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Bounds on the moduli and relative phase of the spin~pin-1/2 particle scattering amplitudes are used in the
unitarity relation to find upper bounds for the imaginary parts of the spin-nonflip and spin-flip amplitudes.

I. INTRODUCTION

Construction of the scattering ampl. itudes from
the experimental data and their rigorous (model-
independent) properties is one of the central prob-
lems in particle physics and scattering theory
today. Several authors have studied different as-
pects of this problem. ' "

For the scalar-scalar case the modulus of the
amplitude is the only measurable quantity, its
square being the differential cross section. The
phase is connected to the modulus through the
unitarity equation in the elastic scattering case.
The existence and uniqueness of its solution and
question of convergence of iteration are discussed
in Refs. 1-3. The same problem with the addi-
tional assumption of analyticity in z within the
I.ehmann-Martin ellipse is studied by the authors
of Ref. 9.

For the spin-0-spin--, ' scattering case there
are two amplitudes and two coupled unitarity in-
tegrals. However, the moduli of the spin-nonf lip
amplitude f(z) and the spin-flip amplitude g(z)
are not determined with a knowledge of the dif-
ferential cross section D(z) and the polarization
P(z), the presently available experimental quan-
tities. Only upper and lower bounds" "for the
moduli and relative phase of these amplitudes are
determined by D and P. The additional knowledge
of the rotation. parameter R would determine the
relative phase uniquely (modulo 2z} as well as the
moduli. But even then one could not distinguish
between

~ f ~
and ~g~ even though the values of the

moduli would be known. Only when the other rota-
tion parameter A is known can we tell which value
corresponds to which modulus.

If one wanted to use unitarity to find the phases
together with a knowledge of D and P at all angles
at a fixed energy one could not do this because the
moduli of the amplitudes are not known. If, how-
ever, we introduce the transversity amplitudes

t~=f wig,

their moduli are determined by D and P and the

corresponding unitarity equations can be used to
determine the phases. ' One can then go back to
the above relations between t, and f and g and
determine the phases of f and g.

The reader may wonder how one can find these
phases by simply making a transformation if one
was not able to find them in the first place directly
from the unitarity equations of f and g. The
answer to this is that the experimental informa-
tion D and P is distributed between the three quan-
tities

~ f~, ~ g~, and the relative phase (sinn) in
terms of their combinations or as bounds on each
of them. Thus there is too little information on

~ f ~
and

~ g~ which are needed in the unitarity equa-
tions and too much information on the phases
(relative phase bounded) which will be determined
by those equations. On the other hand, D and P
give complete information on

~
t,

~
and ~t

~
(uniquely

determined) but say nothing at all on their phases.
Hence t+ and t are the suitable amplitudes for
the unitarity equations if only D and P are known.
For a completely new introduction of the trans-
versity amplitudes see Refs. 15 and 10.

Finally for the spin-(-,', —,}cases we refer the
reader to the recent works, Refs. 8 and 11.

In this paper we use the two unitarity relations
for the f and g amplitudes to establish bounds on
their imaginary parts below the inelastic thresh-
old with a knowledge of D and P. The reader may
ask why one needs bounds if the unitarity equations
can be solved for the phases. The reason for this
is that the solvability conditions are too restric-
tive and in most practical cases not fulfilled.

Finally the justification for the use of f and g
amplitudes rather than the transversity amplitudes
in the derivation of bounds lies in the simplicity
of their unitarity equations even though the dis-
tribution of information between moduli and phases
is not as neat as in the case of t„t amplitudes.
We try to exploit the information contained in the
bounds of moduli and the relative phase to major-
ize the unitarity integrals.

In Sec. II we consider the spin-nonf lip amplitude.
Different types of bounds are obtained. In the first
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type [Eq. (2}] only the largest value of expression
(1) in the entire angle region is used. In the sec-
ond type several improvements are carried out
in the majorization of the phase factors containing
both the absolute and relative phases. In these,
both D and P data are used without revoking the
analyticity in energy [Eq. (10)]. Finally maxi-
mizing both amplitudes simultaneously a third
bound [Eq. (13)] is obtained which is improved by
maximizing the amplitudes subject to constraints
imposed by the polarization.

In Sec. III we consider the spin-flip amplitude.
In the unitarity relations of f(z) and g(z) there is
an inherent difference in the way the phases enter
those relations. Therefore, the way the major-
ization of the phase factors can be improved is
different for both cases. The best result for
Img(z) is represented here by Eq. (23). Simul-
taneous maximization of the amplitudes with and
without the constraints imposed by the polariza-
tion is more complicated for Img(z) but the prin-
ciple is the same.

In Sec. IV we compare our inequalities with the
experimental data and give numerical results in
Tables I-V. In Sec. V we summarize the results
and give our conclusions. The details of the
majorizations of some expressions used in deri-
vations are given in the Appendix.

II. SPIN-NONFLIP AMPLITUDE

With best upper bounds obtained from differen-
tial cross section D(z} and polarization P(z) for
the moduli of the spin-nonflip and spin-flip ampli-
tudes

( f )
and

) g( (see Refs. 12-14),

Ifl, lysi»l- BD[I+(I-P')' l] ',
we try to exploit the elastic unitarity integral to
find upper bounds on Im f(z) and Img(z). Consider
first

1 f(*)=1 J Jdxdy [f'(*)f(y)

+ (z -xy) g*(x)g(y)],

where K =1 —x —J —z'+2xyz. 8(K) ensures that
the integration is over the ellipse defined by K =0,
q is the center-of-mass momentum. We first
majorize

( f(x)(, If(j))l, I g(x)(I -x')'"), and
) g(y)(I -y')"I

by taking the largest value (sup) of

(-,'D[1+ (I —P )' ']]
in the entire angle region with the understanding
that each term under the integral will be major-
ized by positive quantities:

1 f(*)- [,D[1 (1 —P')'S]'—],„JJdxdy sos(dz(y) —dz(x))

+ (I,),fz(I, ),o cos((j),(&) —(j)g(x)}

We note that the spin-flip amplitude g(z) appearing in the unitarity relation contains a sin8 factor im-
plicitly. That is, the differential cross section D(z) =~ f~'+(I —z'}~ g~'. Here (t)f and p, are the phases
of f and g. The extremum of

z -xy
(I ,),f, (l ,)„,=(j)(x,y) (z =fixed)

is at x =y =0 with (|)=z. For this case
~ (l), ~

=1. Majorizing now cosine terms by one, we find

1 f(z)- (-D[1 ~ (1 —P')'1']]',,„2Jf dxdy

wit

e(K) )f
"

= —P(21+1)P,(y)P, (z)P, (x),
vZ 2 g=o

the integral becomes

dxdy = — 2L+1 &)OP, y P, z dy

=27r .
Hence

Im f(z}~2qf-, D[1+(1-P') ']J (2)
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The noteworthy aspect of this result is the explicit q dependence as opposed to

Imf(z}~ vD or (2'D[1+(I —P')~'))''
We also remark that the full experimental information is not used in the sense that the only piece of data
used is the sup of —,'D[1+ (1 —P')'h] in the entire angle region.

Next we try to improve this bound by better majorizations. Using only D and P we cannot improve
~ f ~

or
~ g~. Therefore, the implication is clear: We must improve the phase factors. There is the relation

between the sine of the relative phase a of f and g and the polarization":

sincy ~1,

We write now Imf(z) in the form

I. /( )-
s II d ds c- If(*)I. If(s)l ccs(d d) ) „*s r) . t. c sd (4)

where

h a -=(y, (y) —y, (X))- (y, ( -) —y, (x))

-=n(X) —a(x),
p-=e, (y)- e,(.).

We already saw that the extremum of

icos(hn+ p)i +(2[cosp[,

where a is positive and less than 1.
In this case further possibilities arise depending

on whether (2 is larger or smaller than ~cosh n~.
The result here is

~F(p)~ = (1+a'+2(2~cosh a~)'+ (see Appendix) .
z —xg

(1 x2)l/2(1 y2)1/2

within the unitarity ellipse is z, the largest value
of which is one. The above majorization is justi-
fied only if the quantities in the bracket are posi-
tive. We now find the maximum of the bracket for
a fixed AQ. as a function of P.

Call

F(p) = cos(hn+ p}+-cosp.

Then

The imaginary part of f now satisfies

Im f(z)- (—D[1+ (1 —P')'/'] j,„,
x dxdY 1+a'+2a cosign

Mz

We now write cosh, o. in the following form:

cos(a(y) —n(x)) =cos n(y) cos n(x)

+ sinn(y) sinn(x) .

(8)

(7)

dF
dP

= —sin(ha+ p) +sinp =0

(see the discussion below for different signs) gives

simh ~
tanP =—

1 +costa

With this value of P, F(P) becomes

F (p) = [2 (1 +cosh a) ] '/' .

There is one point in the majorization of F(p) about
which we must be careful. Actually we are major-
izing ~cos(ha+p)~+~cosp~. But since cos(ha+ p)
is just cosp shifted by hn, ~F(p)~ will be the larger
of the two cases. If in relation (4)

We would hope to use (3) in the majorization of
expression (7}. However, the inequality (3) is in
the opposite sense. That is, ~P~ is not an upper
bound for ~sinn~ but a lower bound. Still there is
information in the inequality (3) which can be used
in the following manner.

First of all, (3}tells us that sinn and P have
the same sign. Hence a knowledge of experimental
P gives us the sign of the second term in (7).
When sinn(y) sinn(x) has the same sign as the
first term for a pair of points p, x we majorize
cosh, z by 1.

When it has the opposite sign we write (7) in the
following form:

cos) n(y) —a(x)( = [1 —sin'a(y)] '/'[1 —sin'n(x)] '/'

z —xP
(1 x2)1/2 (1 y2)1/2

—
( sin n(y)( ( sinn(x }( . (8)

is kept rather than majorized by 1, one has to find
the maximum of an expression such as

To determine the relative sign of the two terms in
(7}one either needs the sign of the R parameter"
(R =D '2( f (( g (cosa sine) or cases where P =1.
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Obviously we have to know where R (or cosn}
changes its sign. From continuity arguments cosa
cannot change its sign unless sinn =1. But at
places where sinn =1, P must be 1 as can be seen
from relation (3).

We shall study the situation below more in de-
tail. Let us now consider (8), when its two terms
have opposite signs. To rnajorize this we see that
in the first term sine must be replaced by its
smallest value. Similarly the second term must
be made as small as possible. Thus we find

COS

Xg X3
X

cosh, o ~ [1-P (y)] +[I —P'(x)] +

—IP(y)IIP(x)l .
Here inequality (3) has been used in the form

(9)

I»»l 0 IPI.
Consider now a typical experimental polariza-

tion measurement. '~ '0 (Even though the refer-
ences are for the inelastic case our purpose here
is just the discussion on how the unitarity ellipse
is divided into different sections. We will not
use the inelastic data in our calculations. ) Sup-
pose the polarization changes sign twice at points
x, and xm and equals -1 at x, (Fig. 1). (Cases
where P changes its sign less or more than twice
are analyzed in a similar manner. See in particu-
lar the K P and w P data for the cases where P
changes its sign three times. )

Since we are interested only in the sign of
coso.(y)

cosa�(x)

it does not matter which one of
the cosines is (+) or (-). For the sake of illus-
tration we choose an arbitrary sign for it and draw
cosn as in Fig. 1. (We are also not considering
the case where cosa may be tangent to the z axis
at the point where sinn = +1.) Also it does not
rnatter what the value of cosa is in any region, as
long as it does not change sign. cosa cannot do
this without making sine = +1. However, even
though we can conclude from IPI =1 that

I sinai =1,
the reverse is not true and we may lack inforrna-
tion about such points where IPI & I, lsinnl =1 on

whether cosa changes sign or not. But even with
this limited knowledge and possibly experimental

FIG. 1. An example for the polarization curve and the
behavior of cosn.

knowledge on the sign of R alone we can do the
following.

Let us divide the unitarity ellipse with a knowl-
edge of the zeros of the experimental polarization
into the domains shown in Fig. 2. Next we divide
the same ellipse according to partial or complete
knowledge of the zeros of R (or cosa}. We may
not know the sign of all domains in this second
case. But for the regions in which the signs are
known we can combine Fig. 2 with Fig. 3 and find
the domains in which the signs are opposite. In
those domains we majorize

cosmic,

by (9); in all
other domains we majorize it by 1. The results
depend on the values of P as well as on the size
of the domains which are determined by the zeros
of the polarization and cosa. Here z plays the
role of a fixed parameter and when z is changed
the shape of the ellipse as well as the size of the
domains change.

Before giving numerical results we would like
to return to inequality (6). In this inequality only
the sup of ~D[l + (1 -P')'~'] and the polarization
data [through (9)] are being used. If we write (6)
in the form

f( )-' J I&A ( b'))()+ (- (')(&))-') '))
&(—,'D(x)(1+[I -P (x)]~))''(I+a +2alcosno(I)+' (10)

we have a better bound, with both D and P being
used. Here it is understood that Icosnnl is major-
ized by either 1 or expression (9) depending on
whether the product of the signs in the domains of
the unitarity ellipses is (+}or (-}.

To further improve inequality (10}we make the
following observation:

Even though the bound (1) is the best one can
find for

I fl and
I gsinel individually with a knowl-

edge of P and D alone, we can do better when both
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FIG. 2. Separation of the unitarity ellipse into domains
of different signs for the term sino. (yjsinn (x).

FIG. 3. Separation of the unitarity ellipse into domains
of different signs for the term cosa (y)cosa (x).

moduli are considered simultaneously. By this
we mean that when one of the amplitudes takes its
maximum value, the other cannot take its maxi-
mum.

Defining

l f(x)l -=a(x)-=x',

If(y)l -=a(y)=-y',

we write the integrand of the unitarity integral in

the form

F xiy & +a (D xt2)1/2 (E y&2)1/2

Here

D =D(x), —

E=D(y), -
z -xy

(1 x2)1/2(1 y2)1/2

We now want to maximize F aF/ax'=0 a.nd

aF/ay'=0 give

x'

y" =E,

= WaMZ= [D(x)]"[D-(y)]"

With this result inequality (10) is replaced by

&~/(*&-
2 Jf»*e '~» [D( )/*to(~)l *». '

Similarly inequality (2} is improved by almost a
factor of 2:

Im f(z) qD,„- (14)

However, we can do better than this, because
when we maximized (11}we did not take into ac-
count the fact that x' and p' are individually bound-

ed by (1). This means that a knowledge of D only,
but not of P, has been used. Hence we should
maximize (11) subject to constraints

(»D[1 —(1-P')' ]}' &lfl lg»nial&(»D[1+(1-P')'~]}"

We have already found that the only extremum of (11) is at

x'=MD a d y'=ME.

Hence F has no maximum between the values

x,' -=(-,'D[1 —(1 P'}'/»]} '/' &x' & (—,'D[1+ (1 P') / ]}-'/'»-=x'-
yI = pE[1 (1 @»)1/»]}1/» & y& & p~E[1 + (1 q»)1/»]}1/» = y&

Here Q =P(y). —

Therefore, the largest value of F must be on the borders. We find that F has actually a maximum on the
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border plane. Its location is given for example for the plane x' =x„'by

x'2
yI2 E s

x„'2(1—a')+a'D '

For Q'&P' this falls outside of the limits (15). For P'&Q' its location depends on a.
Since the expressions are cumbersome we shall not pursue this further, but will give at the end of Sec.

I1I numerical results obtained with inequalities (14) and (13).

III. SPIN-FLIP AMPLITUDE

We now turn to the spin-flip amplitude g(z). The elastic unitarity condition is

lmg(z) = — «dy ~, [K(x, y, z) g*(x)g(y)
Q' 8(K) 1

+(»- zy)f *(x)g(y) +(y - zx) g*(x)f(y)] (16)

8ince we shall majorize (f ( and (gsin8( we write out the sin8 factors explicitly. We also write the phase
factors

q 8(K) 1
lmg(z) = — «dy ~ (

Klg(x) I Ig(y) l(1- «')' '(1-y')' '
(1 «2)1/2 (1 y2)1/2

( )
If(x) I Ig(y) I (1 y ) ei(2) (2)-I/( ))

(1 —y')'"

( „)Ig(«)l If(y)l(1-x')",)(1),(2)-2),(.))+ y —zx
(1 2)1/2

Defining again

4/(y) —4,(y) -=~(y),

this becomes

K) cosPI ) x-zy}
X ] 21/2

y
21/2+ ] 21/2 COS p —Qx)

+
1 „,, /. l«( s(yo) )3)+I
ly —zxl

(18)

Here we took {-,' D[1+(1—P')' ']} 2 outside of the
integral not to clutter the expression. For numer-
ical calculations it will be kept under the integral
in its original form as a function of x and y:

(2 D(x) {1 +[1 P2(x)] 1/2})1/2

x(2D(y) {1+[1—P'(y)]' '})' ' .

Let us now majorize the integrand in (18). The
moduli of the amplitudes are majorized and taken
outside of the bracket with the understanding that
the multiplying factors will be majorized by posi-
tive quantities.

Consider first

1 —x 2 —y2 —z2 + 2xyz
(1 «2)l/2 (1 y2)1/2

S((1//8« = 0 gives

2yz —x+ x' —xy' —xz' = 0 .
Since g is symmetric with respect to x and y,
8(( jay=0 will give

2xz —y+y' —yx' —yz' = 0 .
The solution of these two equations is x =0 and
y =0.

Hence /=1 —z', and the largest value of the
first term in the large curly brackets in (18) is
(1 —z'). However, except for its simplicity we
do not have to use this value, because g can be
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explicitly evaluated.
The second term which is the expression in the

square bracket is symmetric in x and y. This can
be seen from

P(y, x) = 4,(y) —4, (x) =- P(x, y)

1 —x' —y' —z'+ 2xyz = 0,
1 —2x' —z'+ 2x'z = 0

gives
1+&

1/2

2

t(x, x) =
(1 }», cos(p(x, x) —n(x))

+ 2 1x» cos(n(x}+p(x, x)).2 1/2

Because P(x, x) =0 and cos is an even function we
find

t'=2(I +», (1 —z) ~cosn(x)
~

.Jxl

We can also find the la.rgest value of

(19)

cos( P(y, x) —n(y) ) = cos{p(y, x) + n(y) ) .

Thus an interchange x y takes the first term in

the large square brackets in (18) to the second
term and the second term to the first term. Let
us call the square bracket ](x,y). Since $(x, y) is
symmetric in x and y its extremum is at x =y,

and
x 1+x

(I x2)1 /2

Finally (=2(I —z')'/' and the curly bracket in

(18}is majorized by

[(1—z )+ 2(1- z )'/ ]. (20)

Again except for reasons of simplicity we do not
have to use the largest value of x/(1 —x')'/' since
it can be explicitly evaluated.

The unitarity relation for g(z) then becomes

Img(z) ~~ (-.'D[1+(1—P')'"]}„,
„

e(IC) 2
xdy ~ 1+

( / . (21)

The bound (20) can be improved if we replace
in Eq. (19)

(1 x2)1/2
cos n(x) = [1 —sin' n(x)]' '

and majorize this by

(22)

on or in the unitarity ellipse [for the time being
eos n(x) is majorized by 1]. As a larger x in-
creases the numerator and decreases the denom-
inator, x must be as large as possible, consistent
with the condition to be in or on the ellipse. Since
at the largest value x =y it must be on the ellipse.
Hence

cosn(x) ~ [I —P'(x)]' '.
In this expression ~x

~

cannot be larger than
[(1+z)/2]'/' since it is the coordinate of a, point
at which x = y.

We also replace
~ f (x)

I
and Ig(x)(I -x')'"[ by

their bounds in Eq. (21) and find

Img(z) (1 —z')'/' ~ —
~ dx dy (—,

'
D(x)(1 + [I —P'(x)] '/'})'/'(2 D(y) [1 + [1 —P '(y)] '/'}) ' 'A,

2mg
(23)

where

A =((I — )'/'+2[1 —P'(x )]'/'}

Here x„is the cosine of that scattering angle between zero and a [(1+z)/2]'/' at which the polarization
is smallest.

In its general form the last factor of the integrand in (23) is

(24)
1

[(1 z2)]l/2 (I x2)1/2(1 y2)1/2 (I x2)1/2 (

When integrating inequality (23) we should remember that the largest value of ~x) is [(1+z)/2]'/'. Hence
for

1+a
2 )

1+a ~'
~x +1 and &x& -1

2

we should take P(x) =0.
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Up to here we considered the maximum values of the first and second terms of (24) separately, but
these terms do not reach their maximum values simultaneously. When we majorize all terms simul-
taneously we can get a better result. Calling all three terms A(x) and setting BA/B»=0 leads to

This value is outside of the unitarity ellipse. So A is a monotonic function. The largest value occurs on
the boundary. The first term goes to zero and the second term reaches its maximum value:

A =2cosa or A =2[1-P'(x )]~'.

In expressions (16) or (17) the symmetry of the integrand with respect to x and y can also be used in a
different way. Instead of using this symmetry to find the extremum we can combine the second and third
terms as twice of either one of them because the integration area also is symmetric in x and y (unitarity
ellipse). Thus we obtain

/x-zygo
(I 2)1/2 /I »2)J/2(1 y2)1/2 I cosP(», y) I + 2

(I y2)1/2 I cos(I (», y) —a(x)) I

Majorizing the cosines by 1 we obtain

(25)

z
(1 —z')+' (1 —x )+ (1 —y )'/ (1 —y')' ' (26)

It is not a Priori obvious whether (26} or (24) gives a better bound. This will depend on P(x)
We now apply the considerations used for the non spin-flip amplitude also tog(z): namely, that [f~ and

~g( cannot have their maximum simultaneously. Thus we write the integrand of (16}in the form

E=( 2 1/2( 2)1/2 (D-x"}"(E-y")"cos(eg(y) —yg(x))

+, ,/, x'(E —y"}' ' cos(P, (y} —P/(x)) +, ,/, y'(D —x")' ' cos(g/(y) —P, (x)) . (27)

We observe that this expression is symmetric under the exchange x—y since

D(x)—D(y) =E, If(x)l =-x' —y'=-If(y)) .

The first term is symmetric by itself. The second and third terms go into each other under this exchange
We can now proceed in two manners:

(a) Since F is symmetric in x and y its extremum must be at x= y. This gives us

E= (1 —z) ., (D —x' )+2xx'(D -x' ) cosa(x)(1+z) —2x'
1-x' (26)

Thtis is of the form

F= P(D -x")+ yx'(D —x")'/' .

BE/Bx' =0 gives the location of the extremum:

If this expression is used to majorize the integrand everything is known except cosa(x) which can be ma-
jorized as

cosa(x) = [1 —sin'a(x)]' ' ~ [1 P'(x}]'/' . -
(b) As before, we can exploit the symmetry of the integration domain and write E as

E= »/, ,},/, (D —x")'/'(E —y")'/' cos(P, (y) —P, (x)) +2(,},/, x'(E —y ")'/' cos(P, (y) —P/(x)) .

(29)
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The extremum of F occurs at

and

m p r p,
lT P ~77 P~

KP KP
In the final expression the cosines are majorized
by 1. Since those expressions are lengthy and
complicated we shall not give them here. Instead
we give the numerical results obtained by using
(24) and (26) in the integral (23).

IV. COMPARISON WITH DATA

At z = -0.5446, D= 1.13 mb, WD= 1.063 mb

At z = 0.6018, D =0.130 mb WD = 0.361 mb

We see that at this energy the bound {14}is better
than v D even for the smallest differential cross
section. The goodness of inequality (14) depends
on the test

qD, -[D(z))' '

or

[D (z )] 1/2

Dsup

(30)

which is satisfied at 91.4 MeV/c.
(b) For Imf(z) we evaluated both (10}and (13).

The maximum of the factor between those two
expressions is (I+a). As it turns out (13) is a
better bound than (10). For Img(z)sine we used
inequality (23) with (24) and (26).

Inequalities (13) and (23) with (24) and {26) are
tested for the processes

We give below some numerical calculations to
test our inequalities.

(a) In relation (14) q is the center-of-mass pro-
jectile momentum in mb ' '. The conversion from
MeV/c is achieved by multiplying the momentum
with 0.0016,

q(mb '/') = 0.0016q (MeV/'c).

As an example we take 7t'P data at q, . = 91.4
MeV (Refs. 21 and 22). With negligible polariz-
ation at this energy and D,„p= 1.58 mb relation
(14) gives

q, = 0.0016&91.4= 0.146 mb ' ',

Imf (z) ~ 0.146X 1.58= 0.231 mb ' '.

This compares with Imf(z) ~ [D(z)j '/' as given by
the following examples.

At z = -0.9062, D= 1.58 mb, vD= 1.257 mb ' '.

below the inelastic threshold. In the eva. luation
of these integrals the computer CDC Cyber 73 of
the University of Western Ontario was used. For
7t'P and 7t p the data were ta.ken from the phase
shifts of Almehed and Lovelace. " For K'p the
data were taken from the P phase shifts of Albrow
et al. '" The unitarity condition is given for the
pure isospin states as discussed previously. For
the m p case we form the proper combination of
different isospin states. In general the lower the
energy the better are our bounds as compared to
vD or [f~+ and ~gsin8~+. But when the energy in-
creases the results are not as good as at lower
energies. The bounds from some scattering
angles are larger than WD. The typical features
are given in Tables I-V. In the w'p and m P cases
our bounds for the Imf and Img sin0 in the entire
scattering region are better than v D up to the
P~, b

= 0.14 GeV/c (halfway to inelastic threshold).
Near the inela, stie threshold, the bounds of Imgsin
0 are better than v9 only in the forward direction.
The results are shown in Tables I-IV. In the K'p
case all our bounds for the Imf and Imgsin8 are
better than v D in the entire angle region below the
inelastic threshold. We present the highest-energy
case below the inelastic threshold in Ta,ble V.

V. SUMMARY AND CONCLUSION

We have obta, ined bounds on the imaginary parts
of the spin-nonf lip and spin-flip amplitudes using
the bounds on the moduli and the relative phase
of the full amplitudes. Analyticity in energy has
not been used. In principle experimental data ean
be used directly in numerical integrations. For
the sake of convenience we used in numerical
calculations the existing phase shifts. Comparison
with experiment depends on the energy and values
of D and P. Even a limited knowledge of the pa-
rameter R (like its sign)" would improve the re-
sults. The absolute phases are unknown, but a
limited knowledge on the relative phase from the
polarization can be exploited.

The price paid for using inequalities is recov-
ered by the simpler form of the unitarity relations
which make different majorizations feasible. We
feel there is still room for improvements, some
of which we did not follow because of their com-
plexity for numerical calculations. These we hope
to present in the future. For rigorous bounds on
the phases from the positivity property of unitar-
ity we refer the reader to Refs. 25 and 26.
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TABLE I. &+ p scattering: P~,b
= 0.1420 GeV/c, P, = 0.1190 GeV/e. . z= cosine of the scattering angle,

sup Imf = the right-hand side of Eq. (13), Imf = the imaginary part of spin-nonf lip amplitude calculated from the phase
shifts directly, Di =square root of the differential cross section, sup(fr=the upper bound of the moduii of the spin-
nonf lip amplitude calculated from Eq. (1), [sup lmg(1 —z2)~ 2]&= the right-hand side of Eq. (23) with Eq. (26),
[supImg(1 —z ) ]2=the right-hand side of Eq. (23) with Eq. (24), Img(1 —z ) ~ =the left-hand side of Eq. (23) calcu-
lated from phase shifts directly, P =polarization.

sup Irnf Imf D sup Ifl [sup Img(1 —z ) ] [sup Img(l —z ) ] 2 Img(1 —z )' ' p

0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

-0.00
-0.1Q

-0.20
-0.30
-0.40
—0.50
-0.60
-0.70
-0.80
-0.90

0.216
0.213
0.211
0.208
0.206
0.204
0.202
0.200
0.198
0.196
0.194
0.192
0.191
0.189
0.187
0.186
0.184
0.183
0.181

0.207
0.189
0.171
0.154
0.136
0.118
0 ~ 101
0.083
0.066
0.048
Q.Q3Q

0.013
—0.005
-0.023
-0.040
-0.058
—0.076
-0.093
-0.111

0.720
0.695
0.682
0.683
0.697
0.724
0.761
0.809
0.864
0.927
0.994
1 ~ 067
1 ~ 143
1.223
1.305
1.390
1.477
1.566
1.656

0.717
0.689
0.674
0.673
0.687
0.714
0.753
0.802
0.859
0.923
0.991
1.065
1.142
1.222
1.305
1.390
1.477
1 ~ 566
1.656

0.316
0.329
0.336
0.341
0.342
0.343
0.344
0.342
0.340
0.339
0.334
0.330
0.325
0.319
0.312
0.304
0.295
0.282
0.265

0.150
0 ~ 196
0.227
0.248
0.265
0.278
0.289
0.298
0.306
0.314
0.320
0.327
0.333
0.339
0.345
0.350
0.355
0.358
0.360

0.037
0.051
0.061
0.068
0.073
0.078
0.081
0.083
0.084
0.085
0.084
0.083
0.081
0.078
0.073
0.068
0.061
0.051
0.037

0.182
0.261
0.312
0.338
0.340
0.322
0.293
0.257
0.219
0.184
0.153
0.125
0.101
0.081
0.064
0.049
0.037
0.026
0.016

TABLE II. m+ p scattering: p, b =0.2370 GeV/&, P, = 0.1866 GeV/&. z =cosine of the scattering angle,
sup lmf = the right-hand side of Eq. (13), Imf =the imaginary part of spin-nonf lip amplitude calculated from the phase
shifts directly, Di~t= square root of the differential cross section, sup(f ~

= the upper bound of the moduii of the spin-
nonf lip amplitude calculated from Eq. (1), [sup lmg(1 —z ) ]&= the right-hand side of Eq. (23) with Eq. (26),
[ sup lmg(1 —z ) ~ ]2=the right-hand side of Eq. (23) with Eq. (24), Img(1 —z ) =the left-hand side of Eq. (23) calcu-
lated from phase shifts directly, P =polarization.

sup Imf Imf D sup]f( [suplmg(l —z ) ~
]& [sup Img(1 —z )&~ ] lmg(]. —z )'~2

0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

-0.00
-0.10
-0.20
-0.30
-0.40
—0.50
-0.60
-0.70
-0.80
-Q.90

3.202
3.168
3.139
3.113
3.091
3.073
3.058
3.047
3 ~ 040
3.036
3 ~ 036
3.039
3.047
3.058
3.072
3.091
3.113
3.138
3.167

3.008
2.688
2.367
2.046
1.725
1.405
1.084
0.763
0.443
0.122

-0.199
-0.520
-0.840
-1.161
-1.482
-1.802
-2.123
-2.444
-2.765

3.872
3.588
3.325
3.086
2.878
2.708
2.581
2.506
2.485
2.522
2.612
2.752
2.935
3.153
3.399
3.670
3.959
4.264
4.583

3.865
3.573
3.300
3.051
2.832
2.651
2.519
2.442
2.428
2.475
2.578
2.729
2.921
3.145
3.395
3.668
3.958
4.264
4.583

4, 671
4.881
5.005
5.091
5.136
5.179
5.226
5.238
5.238
5.262
5.232
5.226
5.207
5.155
5.105
5.053
4.962
4.832
4.617

2.348
3.030
3.451
3.744
3.969
4.158
4.329
4.494
4.660
4.829
4.999
5.183
5.367
5.561
5.755
5.950
6.136
6 ~ 298
6;421

0.692
0.952
1.133
1.269
1.374
1.454
1.514
1.555
1.579
1.587
1.579
1.555
1.514
1.454
1.374
1.269
1.133
0.952
0.692

0.118
0.181
0.240
0.297
0.351
0.397
0.427
0.436
0.418
0.377
0.320
0.257
0.196
0.143
0.100
0.066
0.040
0.021
0.008
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TABLE III. r p scattering: P&,b
= 0.1420 GeV/&, P, = 0.1190 GeV/&. z= cosine of the scattering angle,

sup Imf = the right-hand side of Eq. (13), Imf = the imaginary part of spin-nonflip amplitude calculated from the phase
shifts directly, D =square root of the differential cross section, supjfj =the upper bound of the moduli of the spin-
nonflip amplitude calculated from Eq. (1), [sup Img(1 —z ) ]&= the right-hand side of Eq. (23) with Eq. (26),
[sup Img(1 —z ) ]2=the right-hand side of Eq. (23) with Eq. (24), Img(1 —z ) =the left-hand side of Eq. (23) calcu-
lated from phase shifts directly, P= polarization.

sup Imf Imf D i/2 sup jfj [sup le(]. z2) i/2]
&

[sup Img(1 z~) i/2] Img(1 z2) i/2 P

0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

—0.00
—0.10
-0.20
-0.30
-0.40
—0.50
-0.60
-0.70
-0.80
-0.90

0.128
0 ~ 127
0.126
0.125
0.124
0.123
0.122
0.121
0.121
0.120
0.119
0.118
0.117
0.116
0.116
0.115
0.114
0 ~ 114
0.113

0.127
0.120
0.114
0.108
0.102
0.096
0.089
0.083
0.077
0.071
0.064
0.058
0.052
0.046
0.040
0.033
0.027
0.021
0.015

0 ~ 537
0.528
0.519
0.509
0.499
0.489
0.477
0.464
0.451
0.436
0.419
0.400
0.380
0.356
0.330
0.299
0.262
0.217
0.156

0.536
0.527
0.518
0.508
0.498
0.487
0.475
0.463
0.449
0.434
0.417
0.399
0.378
0.355
0.329
0.298
0.262
0.217
0.156

0.188
0.197
0.202
0.205
0.206
0.207
0.209
0.208
0.207
0.207
0.204
0.203
0.200
0.196
0 ~ 193
0.188
0.183
0.176
0.166

0.086
0.114
0.133
0.147
0.158
0.167
0.175
0.181
0.188
0.193
0.198
0.202
0.206
0.210
0.214
0.217
0.220
0.222
0.224

0.011
0.015
0.018
0.020
0.022
0.023
0.024
0.025
0.025
0.025
0.025
0.025
0.024
0.023
0 ~ 022
0.020
0.018
0.015
0.011

0.088
0.120
0.141
0.155
0.166
0.173
0.178
0.180
0.181
0.180
0.178
0.174
0.170
0.164
0.158
0.151
0.145
0.140
0.144

TABLE IV. m p scattering: P„„=0.2370 GeV/c, P,. ~ =0.1866 GeV/&. z=cosine of the scattering angle,
sup Imf = the right-hand side of Eq. (13), Imp = the imaginary part of spin-nonf lip amplitude calculated from the phase
shifts directly, D = square root of the differential cross section, supjf j

= the upper bound of the moduli of the spin-
nonf lip amplitude calculated from Eq. (1), [sup Img(1 —z )' ~]&= the right-hand side of Eq. (23) with Eq. (26),
[suplmg(1 —z ) /]2=the right-hand side of Eq. (23) with Eq. (24), Img(1 —z ) =the left-hand side of Eq. (23) calcu-
lated from phase shifts directly, P=polarization.

sup Imf Imf D 1/2 sup if i [sup Img{1 —z2) ii'-]
& [sup Img(1 —z')' '], le(1 —z')'/' P

0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

-0.00
-0.10
-O.20
-0.30
-0.40
-0.50
-0.60
—0.70
-0.80
—0.90

1.151
1.140
1.129
1.121
1.113
1.106
1.101
1.097
1.094
1.093
1.092
1.093
1.096
1.099
1.104
1.109
1.116
1.125
1.134

1.089
0.982
0.874
0.767
0.660
0.552
0.445
0.338
0.230
0.123
0 ~ 016

—0.091
-0.199
-0.306
-0.413
-0.520
-0.628
-0.735
-0.842

1.554
1.444
1.339
1.239
1.146
1.060
0.9S3
0.916
0.850
0.818
0.791
0.780
0 ~ 785
0.806
0.841
0.888
0.944
1.009
1.080

1.554
1.444
1.339
1 ~ 239
1.146
1.060
0.983
0.916
0.860
0.817
0.789
0.776
0.779
0.79S
0.831
0.878
0.936
1.003
1.077

1.631
1.757
1.802
1.833
1.850
1.865
1.882
1.886
1.886
1.894
1.883
1.880
1.873
1.853
1.834
1.815
1.781
1.733
1.655

0.838
1.084
1.237
1.345
1.428
1.497
1.560
1.620
1.681
1.741
1.802
1.867
1.931
1.999
2.067
2.135
2.199
2.255
2.297

0.231
0.318
0.379
0.424
0.459
0.486
0.506
0 ~ 520
0.528
0.530
O. 528
0.520
0.506
0.486
0.459
0.424
0 ~ 379
0.318
0.231

0.020
0.029
0.035
0.039
0.038
0.031
0 ~ 016

-0.008
-0.045
-0.093
—0.148
-0.204
-0.252
—0.284
-0.297
-0.291
—0.267
-0.225
-0.162
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TABLE V. ~p scattering: P, b =0.5200 GeV/&, P,,~, =0.3100 GeV/&. &= cosine of the scattering angle,
sup Imf = the right-hand side of Eq. (13), Imf = the imaginary part of spin-nonflip amplitude calculated from the phase
shifts directly, D ~ =square root of the differential cross section, sup~f ] =the upper bound of the moduli of the spin-
nonflip amplitude calculated from Eq. (1), [sup Img(1 —&2) ]&= the right-hand side of Eq. (23) with Zq. (26),
[sup Img(1 —& ) ]2= the right-hand side of Eq. (23) with Eq. (24), Img(1 —& ) = the left-hand side of Eq; (23) calcu-
lated from phase shifts directly, P=polarization.

sup Imf Imf D' sup[f] [sup Img[1 —z') ') [sup Img(1 —z') ~'] Img[l —z )'~

0.90
0.80
0.70
0.60
0 ~ 50
0.40
0.30
0.20
0.10

-0.00
-0.10
-0.20
-0.30
-0.40
-0.50
-0.60
-0 ~ 70
-0.80
-0.90

0.514
0.514
0.514
0 ~ 514
0.514
0.514
0 ~ 514
0.514
0.514
0.514
0.514
0.514
0.514
0.514
0.514
0.514
0.514
0.514
0.514

0.515
0.511
0.507
0.503
0.499
0.495
0.491
0.487
0.483
0.479
0.475
0.471
0.467
0.463
0.459
0.455
0.451
0.447
0.443

1.015
1.024
1.030
1.036
1.040
1.044
1.046
1.046
1.046
1.044
1.042
1.038
1.032
1.026
1.018
1.009
0.999
0.987
0.974

1.013
1.019
1.024
1 ~ 029
1.032
1.034
1 ~ 036
1.036
1.036
1.034
1 ~ 032
1.028
1.023
1 ~ 018
1.011
1.003
0 ~ 994
0.984
0.972

0.748
0.787
0.813
0.831
0.845
0.856
0.864
0.869
0.873
0.874
0.873
0.869
0.864
0.856
0.845
0.831
0.812
0.787
0.748

0.306
0.419
0.500
0.565
0.621
0.669
0.712
0.750
0.784
0.815
0.844
0.870
0.894
0.916
0.936
0.955
0.971
0.986
1.000

-0.010
—0.013
-0.016
-0.018
—0.019
-0.020
-0.021
-0.022
—0.022
—0.022
—0.022
—0.022
—0.021
-0.020
-0.019
—0.018
-0.016
—0.013
-0.010

0.138
0.186
0.216
0.237
0.253
0.263
0.270
0.275
0.277
0.276
0.274
0.269
0.262
0.253
0.240
0.223
0.202
0.172
0.127

APPENDIX

The maximum of

E(p) = Sos(&n+ p) I+ a
I osp I

occurs at
-sin(h n+ P) + a s inP = 0.

This leads to

I

cosign

v a )

(1+a'v 2a cosh n}'a 'IcosP I=-
F(P) then becomes

1 + a cosign+ a~

cosign

w a~

(I+a'+2acos~n) '~
The following cases arise:

(I) (a) Sign (-), cosign&0, a&cosAn: In this
case

1 2

F(P) =
(1 + a —2a cosE&)'~

(b) Sign (-), cosign&0, a&cosign: In this case

E(P) = (1+a —2a cosh, n)'~'.

(c) Sign (-), cosign&0:

E(p) = (1+a'+2a]cosign~)'~ .

(II} (a) Sign (+}, cosign&0:

F(P}= (1 + a'+2a] cos ~n~ }'~'.

(b) Sign (+), cosign&0, a& (cosign):

2

)=
(1+a' —2a[ cosign

~

)'~' '

(c) Sign (+), cosign&0, a& ~cosign~:

F(p) = (1+a' —2a~ coen, n( )'~'.

It is readily shown that if

cosign&

0 [II(a)] gives
a larger E(P) than [(I)(a)] or [(I)(b)]. Similarly if
cosign&0 [(I)(c)] gives a larger E(p) than [(11)(b)]
or [(II)(c)]. Thus when cosh, n&we choose[(II}(a)];
when cos n, n&0 we choose [(I)(c)]. In either case

E(p) = (1+a'+2a) cosign~ )'~'.
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