
PH YS IC A L REVIEW 0 UOLUME 13, NUMBER 3 FEBRUARY 1976

On the energy dependence of charged-particle multiplicity
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Within the framework of the charge-conserving hadronic-bremsstrahlung model and using the lower-regime-

of-high-energy collisions approximation, we derive a new expression for the integral mean multiplicities of
produced charged particles. Although in pp collisions the lower-energy regime extends to about s —60 GeV'

[s = the c.m. (center of mass) energy squared], the expressions for the. integral mean charged-particle
multiplicities describe the trend of the experimental data suprisingly well through the CERN-ISR (intersecting-
storage-ring) energies (s = 2000 GeV2). This, according to our formalism, is an indication that mean multiplic-

ities are rather smooth functions of t (the negative square of the c.m. momentum transfer of protons) for all s.

I. INTRODUCTION

Some time ago Bia)&as and Zalewski' showed that
in the case of pp collisions, the integral two-,
three-, and four-negative-pion correlation param-
eters undergo a dramatic behavior change when
going from the lower to higher energies. On the
other hand, Berger and Krzywicki' have been
speculating that (zz,,„(s)) (the average multiplicity of
produced charged particles) should have a power
dependence on s at lower energies and a logarith-
mic dependence on s at higher energies. This,
therefore, would indicate that it might be useful
to introduce a notion of two energy regimes for
high-energy collisions.

Within the framework of the charge-conserving
hadronic-bremsstrahlung model we have split the
whole energy region into the lower- and higher-
energy regimes. ' In the lower-energy regime we
have successfully fitted the derived multiplicity
distribution functions' ' and the dispersion for the
total number of charged particles (see Ref. 6) up
'to pj b

2 7 GeV/c (the laboratory momentum of the
incident proton). This would suggest that the low-
er-energy regime extends to about p, b= 27 GeV/c
(s= 60 GeV'). The same theory describes for pp
and g+p reactions the two-, three-, and four-neg-
ative-pion correlation parameters as functions of
(n, (s)) in the lower-energy regime' consistent witl
the experimental data compiled by Bia)as and Za-
lewski. ' These authors estimate the border be-
tween the lower- and higher-energy regimes to be

p, „=20 GeV/c (for pp collisions), which is fairly
consistent with our estimate of p„„=27 GeV/c.

It is quite clear that we cannot expect every
quantity to exhibit as dramatically different be-
havior in each of the energy regimes as, for ex-
ample, the integral two-negative-pion correlation
parameters f, (s). While, according to Bia}as and
Zalewski' and Harari and Rabinovici, ' one has for
pp collisions that

f, & 0 for p, „& 50 GeV/c&

f, & 0 for p&,, &50 GeV/c,

it is a well-known experimental fact that the inte-
gral average multiplicities are positive and rather
smooth functions of s throughout all energies. Thus
different integral quantities may have various de-
grees of different behaviors in the two energy
regimes, of which probably the behaviors of the
integral many negative-pion correlation param-
eters are most dramatic.

Clearly, the behavior of one quantity may direct-
ly influence the behavior of some other quantity.
In particular, the observed behavior of f, (s) for
pp collisions suggests that at lower energies
(io,,, 50 GeV/c) the integral multiplicity distrib-
ution function for negative pions is narrower than
Poisson and at higher energies (p,, & 50 GeV/c) is
broader than or perhaps equal to Poisson. Now

f, (s) will quite strongly reflect the conservation
laws, in particular the charge-conservation laws.
At lower energies where f, (s) & 0, we have anti-
correlations between produced negative pions,
which means that one cannot expect them to appear
in clusterlike formations. At higher energies
(p & 50 GeV/c) the constraint of charge conserva-

lab

tion on f, is relaxed. This does not mean that we
do not have charge-conservation constraints any
more. They are shifted toward higher integral
correlation parameters. From Bia)as and Zalew-
ski's paper' we see that in particular (see also
Ref. 8)

f, (s) & 0 for (n, (s)) & 1.5,

f, (s) & 0 for(&z, -(s)) 1.5;

f~(s) & 0 for (&z,-(s)) & 1.5,

f, (s) & 0 for (n~(s)) & 1.5.

We see that while f ~ behaves very similarly to f, ,
f, becomes negative at higher energies, which we
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can take to be a reflection of the charge-conserva-
tion law [it can be argued that in the presence of
conservation laws at least some of the higher inte-
gral correlation parameters should be negative
(see, for example, Ref. 9)].

Now the integral quantities like (n;(s)) and f, (s)
are appropriate integrals in variable t of (noninte-
gral) quantities (n~(s, t)) and f, (s,t). A sudden
change of f, (s) from negative to positive values at
about s= 60 GeV' we shall find to be compatible
with nonsmooth t dependence of f, (s,t) for s a 60
GeV'. This would then suggest that the change of
constraints due to charge conservation affects the
t behavior of nonintegral quantities in the higher-s
region. Now the integral average multiplicities
seem to be quite insensitive to the constraints of
conservation laws at higher energies in view of the
fact that their experimentally acceptable smooth s
dependences [such as ln(s)] apply to all kinds of
produced secondary particles irrespective of what
the primary colliding particles are (see Ref. 10).
Thus we expect (n,„(s,t)) to be rather smooth in t
also for s a 60 GeV'. Consequently, we expect the
expression for (n,„(s)) computed formally in the
lower-energy regime (s ~ 60 GeV') (where, by
definition, al) nonintegral quantities have smooth
t behavior) to be describing the trends of experi-
mental data also at higher energies. In other
words, as far as the average multiplicities are
concerned, the "lower-energy regime" extends
to much higher s values than 60 GeV'. With this
in mind the question to be answered is actually
where (n,„(s)) behaves differently than ln(s), which,
according to Berger and Krzywicki, 2 should hold
only at very high energies. We shall find that
(n,.„(s)) in the lower-energy regime is basically
still a logarithmic function, but not as simple as
ln(s). Only in a very low s region can (n,„(s)) be
approximated as some combination of terms, each
having appropriate power dependence on s. From
a general point of view this agrees with Berger and
Krzywicki. ' However, the power dependence of
(n, .„(s)) on s is in a much smaller region tha. t that
claimed in Ref. 2.

An interesting result is that in the limit of very
high s, low-energy (n,„(s)) not only behaves as
ln(s), but also describes surprisingly well the
trends of experimental data.

In Sec. II we give a collection of necessary for-
mulas from the charge-conserving hadronic-brems-
strahlung model and a brief discussion of lower-
and higher-energy regimes.

Section III is devoted to deriving the mean multi-
plicities (at fixed s and t) of produced charged
particles in terms of dor/dt and dg"/dt, the total
and elastic differential cross sections, respective-
ly, for the quasi-elastic scattering of two primary

particles (protons). '" In this section we also re-
late dg "/dt for pp collisions to the effective low-
and high-energy effective Regge trajectories, "
and using the lower-regime-of -high-energies
approximation, ' derive the integral mean multi-
plicities as a function of s, formally only valid
in the lower-energy regime. Finally, the results
are compared with experiments.

In Sec. IV we summarize the results and com-
pare them with some other approaches in the
literature.

II. HADRONIC-BREMSSTRAHLUNG MODEL AND TWO
ENERGY REGIMES

A. Preliminaries

In this section we wish to discuss briefly the
assumptions and main results from the charge-
conserving hadronic-bremsstrahlung model (for
details see Ref. 2 and 7).

In general, the hadronic-bremmstrahlung models
describe the quasi-elastic collisions of two prima-
ry particles (protons) accompanied by the emission
of secondary particles (pions) whose energies are
limited to values much less than those of primary
particles. It is assumed that as compared to the
secondary pions, the production of secondary
strange particles and antinucleons is small. We
shall also assume that to a good approximation
the productions of secondary neutral and secondary
charged pions are independent from each other and
concentrate on the production of secondary charged
pions only.

The generalized hadronic-bremsstrahlung model
gives the following expression for the multiplicity
distribution function of m secondary pions":

W (s,t;e) = W(s, t; e) ' + e[sinhb(s, t)]( b (s,t)
mt

[sinhb(s, t) ] „= 0,

h2j+1(s t)
[slIlhh(s, t)]@+j (2I 1)

(2)

Setting arbitrarily in (1) e= 0, we get for W the
Poisson multiplicity distribution function as de-
scribed within the ordinary hadronic-bremsstrah-
lung model by Gemmel and Kastrup in Ref. 12.
However, in the ordinary hadronic-bremsstrahlung

Wo(s, t; s)= [expb(s, t)+ sinhb(s, t)] ~,

+=0, 1,2). . . )

where b(s, t) [b(s,t) & 0] is some function of s and t.
In relation (1), e is some constant assumed to be
independent of s and t, and (for I = 0, 1, 2, . . . )
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model we neither have charge nor parity conserva-
tion, which accounts for the fact that the secondary
pions are emitted in a statistically independent way.

If we wish to have charge conservation, then it
can be shown that g = —1, and we get the charge-
conserving hadronic-bremsstrahlung model, which,
incidentally, also obeys parity conservation (for
details see Ref. 3 and 6). Denoting now the number
of produced secondary charged pions with rq, „, we

get from (1) and (2) the multiplicity distribution
function and the average multiplicity to be

bth~
h( s, I)

coshb(s, t) m, „!

(m, „(s,t)) = b(s, t)tanhb(s, t).

(3)
P7gch Oy 2

y
~ ~ ~ y

Now one thinks of hadronic-bremsstrahlung mod-
els as models where the primary particles in the
course of collision "shake off" the secondary par-
ticles. This view is definitely quite appropriate
for the ordinary hadronic-bremsstrahlung model.
However, it should be supplemented somewhat for
the charge-conserving one. Namely, within the
charge-conserving hadronic-bremsstrahlung mod-

el, the multiplicity distribution function fits the

data (up to 30 GeV/c) not only for

p+ p —p+ p+ m,„(pions),

s'+ p- s'+ p+m, „(pions),

n+ n- n+ n+ m, h(pions),

but also for

v +p-w +(A+Ko+v+)+m, „(pious),

where we formally consider (A+Ko+s') as a "pri-
mary" particle in the final state (see Ref. 3). In

view of this we wish to think of the charge-con-
serving hadronic-bremsstrahlung model as one
in which the colliding primary particles provide a
space-time interaction region (of about one fm in
size and lasting about 10 ' sec) from which pri-
mary and secondary particles emerge with the

property of conserving charge and the "identities"
of primaries [the "primary" particle (A+IP+s+)
in the final state of the p p reaction has the same
charge, baryon number, and strangeness as the
proton in the initial state]. The charge conserva-
tion here is global rather than local; i.e. , the
charged pions can be produced in such a way that
we can associate the production of a single charged
pion rather than a pair of charged pions with a
space-time point within the interaction region. In

view of this, one may think of this model as the
ordinary hadronic-bremsstrahlung model in which
the charge conservation is achieved by allowing

1 b'~(s, f)
coshb(s t) (2m)!

(6)

m~=0, 1,2, . . . ,

and the corresponding mean multiplicity is

(m, (s,f)) =(m (s,t))

= —,
'

(m,„(s,t)) .

Let us now briefly analyze the multiplicity dis-
tribution functions W (s,t) and W (s,t). According
to Mueller, "from some multiplicity distribution
function W (s,t) one can form the generating func-
tion defined as

I(s,t;h)= QW(s, t)(1+h)

= ((1+ h) &. (8)

Now Mueller showed that the generating function
is simply related to the correlation parameters
f„, as

Pg
tl

lnI (s, t;h) = Q f„(s,t), —
n

(9)

and the binomial moments F„,

h"I (s,t; h) = g —F„(s,t),
r y.f (10)

only the "right" number of secondary charged pions
to be emitted.

It does not seem to be possible to describe the
model with a local Lagrange function (see Ref. 3).
This makes a detailed dynamical description quite
difficult, although on the phenomenological level
we hope to establish a formal link with some mod-
els in the literature. Consequently, the charge-
conserving hadronic-bremsstrahlung model does
not belong to a class of "complete theories, " since
it does not intend to describe every detail of high-
energy processes. Rather, it has qualities of
semiphenomenological theories, such as statisti-
cal models, droplet models, and diffractive mod-
els.

Since mg„is even and the "identities" of primary
particles conserved, we have the number of posi-
tive (m ) and negative (m ) secondary pions to be
equal:

m, „=2m =2m .
Consequently, W' is numerically equal to them,

)

multiplicity distribution functions for the positive
and negative secondary charged pions



594 JOSIP KOLN 13

where the comparison of (10) with (8) gives

E„(s,t) = (m(m —1) ~ (m r-+ 1)(s,t)) .
dgr(s, t) ~ dg ~r (s,t)

dt ~, dt (17)

From (8) we see that each of the multiplicity dis-
bribution functions W „(s,t) and W (s,t) corresponds
to the generating functions I' (s,t;h) and I (s,t; h),
respectively: b(s, 0) = 0

W (s, 0)=5
(18)

In the limit t- 0, no secondary particles can be
produced, "" thus

ch
)

cosh[b (s&tt)( 1+ h)]
cosh[b (s,t)]

cosh[b(s, t) (1+h)'I']
cosh[b(s, t)]

(12)

(13)

Now, since

dg(m ~0) dg&~

dt dt ' (19)

f',(s,t) = b (s,t)[1 —tanh b(s, t)] ~ 0, (14)

The first thing that we notice is different behav-
iors of the corresyonding two-particle correlation
parameters

from (17) we get

dgr(s, t)
dt g 0

dg"(s, t)
dt (20)

f 2(s&t) = ' [b(s,t)[1—tanh b(s, t)] —tanhb(s, t)) ~ 0.b (s,t)

(15)

From (14) and (15), we see that W (s,t) and W (s,t),
ch

although numerically equal, are qualitatively quite
different, W (s,t) being wider and W (s,t) being
narrower than the Poisson multiplicity distribution
function. This is, of course, a consequence of
charge conservation. Namely, what f, (s,t) & 0
tells us is that for fixed t (tg 0) we have anticorre-
lations between negative yions, or equivalently,
they are not emitted in clusterlike formations. On
the other hand, f',"(s,t}, although generally positive,
is actually small most of the time. As t- 0,
b(s, t)-0,"'» and consequently f', ( rts)-0. As (t)
increases, from the increase of (m, „(s,t)), we ex-
pect b(s, t) to increase also. Relation (14) tells us
then that f'P(s, t) gets close to zero, since tanhb(s, t)
approaches unity rather fast as b(s, t) increases.
Thus, for fixed rather large

~ t~ we expect the
secondary charged yions to be emitted with small
correlations, which implies that the correlations
between pions of different charge slightly outweigh
the anticorrelations between pions of the same
charge.

The differential cross section for the quasi-
elastic scattering of two primaries accompanied
by the emission of mc„secondary charged pions
is

(21)

The integral multiplicity distribution function and
the corresponding mean multiplicity for the emit-
ted secondary charged pions follow in the usual way

(,),.( )
~cr g (s)

r
dit] p(s, t)W (s,t), (22)

and

(m,r(s, t)) = d ~ t ( p(s, t)(m, „(s,t)), (23)

where gr(s) is the total cross section of two pri-
maries and p(s, t), itself the distribution function,
is defined as'

1 dg (s,t)
gr(s) dt

(24)

The integral cross section for the quasi-elastic
scattering of two primary particles accompanied by
the emission of m,„secondary charged pions is

dgi&~(s, t) dg r(s, t)
dt (16) dtpst =1,

where dgr/dt (the total differential cross section)
can be connected to the "potential" scattering of
two primaries and it is assumed to be a smooth
function of t."~ From (16) we have that

where in view of the assumed smoothness in t of
dg /dt, p(s, t) is also assumed to be smooth in t
In analogy to (6) and (7), the integral multiplicity
distribution function for negative secondary pions
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P (s) = dltl p(s, t)W (s,t)

P„-(s), (25)

and the corresponding mean multiplicity are given
as

(Ref. 12) and since it is also a reasonable assump-
tion that it varies slowly with s [at t = 0, p= ar, due
to (20)], from relation (31) one then concludes that
(t) and (t ) should not vary too strongly with s.
This we shall assume throughout this paper.

Now we give a mathematical definition of the
lower-energy regime as

(m (s)) = dltl p(s, t)(m (s,t))
W (s,(t))

[d W (s&t)/dt ] ~ &

' (32)

= —,
'

(m,„(s,t)) . (26)

We can also define the integral generating func-
tions

I'"(s,h) =, dltl p(s, t)I'"(s,t;h), (27)

I (s, h)=
I

dltl p(s, t)I (s,t;h), (28)

corresponding to each of the integral multiplicity
functions P „(s) and P (s), respectively.

dl tip(s, t)W (s,t). (28)

The same is true for any other integral quantity.
Now, we can expand W (s,t) around (t) and get

P. (s)=W. (s, (t))

B. Definition of two energy regimes

If we look at the integral multiplicity distribution
function P (s), we see that it is essentially given
as an average of W (s,t) with respect to p(s, t):

(s)=(W (s,t))

with a similar relation involving W „. Of course,
in the lower-energy regime we can write for P (s)
and P (s)

P.,„(s)= W,„(s,&t)),

P. (s)= W. (s,(t)),

(33)

(34)

i.e. , in the lower-energy regime all integral quan-
tities are obtained from corresponding nonintegral
quantities by replacing t with (t), which can be
equivalently statedby writing the integral generat-
ing functions as

I (s; h) = I (s,(t); h), (35)

(36)I (s;h) =I (s,(t);h).

(t') —(t) « 2

2

I a„'(s,& t)) + [da„(s,t)/dt] =& & I
' (37)

where a„ is the slope of the elastic differential
cross section defined as

Now, let us try to see the physical meaning of
the lower-energy regime. First of all, let us show
that specifically in the lower-energy regime
(t') -(t)' should indeed be weakly dependent on s
and very small. Putting m = 0 in (32) and replac-
ing Wo by do"/dt because of the assumed smooth-
ness of dar/dt in t, we get

&t ) —(t) d W~ (s)t)
2 dt'

d do'(s, t)/dt
dt [da"(s,t)/dt]& 0

(38)

where

&I) =
I

dltltp(s, t),

(t ) = dltl t'p(s, t).

(31)

Clearly, (t) is the average of the negative invari-
ant momentum transfer squared of primary parti-
cles, and (t') —(t)' is the square of the dispersion
of variable t for given s. How each of these quan-
tities depends on s is an open question. However,
because p(s, t) is a slowly varying function in t

Now at lower energies slope a, t(s, t) varies slowly
with t (da„/dt= 0 as compared with a, ,'), and, fur-
thermore, because of the near constancy of the
diffraction peak, a„(s,t) changes very slowly with
s. Thus, (t') —(t)' is much smaller than a quan-
tity which is almost constant in s. Consequently,
we have an effective characterization of the lower-
energy regime as (t')-(t)'= 0. This is nothing
else but the fact that in the lower-energy regime
t's from various samples of the same reaction
with fixed s are confined to a small region around
(t), which itself, due to kinematics, is small.

Another aspect of the lower-energy regime is
that in it every nonintegral quantity is sufficiently
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smooth in I; so that its integral counterpart is given
by relations similar to (33) and (34). As s increas-
es, some nonintegral quantities will remain smooth
in t longer than the others. Clearly, the border of
the lower-energy regime then will be determined
by the nonintegral quantity which is first to violate
the inequality analogous to (32). Of course,
of all possible nonintegral quantities it is difficult
to find precisely the one which is first to violate
the inequality analogous to (32). However, as
discussed in the introduction, because of the relax-
ation of charge-conservation constraints on f 2 (s),
we expect f, (s,t) to be a good example of a, nonin-
tegral quantity showing nonsmoothness in t rather
quickly as s increases. Namely, for sufficiently
high s, f, (s) will not be given any more as
f, (s,(t)) [f, (s,(t)) & 0], but rather as

f ( ) f ( (g))
0 )()) (-&'f*.(~ &)

t4~)

(39)

This means that at sufficiently high s, as far as
f, (s,t) is concerned, one does not have an inequal-
ity ana. logous to (32) but rather

(which according to Ref. 1 corresponds to p,= 20
GeV/c), we must have the second term in expres-
sion (39) for f, (s). As a matter of fact, here not
only

d'f, (s,t)
dt

should be different from zero, but also should be
sufficiently large and positive so as to compensate
the first term, f, (s,(t)), which is negative, thus
making the whole expression positive. This indi-
cates that in pp collisions for p, & 20 GeV/c,
f, (s,t) should show rather strong t dependence.
This indicates that the border between the lower-
and higher-energy regimes as far as f, (s) is
concerned (for pp collisions) is at about p „= 20
GeV/c (perhaps even at 30 GeV/c). It is amusing
to note that this example actually implies the
smooths dependenceof (m (s)) for p & 20 GeV/c
and p &20 GeV/c. The surprising result from
Fig. 1 is the fact that all available p'p data are
well described by the "lower-energy regime" ex-
pression for f, (s), indicating that in v p collisions

f, (s,(t))
[ 'f (, )/ '], ,

(40)

where, of course, for sufficiently high s,
(t') (t)'p 0. R-elation (40) is the equality-inequal-
ity characterizing the higher-energy regime, at
least as far as the two-negative-pion correlation
parameter is concerned.

Experimentally we can easily see how for suffi-
ciently high s negative f, (s) goes into positive

f, (s), thus requiring the second term in (39).
First of all, if we denote

'2

I '0—

asap
~ PP

b(s) =b(s,( t)),

then in the lower-energy regime

(41)

(b (s)[1—tanh'b (s)] —tanhb (s)}
b(s) (ll~ )

(42)

In Fig. 1 the pp and v+p data for f, (s), as compiled
by Biagas and Zalewski, ' are plotted against (n;(s))
[for pp and v+p collisions the number of all nega-
tive pions in final state n„- equals the number of
secondary negative pions m, thus also (n, -(s))
=(m (s))]. The solid line is f, (s) from (42) where
(m (s)) = —,'b(s)tanhb(s) was taken into account. We
see that f, (s) from (42) cannot describe the pp
data for (n~(s)) & 1. Consequently, for (n„-(s)) & 1

FIG. 1. Integral two-particle correlation parameter
f 2 (s) for negative pions against the mean multiplicity
(n~ (s)) of produced negative pions. The pp data show
that the constraints of charge conservation of f 2 (s) are
relaxed in the higher-energy regime. The solid curve
is the prediction for f 2 (s) in the lower-energy regime
where the constraints of charge conservation make
f 2 (s) negative. The ~+p data are practically all in the
lower-energy regime.
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the border between the two energy regimes for
f, (s) is much higher than the same border in pp
collisions.

The question now is whether the border between
the two energy regimes for f, (s) in pp collisions
determines the common border of the two energy
regimes for pp collisions; i.e., the laboratory
momentum below which every integral quantity is
given by relations similar to (33) and (34). We
shall see this to be so and call the two energy re-
gimes corresponding to f 2(s) simply the two energy
regimes for the whole collision. Actually, we can
easily argue this point because the behavior of

f, (s) influences the behavior of P (s) which in
turn influences the behavior of every other inte-
gral quantity. Namely, in the lower-energy re-
gime of f, (s) (s & 60 GeV') where f, (s) & 0 we have
that P (s) [given by (34)] is narrower than Poisson
distribution. In the higher-energy regime of f,(s)
(s z 60 GeV2) where f,(s) & 0 we see that P (s) is
wider than Poisson distribution and will have to be
described as

III. MEAN MULTIPLICITIES

Setting in (18) m, „=0, we get

1 da'(s, t) /dt
coshb(s, t) der(s, t)/dt

-=h (s,t). (45)

[I- h2(s t)]1/2& ln
1+[1—h'(s, t)]' '

[
1 —[1—h'(s, t)]

(46)

Relation (45) will be a starting relation from which
we shall try to deduce mean multiplicities. By
noting that

tanhb (s,t) = [1—k'(s, t) ]'t',

we get from (4)

(m,„(s,t)) = [1- h (s,t)]'t'5 (s,t)

P. (s)=W. (s,(t))

(t') -(t)' d'w (s,t)
2 dt' (43)

Suppose that dor/dt » do'~/dt [which corresponds
to highly inelastic scattering of two primary par-
ticles], then (m, „(s,t)) becomes rather large. If
we take a formal limit, t- 0, then in view of (20)
we have

Since P (s) is numerically equal to P„(s) (m,„
= 2m ), we then expect P„(s) to behave similarly.

~ch
Thus in the lower-energy regime of f, (s), P „(s)
is simply given by expression (33), while in the
higher-energy regime as

P. (s)=W (s,(t))

(t') -(t) ' d'w, „(s,t)
2 dt

(44)

Thus we conclude that the border between the low-
er and higher-energy regimes (s= 60 GeV') for
f, (s) is the universal border between two energy
regimes for pp collisions; i.e. , every integral
quantity for s & 60 GeV' to a good approximation is
given by relations similar to (33) and (34). Equiv-
alently, this means that every nonintegral quantity
for s & 60 GeV' is a relatively smooth function of t.

It is quite clear that while in pp collisions every
nonintegral quantity is expected to be a rather
smooth function of t for s & 60 GeV', some nonin-
tegral quantities may actually be quite smooth
functions of t also for s ~ 60 GeV'. A trivial case
is P W (s,t), which is identically equal to 1 for
every s and t. Another less trivial case is
(m,„(s,t)). The experimentally determined slow
variation with s of the integral (m, „(s)) indicates
that (m,„(s,t)) should be a rather smooth function of
t also for high s.

h(s, 0) = 1. (47)

ln ' = 2[n~(t) —1]lns+F(t)do'(s, t)
dt

(46)

Now we are primarily interested in the lower-en-
ergy regime (s & 60 GeV'). Here we can write"

n, (t)= 1.06+0.4t. (49)

For the sake of completeness we also mention that

We see that relation (47) always holds, no matter
what s is, meaning that unless the primary parti-
cles suffer some momentum transfer there is no
production of secondaries. On the other hand, if
we fix t and vary s, it is clear that as s increases,
h(s, t) will decrease and, consequently, (m„.„(s,t))
will increase. Conversely, for fixed rather small
t, if s is very small (not smaller than ~t~+ 4M~',
where M~ is a mass of a proton), h(s, t) will be
close to 1; consequently (m,$s)) = 0. The main
point is that h(s, t) may also be close to 1 for t~ 0
if s is sufficiently small.

Next we wish to arrive at the integral average
multiplicity (m,„(s,t)) of produced charged second-
ary pions in pp collisions, confining ourselves,
however, to the lower-energy regime. To begin,
it is possible to describe quite well the elastic pp
differential cross section by means of an effective
Regge trajectory n,s (see Ref. 11):
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in the CERN-ISR region (which definitely is a part
of our higher-energy regime)

Of course, from the physical point of view s,„has
to be given in such a way that

n,n (t) = 1.06+ 0.25t, &m,„(s;„))= 0. (55)

[t ( & 1.2 (GeV/c)'

n~(t)= 1.0 (with large errors),

~t~ & 1.2 (GeV/c}'.

(50)
In order to proceed we have to approximate doT/dt
at t=&t)'. As mentioned before, dcrT/dt is smooth
in t, and, since &i}' is not expected to be very
large, we can approximate [see relation (20)]

In the lower-energy regime the integral average
multiplicity &m,„(s)) is simply given as

dcT d(TT c 2(s)
dt t~t&' dt

~
t~o

&m,„(s))= (m,„(s,&t))) .
Consequently, we need [see (46)]

dc"(s,t)/dt
h(s,&t)) = „T( ')/„

(51)

(52)

where, in using the optical theorem, we have ne-
glected the real part of the scattering amplitude
at t= 0. Thus, we write

(56)

Now h(s,&t)) is only a function of s, since according
to (31) (t) also depends on s. As s becomes small-
er, (t) becomes smaller and h(s, (t)) eventually
becomes 1. Unfortunately, since we do not know

precisely the functional dependence of (t) on s, we
shall replace (t) with (t) ', which is more or less
an average of (t) over the whole lower-energy re-
gime and as such is independent of s. Such an
approximation is certainly not bad if we do not
expect (t) to reach excessively large values
throughout the lower-energy regime. Thus, for
the lower-energy regime we write

d" t dt
( ( ii(e= e(ee,( ) ei= (e'do~(s, t /dt

(53)

In this approximation we have to take into account
the fact that for some s,„z&~t~)'+ 4M22 we should
have [see the discussion after relation (47)]

(54)

T = 2[1 —u (&t)')], (57)

where K contains all the factors independent of s.
Now, imposing (54) we get that

CT (Smin)Smint

finally giving

2 s r
I (S (t)i) T( min) min

ops} s (58)

In view of the general smoothness of (Tps) with s,
we also could have absorbed cps) into K. However,
keeping ops) explicitly in (58) we will be able to
compare &m,„(s)) with data starting from a very low

s, where ass) varies significantly with s. Finally,
taking into account (51), (53}, and (46), we have
for the integral average multiplicity of produced
secondary charged pions in the lower-energy re-
gime the expression

(s)) [I (og )/ gs))4( /s)2n]1/21ln 1+[1 (cT(%m(n)lcT(s)) (an(n/s) ]
1 —[1—(ggs, „)/ggs) }4(s„,„/s) ~]'~2

j
(59)

The integral average multiplicity of all produced
charged particles in the final state ofpp collisions is

(n,„(s))= 2+ &m,h(s)) . (60)

In what follows, the numerical values for ops)
will be taken from the graph in Ref. 15. Now, to
be able to compare (59) and (60) with experiments,
we still have to determine two parameters s,.„and

Looking at experimental data" for &nTi) and

(n -) in Fig 2, we see. that at s= 5.5 GeV they are
not observed. Also, at s= 5.5 GeV' the elastic pp

s;„=5.5 GeV. (61)

In order to determine r, we first identify experi-
mental &nT() +&n~) with &n(g (in our theory for pp
collisions nn4 =m4, so (nil = 2&nT() = 2&n~)). Then,
since the lower-energy regime is supposed to

cross section has a maximum value after which it
starts to decrease rather sharply. This, we be-
lieve, is connected to the production of pions.
Consequently, as far as the production of second-
ary pions is concerned, we choose
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FIG. 2. Integral average multiplicities through the CERN-ISR range of energies in inelastic pp collisions. The lower
curve is the prediction for [(n,+ (s)) +(n, (s))]/2 while the upper curve is the prediction for (n,„(~)) ignoring, however,
the production of kaons and antinucleons. The curves are formally valid only in the lower-energy regime (see the text).

extend up to s= 60 GeV', we choose r so that at
s = 60 GeV', (n,g from (60) equals experimental
(n,g = 5. This gives

2r= 2.2, (62)

which, when combined with (57) and (49), gives

(~t~)'= 1.4 (GeV/c)'. (63)

In Fig. 2 we compare Eqs. (59) and (60) with the
data. ~'~' The lower curve represents (m,„(s))/2,
which is to be compared with the experimental
[(n,+(s)) +(n;(s))]/2 while the upper curve repre-
sents ( n(s)). As we can see, the agreement with
experiments is not only very good at energies be-
longing to the lower-energy regime (s ~ 60 GeV'),
but also amazingly good at ISR energies. Even at
s = 3000 GeV' the computed (m,„(s))/2 fits the data
quite well, while the computed (n,„(s)) is somewhat
below the data. This we attribute mainly to the
fact that the production of secondary kaons and
antinucleons becomes non-negligible at this point
and, since (n,„(s)) from (60) does not take them
into account, it must predict smaller values than
those from experiments.

Finally, we would like to see why the lower-en-
ergy regime expression for (n,„(s)) is describing
the trends of experimental data so well also at
very high energies. Looking at relation (46) we
see that (m,„(s,t)) is a function of s and f through

h(s, t) only. From relation (45) it is easy to deduce
that as s increases, h(s, t) will change from values
comparable to unity to values comparable to zero.
Consequently, at rather high energies (m, „(s,t)) will

behave basically as ln [I/h(s, t)], since in (46) the
factor [1-h'(s, t)]'~' will mostly have values com-
parable to 1 and since the argument of the loga-
rithm behaves asymptotically as I/h(s, t) for small
h(s, t) Thus it .is entirely possible that this ap-
proximate logarithmic dependence is responsible
for a fairly smooth behavior in f of (m,„(s,t)). Fur-
thermore, with the assumption that (t) does not
change drastically with s, we expect ( t ) at higher
energies to be not too different from ( t )'= 1.4
(GeV/c)', which we deduced to be an average of
((f() in the lower-energy regime. With this it is
then reasonable to expect (m,„(s,(f) ')) to describe
quite well the experimental trends of (m, „(s)) also
at higher energies.

IV. DISCUSSION AND CONCLUSION

As we have seen, despite the fact that we have
used the lower-energy-regime approximation
(s ~ 60 GeV') in evaluation of the integral mean
multiplicities, their excellent agreements with
experiments extends well into the ISR region:
s= 300 GeV'. Beyond s = 300 GeV' we still have a
rather good agreement, although discrepancies
between the theoretical curves and the data in-
crease as s increases. In any case, the trend of
the data is definitely described well by expressions
(59) and (60). Consequently, we must conclude
that, unlike the integral correlation parameters,
the integral average multiplicities are relatively
immune to the existence of the lower- and higher-
energy regimes.



600 JOSIP SOLN 13

(nl, „(s))= Q 3
X'(s), (64)

where

4 S -
2r

X( ) I T(S())lll) Ill(ll

o s) s (65)

Now, if s is not too far away from s,„, X(s) can be
considered small [X(s) can never exceed 1], so we
can stop in the summation of (64) at, say, k = 3.
This gives

It is not difficult to see that (m, „(s)) from (59) can
be written as a power series

(55)] refers only to the production of secondary
charged pions. The meaning is clear —5.5 GeV'
is the cutoff value for s below which practically no
secondary pions are produced. We believe that
each kind of produced secondary particle should
have its own value for s;„. For example, the pro-
duced secondary kaons in pp collisions should have
s,.„distinctly larger than 5.5 GeV'.

As we have seen, as the energy increases, the
experimental f 2 (s) for pp collisions changes from
negative to positive values [already at 50 GeV/c
of proton laboratory momentum f, (s) & 0]. As a
consequence, P„(s) cannot be described with
W (s,(t)) alone [which can give only f, (s) & 0], but
it also needs the second term at higher energies,
as indicated in (43):

(m, „(s))= ——
3

(66)

P (s) = W (s,(t)) + W (s),

where we have denoted

(68)

In view of the slow variation of ggs) with s, rela-
tion (66) gives (m, „(s)) [and consequently (n,„(s))] in
a low-s region essentially as a combination of
terms, each of which has a different power depen-
dence on s. This agrees generally with claims
from Berger and Krzywicki, ' except that the re-
gion in which (m,„(s)) can be "economically" writ-
ten in such a way does not extend all the way up to
p, , = 100 GeV/c but more likely to p, ,= 30 GeV/c
[having perhaps a few more terms in (66)].

In view of the fact that the computed +,„(s)) and
(n,„(s)) [relations (59) and (60)] are in rather good
agreement with experiments in the ISR energy
region, it makes sense to look at (m, „(s)) for very
large s. With little work, we get from (59) that
at very large s

( „( ))=) (2 r)oPs) S
s (n mill

(67)

If one neglects the variation of ops) with s, this
expression is very similar to the one for the av-
erage multiplicity that can be obtained within the
so-called Feynman's bremsstrahlung analogy. ' "

The value of 1.4 (GeV/c)', which we obtained for
(ltl)' [an "average" of (ltl) over the whole lower-
energy regime, see (63)], at first glance seems
too high. However, if we compare it with s= 60
GeV', which is the upper value of s in the lower-
energy regime, then we see that this value for
(ltl)' is actually quite reasonable. From the phys-
ical point of view one should indeed expect
(ltl)'e 0, for, as previously noted, no secondary
particle production is possible if (t) = 0.

The value for s;„of about 5.5 GeV' [see relation

Since W (s,(t)) and W (s) cannot in general be
proportional to each other [p W (s,(t))= 1,

W (s)= 0], they in a way constitute two inde-
pendent "components" of P (s). In this sense
our formalism shows a formal similarity with
Wilson's idea of a two-component description of
many -par ticle production amplitudes. " The two
components in the Wilson approach refer to dif-
fractive and nondiffractive mechanisms. " Such a
two-component description seems to be particular-
ly applicable' for p, , z 50 GeV/c, which is actually
the region where relation (68) for P (s) holds.

Let us now briefly review the main ingredients
of the usual two-component model of multiparticle
production. Since the two mechanisms populate
different regions of the many-particle phase space
(the diffractive mechanism contributes to the frag-
mentation region, while the nondiffractive contri-
butes to the entire pionization region), Harari and
Rabinovici' assume that there are no interference
terms between them in their contribution to the
total many-particle cross section. The general
conclusion which they reach from the experimental
fits is that while the nondiffractive mechanism is
dominant, the contributions from the diffractive
mechanism, although small, are essential.

In addition to the assumption that the diffractive
contribution corresponds to a low-multiplicity
cross section, they also assume that the diffrac-
tive parts of o, (mQ, and f, are constant in
energy. For the nondiffractive parts of g and

f, they assume ln(s) dependence, as well as that
f~ = 0 (k ~ 3) for the nondiffractive part. Denoting
now with D and M (s) the diffractive and non-
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diffractive parts of P (s), we have

P (s) =D +M (s), (69)

where D is assumed to be s independent. Exact-
ly how W (s,(f)) and W (s) are related to D and

M (s) is difficult to tell. However, Harari and
Rabinovici' assume that D =0 for m o 3, which
gives the formal connection

W (s,(t))+W (s)=D +M (s), m & 3

W (s,(t))+W (s)=M (s), m & 3,
(70)

showing that at higher multiplicities the contribu-
tion of W (s) is quite important to the nondiffrac-
tive component of P (s). One may think that since
W (s,(f)) dominates P (s) at lower energies, per-
haps as the energy increases its contribution to
P (s) becomes less significant. However, this is
not so. Namely, because of Q W (s) = 0, some
of the W (s) must be negative, and since P„(s)o 0
these negative W„(s) must be balanced out by
W (s,(t)) [incidentally, W (s,(t)) & 0]. Consequently,
neither W (s,(t)) nor W (s) can be directly asso-
ciated with either D (s) or M„(s), both of which
are positive-def inite.

Thus, it appears that from the "dynamical" point
of view we cannot directly relate the charge-con-
serving hadronic-bremsstrahlung model with the
usual two-component model, although at higher
energies (p & 50 GeV/c for pp collisions) they
both use bvo components in the integral multipli-
city distribution function. This actually should not
be surprising if we note that the emphasis in the
charge-conserving hadronic-bremsstrahlung mod-
el is on the charge conservation itself, while the
emphasis in the usual two-component model is on
the detailed "dynamical" picture, which as we saw
is not really simple but consists of two dynamical
mechanisms, diffractive and nondiffractive.

However, looking at relation (70) one can easily
see that at higher energies the charge conservation
[entering on the left-hand side of relation (70)] will
influence what the mixture of diffractive and non-
diffractive mechanisms [entering on the right-
hand side of relation (70)] should be. Of course,
this will greatly depend on how "strong" the con-

straints of the charge conservation are. We be-
lieve that the contribution to P (s) of D can be
chosen to be much smaller than that of M (s) [in
Ref. 8, D by itself gives f, = —0.26, which clear-
ly has to be outweighed by the contribution from
M (s) as making the total f, (s) positive] because
the constraints of charge conservation on f, (s)
are relaxed for PP collisions in the higher-energy
regime [f, (s) & 0 which is reflected in the fact that
W (s)c0 in relation (70)]. As the energy decreas-
es and we get to the lower-energy regime (p, ~ 30
GeV/c), the usual two-component picture is less
applicable, for now the constraints of charge con-
servation require f, (s) to be negative and s-depen-
dent. This, however, could only be achieved by
altering the usual assumptions of the two-compon-
ent model (see Ref. 8) as, for example, by assum-
ing that at lower energies the contribution of M (s)
to P (s) is negligible, by allowing D to be ener-
gy-dependent in such a way as to dominate P (s),
and by giving the energy-dependent (negative)
f, (s). This, however, no longer has anything to do
with either the usual two-component model' or the
diffractive model alone, which is supposed to have
energy-independent (n) anci f,.

Another reason why the usual two-component
model seems to be defective at lower energies is
that it ignores for (g, (s)) the nonleading terms
of the form (n;) = s ', which seem to be needed
for p, , ~ 30 GeV/c (see, for example, Ref. 19 and
20). However, in this energy region the charge-
conserving hadronic-bremsstrahlung model des-
cribes P (s) well with just one term (see Ref. 3,~ch
5, and 7) and at rather low energies gives for
(n,„(s)) an expression in which the "nonleading"
terms are approximately of the form s ~ [see re-
lation (66)].

Despite the fact that the charge-conserving had-
ronic-bremsstrahlung model can describe only
gross features of multiparticle production pro-
cesses, so far it has been quite successful in
describing the experimental data. "' We attri-
bute this to the fact that this model takes into ac-
count the charge conservation in particle produc-
tion that makes it distinctly different from the
ordinary hadronic-bremsstrahlung model.
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