greater than 4M'. ' For values of s &4M'(I- q/b),
D, (s, f) is clearly smooth. We now examine
D, (s, t } in the resonance region.

The poles in s in D, arise from the vanishing of
G(q/a) at a =q", n =1, 2, 3, . . . . Using Eqs. (2.2)
and (3.9), we find that near the nth pole at
0 =o„-=q", D, behaves as

(4.2)

v G(~)G(q")
lnq G'(q)G(vq") ' (4.4)

where n is the smallest integer greater than ~(o).'
As long as q" «I the step function (4.4) does not
change appreciably as n -n+ 1 and hence (4.4) dif-
fers negligibly from the smooth function

v G(c}G(r)
I lnq I G'(q)G(ar)

(4.5)

We take (4.5) as our averaged amplitude. Physi-
cally the replacement of (4.3) by (4.5) accounts for
the fact that the resonances can decay and hence
have finite width. We expect that the amplitude
(4.5) will give an accurate representation of the
physical amplitude except in the region of the low-

lying resonances n =1, 2 where the spacing
(I/a)q"(I - q) is not small. We will determine the
real part of the averaged amplitude by requiring
continuity at the accumulation point. '

We now look at the amplitude (3.9) for s &4M,
i.e., a &0. In this region D~(sf) can be written as

G(q/~)(ia i) "',„.«& (4.6}
G(q/r)G(q/a)

Thus D,(s, t) possesses the Regge asymptotic
phase e " '~ for all s&431'. In the resonance
region we use the average amplitude D which has
the same phase

for 4M'(1 —q/b) &s&4M'. Now

5(n —a(s))
(lnq)q"

Hence

G(7) G(q" )5(n —u(a))
lnq ~ G'(q} G(rq")

(4.3)
(1 —q/b)4M' &s &4M'.

To define an averaged amplitude we replace the
function 5(n —a(t)) in (4.2) by the function which is
1 in the interval n &a(a) &n+ 1 and zero otherwise.
This spreading of the 5 function replaces (4.2) by
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G(o)G(y } e iir ~-(t )

D(s, f) =
lnq G'(q)G(oT) sinvn(t)

' (4 7)

where

2G(e4ii inq)e / a2 2

c{q)=
G(q)q'~'(-lnq/2v)'~' ' (4.9}

I(o.) —II (1 —e """")(1—e"""-"')

(4.10)

and n„(s) is the trajectory function on the nth

sheet, i.e. ,

n(s)= +, n= 0+1+2, . . . .lno 2min

lnq lnq
(4.11)

If we use Eq. (4.8} for each of the factors in (3.9}
we arrive at the expression

D, s, t
G(o)G(r) sinn[a (s) + n(t )]

C(q)G(or) sinvni(s) sinvoi(t)

I(a(s)+o.(t))
I(o.(s)) I(a(f)) (4.12)

Now above the accumulation point a(s) is complex
and equal to ln(~o

~

—vi)/inq Thus . the factor
stnq[n(s)+o(f)]/sinwn(s) can be replaced by

' f we neglect terms
which is very small unless q is near zero. Fur-
thermore, under the same conditions the factors
I(a) are essentially equal to unity and hence (4.12}
takes on the same form as the averaged amplitude
in the resonance region.

The above discussion was only used to show that
the structure that enters in the averaged ampli-
tude (4.7) also appears in the amplitude (3.9) when

use is made of the identity (4.8). The identity
could also be used to define an alternate averaging
procedure in the resonance region which up to a
factor I[n(t)] yields the same amplitude (4.7) with

the right phase. In actual practice one calculates
directly with the original amplitude (3.9) which

behaves very smoothly as s approaches 4M' from
above. Thus for q not near zero, the amplitude
then smoothly joins to the averaged amplitude
(4.7). The accumulation point and the branch point

at 4M' have compensating effect and we are left
with no singularity at s =4M' except for the nu-

merically negligible effect of the function I(a).

The behavior of the amplitude (4.6) as o —0' looks
quite different from that of the amplitude (4.7} as
cr -0 . However, one can see that the amplitudes
do not differ appreciably by using the following
identity which is easily proved using Jacobi elliptic
functions":

G(o)G(q/o) =C(q)sinvn(s) q
' ' " ' iI(n),

(4.8)

V. DISCUSSION

Pj Pg

Ps

P7

P5

FIG. 3. Typical Feynman diagram involving the
scattering of constituent particles. Such diagrams are
associated with Harari-Rosner duality graphs.

We conjecture that the dual amplitude (3.9) is an

approximate representation of the scattering am-
plitude for particles which are bound states whose
constituents interact via the exchange of massless
gluons. The reasons for this conjecture are the
following:

(a} The fact the amplitude contains an infinite
number of resonances near 4M' with arbitrarily
high spin means that the theory must contain a
long-range force, i.e. , mass-zero particles.

(b) The nonrelativistic Coulomb trajectories are
an example of trajectories having the property (a).
They are quite different, however, from the tra-
jectories a(t) of Fig. 2. The exact solution of the
Bethe-Salpeter equation for the scattering of mas-
sive particles via the exchange of massless scalar'
particles yields trajectory functions which for
large t behave like ln

~

f ~. Thus at least in the
large-

~
t

~
region the trajectory functions of Fig. 2

can be obtained from a bound-state picture.
(c) The dual structure of the amplitude (3.9) sug-

gests that it might be related to a Feynman ampli-
tude corresponding to duality diagrams of the
Harari-Rosner type such as that depicted in Fig.
3. The amplitude of Fig. 3 is an eight-point func-
tion for the scattering of constituents via the ex-
change of massless gluons. The amplitude cor-
responding to the diagrams of Fig. 3 can be con-
structed from the solution to Bethe-Salpeter equa-
tions for the elastic scattering of the constituents
which corresponds to summingthe ladder diagrams
of Fig. 4. The bound-state scattering amplitude
is then obtained from the residue of this eight-
point function at the spin-zero poles in the vari-
ables (p, +p, )', (p, +p, )', (p, +p, )', (p, p, )'. Th s
amplitude is obviously a crossing-symmetric
amplitude containing the infinite set of poles in s
and t at the positions determined by the position
of the poles of the Bethe-Salpeter amplitude of

Fig. 4. But as mentioned above, these poles lie
on a trajectory which is depicted qualitatively in

Fig. 2 and for ]-+~ has logarithmic behavior.
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FIG. 4. Ladder graph approximation for the elastic
scattering of constituents.

(d) The model of Fig. 3 possesses the usual dif-
ficulty that its components, quarks and mass-zero
gluons, are not observed in nature and therefore
one must explain why physical particle states with

such properties do not appear. We have no new

ideas about the solution to this problem but we

note that in our smoothed amplitude both the ac-
cumulation point (i.e., the mass-zero particle)
and the branch point (quark-mass threshold) have

disappeared. It is not inconceivable that inclusion
of higher-order corrections to Fig. 3 involving
quark-antiquark pairs could produce an amplitude
which has some of the properties of our smoothed
model amplitude (4.6), and hence would not make

manifest the presence of quarks or zero-mass
gluons. This of course is all very speculative and

we have no suggestions of how this could come
about in detail.

(e) Since calculation of diagrams of the type of
Fig. 3 are rather involved, it is desirable to see
if the dual amplitude (3.8) which motivated this
bound-state picture can give a reasonable descrip-
tion of elastic scattering. Such an analysis of
large-angle pp elastic scattering where the Pom-
eron contribution is negligible has been carried
out by Coon, Sukhatme, and Tran, ' and quite a
satisfactory fit was obtained.

In conclusion, we have constructed a dual ampli-
tude (3.8) which has many features of a composite-
particle model of scattering. It gives a reasonable
description of elastic scattering data and suggests
that processes such as those depicted in Fig. 3

may be the fundamental mechanics contributing to
strong interactions.
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