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An impact-parameter expansion of the Veneziano scattering amplitude is obtained and some analytic

properties are briefly discussed. A simple asymptotic limit to the expansion is also furnished for large impact
parameter.

I. INTRODUCTION n(s~) = j, (2.4)

In strong-interaction dynamics, the high-energy
behaviors of scattering amplitudes are of interest
and have been the objects of continuing investiga-
tion. As an extension of the eikonal approach in
potential theory, ' the impact-parameter expan-
sion' ' has provided insight into high-energy scat-
tering processes and serves as a useful integral
alternative to the usual partial-wave series sum-
mation of the amplitude.

The Veneziano scattering amplitude, ' which ex-
hibits complete crossing symmetry and Regge
asymptotic behavior in all channels, has also
stimulated studies' "of the dynamics of duality
and rising linear trajectories, though unfortunate-
ly violating unitarity in its unexpurgated form.

In this paper we examine an impact-parameter
expansion of the Veneziano amplitude. More par-
ticularly, we obtain an expansion and describe its
analytic properties, compute the discontinuity
across the branch cut, and finally give the asymp-
totic expansion in the large-impact-parameter
limit.

II. VENEZIANO AMPLITUDE AND IMPACT

REPRESENTATION

I'(1 —n(s) )I'(1 —n(t))
I'(1 —n (s) —a (t) )

(2 1)

The Veneziano scattering amplitude, A, is given
in terms of the usual Mandelstam variables, s
=4(q'+ m') and t= -2q'(1 —coso), for q the center-
of-mass momentum and 8 the scattering angle, by

with j a positive integer. These poles are equally
spaced, since, from Etl. (2.3),

(j -a)
Sg=

C
(2.5)

Similarly, for all t such that

n(t~) = j, (2.6)

limA(s, t) = I'(1 —n(—t))(-cs) "',

limA(s, t) =—I'(1 —n(s))(-ct) "',
(2 7)

which displays the characteristic Regge asymp-
totic behavior. Crossing symmetry under the in-
terchange s —t is also obvious in Eqs. (2.1) and

(2.7). The residue of the jth pole is proportional
to a t polynomial of order j, giving rise to the in-
terpretation that each pole corresponds to a mul-
tiplet of particles of the same mass and of spins
0, 1, 2, 3, . . . ,j. Because the series of resonances
is equivalent to a Regge asymptotic form, the am-
plitude is dual. Since the poles are real, however,
there is no discontinuity across the axis and uni-
tarity is violated.

Considering a collision with orbital momentum
l in the center-of-mass system, we define the im-
pact parameter, b, by

A(s, t) contains an infinite series of poles in t.
The denominator of Eg. (2.1) cancels one of the
poles when s and t coincide at different values of

j, ensuring that only single poles occur. As z - ~,
I'(z) -z', and the asymptotic form of A(s, t) is seen
to be

The I"s are the Euler functions, "
l+ -'= qb. (2.8)

I'(z) = dxz 'e ',
0

(2.2)

analytic in z except for poles at negative real in-
teger z, or zero. The n are Regge trajectories,
taken to be real and linearly rising,

Semiclassically, b is the closest distance of ap-
proach. The impact representation of the ampli-
tude is written' as an integral high-energy com-
plement to the partial-wave sum,

n(u) = a+ cu, c &0. (2.3)
A(s, t) = dPPJO(Py)h(s, P/2 ), q

0
(2.9)

Obviously, A(s, t) possesses poles in s when with It the impact coefficients, J0 the Bessel func-
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tion of order zero, and

P= 2qb,

y' = -t/4q'.
(2.10)

is well behaved for Rey&0. For Rey&0, trouble
seems to occur at x-0. This is circumvented by
expanding the exponential in a Taylor series at
x=0,

The impact coefficients are formally obtained from
Eq. (2.9) by the following inversion:

(3.5)
b(s, b) = dyydo(Py)A(s, -4q'y').

&0
(2.11)

since
III. FORMAL EXPANSION AND ASYMPTOTIC LIMITS

Equation (2.1) can be recast as
-Ot(s )-1

lim =1.x~0 (3.7)

I'(1 —n (s) )I'(1 —n (t) ) —n (s)I'(-n (s) )I'(1 —n (t) )
I"(1—n(s) —n(t)) F(1 —n(s) —n(t))

=-n(s)B(-n(s), 1 —n(t)),

(3.1)

Then employing Eq. (3.7) in Eq. (3.5), there re-
sults

b(. b)=- '"
2gc q p

with B the beta function written in the form"
&&f+n-e(s&-2 (3.8)

B(v, ((&) = dx e " (1 —e ")" ',
0

(3 2)

which is a series well behaved at the origin and
convergent. Performing the integrations" one ob-
tains an expression

n(t) = a+ ct, c &0 (3.3)

one obtains the impact coefficients of the Venezi-
ano scattering amplitude from Eqs. (2.11), (3.1),
(3.2), and (3.3),

b(s b) n(s) dxe-x(lm)(1 e-x)-a(s)-)

for Rem&0 and Rem &0. For the linear trajectory, g( &P,
-

y )f
1) - I

h(s, b) = f„ 1gC „0 1 —0

&( K (,&+, „(2y '(1 —a)' '),

(3.9)

for K the modified Bessel function, which is equal-
ly applicable for Rey&0.

From Eq. (3.9) and the structure of K," it is
evident that h has a branch point at 5 = 0 and
branch cut along the real axis from -~ & b & 0.
%e use the identity"

Performing the integration over y," it follows that
K„(z)= -,'&( (sin&() ) '[I „(z)-I„(z)], (3.10)

1 x ~at($)~1
X -o(s)-2x )x

(3.5)

and contour representation of the Bessel function
of the second kind,

P

I„(z)= (2)(i) ' —
~

dxe '"'* '"'(-x) " ', (3.11)
"C

b~
y 4c'

which is valid for a+ et&1, n(s) (0. The integral

where the contour C starts at infinity, encloses
the origin, and returns to infinity counterclock-
wise and along the real axis. One finds the dis-
continuity in h across the cut,

lim[b(s b+ie) —b(s, b —ie)]= — . P f„( y)N'"+' " Jtdx(-x)" ~'8' -e~ """~ '.
6~0 4iqc (3.12)

For large b an asymptotic expression for h can be obtained from Eq. (3.9) by taking the low-order
terms in the large-z expansion of K„(z),

/
K (z) = — e '.

2z

From Eq. (3.9), we obtain the diffraction-like result for the asymptotic impact coefficients,

(3.13)
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(g(s)bll2 ~ s I/2 1 g 1/2
limh(s, b)= — gg„&~ e ', $=, g„=f„

n~0

—Ee(s)+1]/2

(3.14)

For high energies, a(s) -4q'e, and the leading term (n = 0) gives

8~b &/2-
jimh(s, b) - -q 3,~a( )

- (epe+x) /2
agQ (3.15)

*Work performed under the auspices of the United
States Energy Research and Development Administra-
tion.
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