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A study of the experimental systematics of elementary-particle lifetimes leads to the following conclusions: (a)
Elementary-particle lifetimes r divide empirically into two distinct groups —"particles" (r & 10 ' sec) and
"resonances" (r & 10 "sec), where "particle" lifetimes are spaced by powers of a = e /A c and "resonance"
lifetimes occur as a continuum of values; (b) the scaling of "particle" lifetimes in powers of a is a "lifetime

democracy" in the sense that baryons, mesons, and leptons are all grouped together in one over-all lifetime

scaling pattern; (c) integral-spin boson "particle" lifetimes scale in powers of a, whereas half-integral-spin

fermion "particle" lifetimes scale in powers of a', (d) an SU(3) grouping of lifetimes reveals some striking

patterns, with the Q and Q' lifetimes appearing as an extension of one of these patterns; (e) phase-space
corrections, which are important for "resonance" lifetimes, are not as important for "particle" lifetimes; (f) if
hadron lifetimes are grouped according to baryon number and strangeness, and then sorted into spin states, an

empirical spin and lifetime correlation is seen in all of these groups: As the spin value increases, the maximum

observed lifetime decreases.

I. EXPERIMENTAL SYSTEMATICS OF ELEMENTARY

PARTICLE LIFETIMES

Recent experimental evidence indicates the ex-
istence of a number of massive and very-narrow-
width resonances. Popularly referred to as the
new particles, these include the J or g(3095) par-
ticle, ' the g'(3684) particle, 2 some intermediate
states of the g, g' system, ' a possible heavy lep-
ton, 4 and long-lived particles suggested by other
experiments. ' One of the most reliable methods
for ascertaining the spectroscopic significance
of these new particles is to compare their experi-
mental properties to the experimental properties
of the well-known particles. ' The most distinctive
experimental properties of the new particles are
their large masses and their long lifetimes (nar-
row widths). However, a meaningful mass com-
parison is difficult to carry out, ' since the masses
of the new particles are much larger than the
masses of the well-known particles. Thus we are
left with new-particle lifetimes as the most mean-
ingful spectroscopic quantities to examine from
the standpoint of experimental comparisons.

There are 18 elementary particles, including
the g and il)' new particles, which have measured
lifetimes ~&10-" sec, and there are approximate-
ly 138 meson and baryon resonances which have
measured lifetimes v&10 "sec (or widths I'&6
MeV). In the present section we first analyze the
18 long-lived particles, and we then extend these
results to include the 138 short-lived resonances.

A. Lifetime ratios as factors of ten

The 18 elementary particles with measured
lifetimes 7&10 "secare li.sted in Table I 's'6 8 "
Since the span of lifetimes shown in Table I is so

large —24 orders of magnitude —physicists do not
customarily group these particles lifetimes to-
gether in one category. Instead, the lifetimes
7 &10-" sec are assigned to the domain of "weak"
decays, the lifetimes v&10 "sec are assigned
to the domains of "electromagnetic" and "strong"
decays, and these domains are treated separately. "
If we now attempt to group these widely-spaced
lifetimes together into one comprehensive picture,
we are faced with the task of finding a meaningful
framework that relates these domains to one an-
other. Since our interest here is in relationships
among lifetimes rather than in absolute lifetime
values, it is convenient to set the lifetime of the
longest-lived member of Table I, 7 „t „equal
to unity, and to express the other lifetimes of
Table I as ratios R; = v, /T ~. The ratios R;
thus obtained are given in Table I. The lifetime
7'] of a particle can then be denoted by the parame-
ter Xi, which is the logarithm of the ratio A; to
some suitably chosen base B, as follows:

r;/r ~„=R(=W,
where B&1. The task of finding a suitable frame-
work for studying elementary particle lifetimes
thus becomes a matter of selecting an appropriate
base B.

Figure 1 shows a plot of the lifetime parameters
X for the 18 elementary particle lifetimes of
Table I, using the logarithmic base B=10 '. As
can be seen in the figure, this base appears to
have no phenomenological significance. However,
several lifetime groupings can be observed in
Fig. 1, and the centroids of these groupings are
separated by factors of roughly 10', or 100. This
suggests that the base z —- 137-' might be a suit-
able one to use for representing these lifetimes.
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TABLE I. Experimental data on lifetimes for all elementary particles with T &10 sec.
The experimental lifetime values are given, together with the ratios & of the lifetimes to that
of the neutron [Eq. (1) in the text], and also the logarithms X of A to the base 0'. = & /5& [Eq. (2)
in the texts, including the experimental errors ~. Except as noted, all data are from RPP74,
Ref. 6. A plot of the logarithms X is shown in Fig. 2.

Particle Exp. lifetime 7' (sec)
Lifetime
ratio R

Logarithm X of R
to the base a Ref.

neutron

gO

vrO

4(3095)

0'(3684)

918+ 14

2.1994+ 0.0006 x 10 6

5.179 a 0.040 x 10

2.6030 + 0.0023 x 10

1.2371 + 0.0026 x 1p

2.96 + 0.12 x 10-"

2.578 + 0.021 x 10

1 652 + 0 023 x 10 &o

1.482 + 0.017 x 10 io

1 3+0~3x 10-10

0.886 +0.007 xlp &o

0.800 + 0.006 xlp &o

«1.0xlp '4

+p 43 xlp &Z

+ ].09 x 10- t~

9.54 + 2.07 x 10

2 89 +0 73 xlp 2&

2 ]+i.sx10-21

1.0

2.396 xlp ~

5.642 x 10-«

2 836 xlp &&

1.348 xlp

3.224 xlp "
2.808 xlp &3

1.800 xlp ~3

1.614 xlp &3

1.416 xlp

9.65i x 1 p- ~4

8.715 xlp &4

«1.1 xlp &z

8.943 xlp 0

8.435 x10

1.039 xlp-23

3.144 x 10

2.241 xlp 24

0.000 + (0.003)

4.034 + 0.0001

4.796 + 0.002

4.936 + 0.0002

5.087 + Q.0004

5.846+ 0.008

5.874 + 0.002

5.964+ 0.003

5.986 + 0.002

pl 3+ Oe034

6.09i + 0.002

6.112+ 0.002

—7 ~ 938

8.914+ 0.011

g 862+0~02Z
Oi031

1p 756+ 0 i040
~ R

10 999+O'O4S

ll 068+ '

10

Zero neutron error was assumed in calculating errors for the logarithms X.

8. Lifetime ratios as factors of e = e~/hc

The scaling of elementary-particle total or
partial decay widths in powers of o, = e'/Sc has
long been recognized for certain electromagnetic
decays. " These decays involve a number n of
photon interactions, with each interaction contri-
buting a power of n, so that the factor a" appears
in the decay rate." In the present section we ex-

tend this result to encompass all of the particles
of Table I.

Figure 2 shows a plot of the lifetime parame-
ters X for the 18 elementary particle lifetimes of
Table I, using the logarithmic base a=e'/tc=+», .
l.e.,

(2)

In contrast to the lifetime parameters of Fig. 1,

I I I I
'

I I I I I I I I 1 I 1 I

~0 ~ ~ ~

I I I I I I I I

l0
I I I I

l5 20
I I I I

25

LIFETIME PARAMETER X WITH THE LOGARITHMIC BASE B = l0

FIG. 1. The experimental lifetimes of Table I plotted along the abscissa as lifetime parameters X, using Eq. (1) in
the text with the logarithmic baseh =10 . As can be seen in the figure, the baseB =10 has no particular phenomen-
ological significance; it is included here to provide a comparison to Fig. 2.
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2 3 4 5 6 7 8 9

LIFETIME PARAMETER X WITH THE LOGARITHMIC BASE n = 137

10

FIG. 2. This is the same plot as Fig. 1, but with the baseB =n=137 ~ [Eq. (2)] rather than the basek =10 ~. When
plotted in this manner, the lifetime parameters X exhibit a clear-cut integer periodicity. This indicates that the fine-
structure constant ~ =e /R is a relevant scaling factor for these lifetimes.

the lifetime parameters of Fig. P, exhibit a clear-
cut integer periodicity, which indicates that the
lifetimes scale as powers of o. , with this scaling
extending over the entire range of lifetimes in-
cluded (tbe larger X values in Fig. 2 show a slight
systematic shift to the left with respect to integer
values, but this shift is consistent from one par-
ticle or group of particles to the next, so that the
over-all periodicity in a is maintained).

Figure 3 is a detailed breakdown of the particle
groups that were shown only as dots in Fig. 2.
As can be seen in Fig. 3, we have a "lifetime
democracy, " with baryons, mesons, and leptons
all fitting into the same a.-spaced lifetime grid.
This suggests that some universal type of decay
mechanism must apply to all of these particles,
and it indicates in particular that the so-called
weak interaction is in some fundamental sense
electromagnetic.

C. Statistical ana)ysis of the lifetime scaling in powers of n

There are three methods we can use to estab-
lish the fact that the lifetime periodicity shown in

Figs. 2 and 3 is not accidental:
(1) Demonstrated Predictive porkier. The scaling

of elementary-particle lifetimes in powers of n
was first recognized'4 on the basis of the 14 par-
ticles in Table I which have lifetimes T&10 "sec.
Subsequent to the publication of this discovery, "
the g(3095} and y'(3684) lifetimes appeared, "the
rt(549) lifetime was revised upward by a factor of
three, ' and the 0'(958} lifetime was drastically re-
vised upward. ' All four of these lifetimes —g, g',
q, q' —now fit into this previously established"
scaling in powers of n, and they extend the scal-
ing by two powers of Q. . We similarly expect other
new particles' ' to fit into this same lifetime
framework.

(2) Statistical Probability In Eqs. (I.) and (2),
the deviations 4X of the lifetime parameters X
from integer values can vary from 4X= —0.5 to
AX=+0.5. Figure 4 shows plots of the deviations
4X for the 18 particles of Table I, where a whole
series of logarithmic bases B in Eq. (I) are used,
ranging from B= 2 to B ]ppp As can be seen in
Fig. 4, a significant bunching of the deviations
AX occurs only for values of B near B= ~», -, for
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+
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lel g
0
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LIFETIME PARAMETER X WITH THE LOGARITHIVIIC BASE n
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FIG. 3. This is the same plot as Fig. 2, but with the dots displaced vertically and labeled. As this figure re-
veals, we have a lifetime democracy, *' with baryons, mesons, and leptons all combining together in one over-all
lifetime pattern. The fact that the lifetimes of all 18 particles in Table I scale as powers of a (there are no counter-
examples in this range) indicates that the so-called weak decays are in some fundamental sense electromagnetic.
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FIG. 4. This is an analysis of the logarithmic scaling of the 18 particle lifetimes in Table I. Equation (1) of the text
was used together with a series of choices for the logarithmic base B, ranging fromm =2 to B =~gyp ~ If the baseBis
relevant to the lifetimes, the deviations LUC of the lifetime parameters X from integer values {or from some reference
value) wil. l be small; if the base B is not relevant, the deviations will be spread randomly from b, X =-0.5 to b, X =+ 0.5.
As canbe seen in Fig. 4, the 6X values for the basesB «&&& andS»

~&& are randomly spaced, whereas the b, X' values~ ~ 1 1

for B =&&~ are compactly bunched. The b,X envelopes shown at the top of Fig. 4 illustrate the detailed behavior of this
bunching for values of B near B = f/' As mentioned in the text, the compactness of this bunching for the baseS =~&7

arises from the fact that all 18 particles in Table I have lifetimes which scale in powers of o; there are no counter-
examples.
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other values of B, the deviations 4X are spaced
rather uniformly over the entire "deviation space, "
thus indicating random correlations. The devia-
tions &X for B=,37 are concentrated in a sector
that is just over -', of the available deviation space,
thus indicating a significant correlation; from
Figs. 2 and 3, these 18 lifetimes occur in 8 separ-
ate groups, so that the accidental probability for
a bunching of this compactness is (-,')'-5X10~,
where the base B is treated as a given (fixed)
parameter, and where one group (the neutron) is
used as a reference group. The smallness of this
accidental probability stems of course from the
fact that out of the 18 particles of Table I, there
are no counter-examples to the observed scaling
of lifetimes in powers of a; all 18 particles fit
into this scaling pattern.

(3) Theoretical content. When the elementary
particles of Fig. 2 are separated into SU(2)-sug-
gested groupings, striking lifetime patterns
emerge which reveal some of the underlying elec-
tromagnetic content of these particle lifetimes.
It seems highly improbable that these patterns
can be accidental.

Before delving into the theoretical sorting out
of the lifetimes of Fig. 3, we first extend these
results to include the lifetimes of the short-lived
resonances.

D. The lifetime dichotomy of "particles" and "resonances"

Figure 2 is a plot of the lifetime parameters X
for the long-lived particles of Table I, using the
logarithmic base a [Eq. (2)]. Figure 5 is the
same plot extended in X so as to include the short-
lived (broad-width) resonances. These short-
lived resonances are the approximately 138 reso-
nances listed in the Review of Particle Properties'

which have measured widths I & 1 Me&."
The lifetime parameters X shown in Fig. 5

divide empirically into two quite different groups:
(1) the long-lived particles which appear in the
range X=O-11 in Fig. 5, and which have lifetimes
that are spaced by powers of a; (2) the short-
lived particles which appear to the right of the
arrow in Fig. 5 (X& 11.7), and which have essen-
tially a continuum of lifetime values. It seems to
be phenomenologically significant to distinguish
between these two groups of particles. Hence in
the present paper we denote these two groups as
"particles" and "resonances, " respectively, with
the "particles" in the "particle region" having
lifetimes v &10 "sec and the "resonances" in the
"resonance region" having lifetimes v&10 "sec
(widths I'& 6 MeV). As Fig. 5 shows, the reso-
nance region commences abruptly at the position
of the arrow, and there is a gap of roughly one
power of a between the particle region and the
resonance region. The only resonance which ap-
pears in this gap is the p meson. " The cutoff on
lifetimes at X-12.6 (I'-600 MeV) that is observed
in Fig. 5 is due to lifetime limitations: the
resonance must persist for a time that is longer
than the transit time of the interaction.

From the many relationships which have been
established among resonance widths on the basis
of phase-space arguments, it seems clear that
phase-space effects are important in the reso-
nance region of Fig. 5; phase-space effects can
lead to changes by factors of 10-100 in the ob-
served decay widths, " and these phase-space
effects are probably responsible for the contin-
uum distribution of lifetimes in the resonance
region. However, the accurate spacings in pow-
ers of n that are observed in the present paper
for the exPerimental particle lifetimes indicate
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FIG. 5. This is Fig. 2 extended inX so as to include the approximately 138 short-lived resonances (Ref. 15) listed
in RPP74 (Ref. 6). The ordinate is an evenly spaced distribution of lifetime parameters X after they have been sorted
into b, X = 0.1 bins. As can be seen in the figure, the resonances in the resonance region (to the right of the arrow)
commence abruptly at the position of the arrow, and they have essentially a continuum of lifetime values. This is in
contrast to the particles in the particle region (X —11), whose lifetimes are spaced by powers of o. . The Q lifetime
that is shown between these two regions is discussed in Ref. 16. The observed lifetime cutoff near X = 12.6 is a natur-
al cutoff imposed by transit-time limitations.
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that phase-space corrections in the particle re-
gion must be small; particles evidently have de-
cays which are electromagnetically inhibited (as
shown by the observed scaling in powers of a},
and this inhibiting factor is essentially indepen-
dent of the dictates of phase space. Phase-space
corrections are discussed in detail in Sec. II.

E. The lifetime dichotomy of fermions and bosons

In Fig. 5, the lifetime parameters X of 18 par-
ticles and 138 resonances were plotted together.
If we now make a separation of these 156 states
into half-integral-spin fermions and integral-spin
bosons, we obtain 88 fermion states —9 particles
and V9 resonances —and 68 boson states —9 par-
ticles and 59 resonances. Figure 6 shows the re-
sults of plotting the fermion and boson states

separately, using the same representation as in

Fig. 5. As can be seen in Fig. 6, the fermion
resonance region and the boson resonance region
are essentially identical to one another. However,
whereas boson particle lifetimes are separated
from one another and from the boson resonance
region by single powers of n, fermion particle
lifetimes are separated from one another and
from the fermion resonance region by powers of
e'. Hence we have phenomenologically related
the number of virtual photons in the decay pro-
cess" to the spin of the decaying particle, which
is not a particularly surprising result.

Although the n-spaced lifetime grid of Figs. 2-
6 is common to all types of elementary particles,
the positions where "particles" appear on this
grid seem to be determined by the type of decay
process involved, as is shown by the breakdown
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FIG. 6. This is a separation of the 156 particles and resonances of Fig. 5 into 88 half-integral-spin fermions (9
particles and 79 resonances) and 68 integral-spin bosons (9 particles and 59 resonances), using the same logarithmic
plot and the same neutron reference lifetime for both fermions and bosons. As can be seen in the figure, the boson
particle lifetimes are spaced by powers of G. , whereas the fermion particl. e lifetimes are spaced by powers of e . The
fermion and boson resonance regions are very similar to one another. The sorting out of the various types of decay
modes which is shown at the bottom of this figure appears to be common to both fermions and bosons.
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of decay modes given at the bottom of Fig. 6.
This is further confirmation of the conjecture,
stated above, that the long lifetimes of particles
are due to characteristic electromagnetic inhibit-
ing factors.

The separation of elementary particles into
fermion and boson states has revealed some of
the electromagnetic structure that is inherent in
the decay processes of these particles (compare
Figs. 5 and 6). This suggests that a further
separation on the basis of spins and parities
might reveal even more of this structure, a sug-
gestion which is borne out by the results shown
in Sec. IF.

F. SU(3) groupings of lifetimes

SU(3) classification schemes have demonstrated
that when elementary particles are sorted out
according to baryon number, spin, and parity,
some very interesting isotopic spin regularities
appear. This raises the question as to whether
these same SU(3) selection rules also lead to in-

teresting lifetime regularities. If we make an
SU(3) breakdown of the 18 particle lifetimes in
Table l, we obtain 7 baryon octet lifetimes (the
proton is missing}, one baryon decimet lifetime
(the 0 ), 'l pseudoscalar-meson lifetimes (the
pseudoscalar nonet}, two vector-meson lifetimes
(the g and tj '), and one lepton lifetime (the p, ').
Figure 7 shows plots of the baryon lifetimes, in-
cluding J = ~' and 2" SU(3) groupings, and Fig. 8
shows plots of the meson lifetimes, including J
=0 and 1- SU(3) groupings. A plot of lepton life-
times is also included in Fig. 8. The lifetimes
in Figs. 7 and 8 are plotted on the same universal
lifetime grid that was used for Figs. 2-6. We now

discuss the plots of Figs. 7 and 8 in turn.
1. The baryons. Figure V(a} is a plot of the

lifetime parameters X for the 87 measured" bary-
on and hyperon states. This plot is very striking,
both in its scope and in its simplicity. If we start
with the neutron as a basic reference lifetime, a
jump by a factor of z' (l3 orders of magnitude)
gives the lifetimes of the long-lived hyperon
states, and a second jump by another factor of

BARYON RESONANCES
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z z

=0, = ee
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~ ~ 0 Mol
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FIG. 7. Figure 7(a) is a plot of the 8 particle and 7g resonance hadron fermion lifetimes of Fig. 6. As can be seen,
these divide into three main groups, which are separated from one another by factors of u . Figure 7(b) shows the
baryon octet resonances (Ref. 6) from Fig. 7(a), and Fig. 7(c) shows the baryon decimet resonances (Ref. 6) from Fig.
7(a). In Fig. 7(b), the & hyperon has a single-y-ray electromagnetic decay which is not available to the other hyperons,
and which evidently shortens its lifetime by a factor of e2.
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a' gives the lifetimes of the short-lived excited
states in the baryon and hyperon resonance re-
gion.

If we now project relevant SU(3) groups out of
the states in Fig. 7(a), we obtain the J =-,"bary-
on octet lifetimes shown in Fig. 7(b) and the Z~
=-,"baryon decimet lifetimes shown in Fig. V(c).
Comparing Fig. 7(b) with Fig. 7(c), we see that
the lifetimes of the octet and decimet groups are
similar in that each group has one long-lived
member which is separated from the shorter-
lived members of the group by a factor of n';
also, the octet and decimet lifetime groups are
separated from one another by a factor of o.'.

The only exceptional cases are (I) the Z' hyper-
on in Fig. 7(b), which has a single-y-ray electro-
magnetic decay that evidently shortens the Z'
lifetime" by a factor of o.', and (2) the proton,
which is stable.

There is one ramification of the baryon life-
time systematics of Fig. 7 which is worth men-
tioning here. The two related jumps of n' which
are shown in Fig. 7 constitute a total lifetime
span of n", or 25 orders of magnitude. This is
a much larger span than physicists are ordinarily
accustomed to dealing with. Now the magnitude
of the span between the electromagnetic and grav-
itational domains, which has always seemed to be
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FIG. 8. Figure 8(a) is a plot of the 9 particle and 59 resonance boson lifetimes of Fig. 6. Figure 8(b) shows the
spin-parity J = 0 pseudoscalar-meson states from Fig. 8(a), and Fig. 8(c) shows the J = 1 vector-meson states from
Fig. 8(a). In Fig. 8(b), the ~, p, and rP' mesons appear as a regularly spaced sequence, and the kaons form part of
a similar sequence; the (7(

~ —7( ) interval of 0. (the ~ has a double-y-ray decay) echoes the (&~ —& ) interval of 0. in
0Fig. 7{b) (the & has a single-y-ray decay); and (K~ —g ) interval of n suggests that these particles may be related

(see the a6 intervals in Fig. 7, and see the discussion in the text). In Fig. 8(c), the g, g' lifetime group is displaced
from the vector-meson resonance region by about one power of n, which suggests that the key to the unique properties
of the g and g is electromagnetic. Figure 8(d) is a lepton lifetime plot that is placed here for convenience. As can
be seen in Fig. 8(d), the (n -p~ } l.ifetime interval is just o 4 (see Ref. 20). If other heavy leptons are identified (see
Refs. 4 and 5), it will be of interest to see where their lifetimes appear on the plot of Fig. 8(d).
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so prohibitively large, is in fact just a". In view
of the systematics of Fig. 7, this span of z" may
not be as totally impossible to bridge as we usual-
ly assume it to be."

2. The pseudoscalar mesons. Figure 8(a) is the
meson counterpart of the baryon plot of Fig. 7(a),
and it shows the lifetime logarithms X for 68 mea-
sured" meson and kaon states. As can be seen in
Fig. 8(a), the meson and kaon lifetimes are sepa-
rated by single powers of z, which is in marked
contrast to the e' and n' lifetime intervals ob-
served in Fig. V.

Seven of the lifetimes shown in Fig. 8(a)—v',
m', g, q', K', KJ., andK& —correspond to J =0
spin-parity states. ' These states, which are used
to form the SU(3) pseudoscalar nonet, ' are plotted
together in Fig. 8(b). As can be seen in Fig. 8(b),
the neutral meson states vo(135), qo(549), and
q"(958), which have successively increasing
masses, also have lifetimes that are successive-
ly shorter by single powers of a. Similarly, the
K& kaon state is separated from the K~ and K'
kaon states by one power of n.

We saw in Fig. 7(b) that the Z' hyperon, which
has a single-y-ray electromagnetic decay, has a
lifetime that is shorter than the Z' and Z- life-
times by a factor of n'. Correspondingly, we see
in Fig. 8(b} that the v' meson, which has a double-
y-ray electromagnetic decay, has a lifetime that
is shorter than the n' lifetime by a factor of n4.

It was demonstrated in Fig. 7 that related groups
of strange and nonstrange states are characteris-
tically separated by factors of a'. Hence the ob-
served separation of n' between the strange kaons
and the nonstrange q' meson in Fig. 8(b} suggests
that these states may be related. If we form the
q' meson as a KK bound state, then the q' =Kg
system has a binding energy of 4%, which is pre-
cisely the same as the 4/& binding energy observed
exgerimentalfy by Gray et al."for the X (1795}
=pn meson bound state. '9

3. The vector mesons Figure .8(c) is a plot of
the d~=1 spin-parity states from Fig. 8(a). Of
these states, the p, ~, p, and K" constitute the
SU(3) vector meson nonet, ' the p'(1250) and
p'(1600} are other recently identified vector me-
sons, ' and the P and y' are new particles. " The
lifetimes of the p, &g, K*, p'(1250), and p'(1600)
mesons (and possibly also the P meson; see Ref.
16) lie in the meson resonance region. The |}I and
P' lifetimes are shifted by one power of a from
this resonance region. Hence they are analogous
to the r} meson in Fig. 8(b), whose lifetime is
also shifted by one power of a from the meson
resonance region. While this does not constitute
an "explanation" for the existence of the g and g'
new particles, it indicates that their unique pro-

perties are electromagnetic in origin (which is
hardly a surprise), and that the same underlying
factor which is responsible for the single-power-
of-o, intervals observed in Fig. 8(b) is probably
also responsible for the single-power-of-z in-
terval observed in Fig. 8(c). Thus a theoretical
explanation for the uniqueness of the g and g' par-
ticles should in some manner incorporate the fine-
structure constant o = e'/Sc.

4. The lePtons. The lepton lifetime plot, Fig.
8(d), is shown for convenience at the bottom of
the meson lifetime plots. The p,

' is the only lep-
ton with a measured lifetime, ' and its lifetime
falls rather suprisingly into the same lifetime
grid that fits the baryons and mesons. The neu-
tron-p. ' lifetime spacing of a' shown in Fig. 8(d)
is a part of the general fermion lifetime syste-
matics' of Fig. 6. There are also suggestions
of other heavy leptons, "with lifetimes possibly
in the general range indicated in Fig. 8(d). If
these particles are clearly identified, it will be
interesting to see where their lifetimes fall on
the plot of Fig. 8(d).

G. A factor-of-two fine structure in "particle" lifetimes

Figure 9 is taken from Fig. 3; it shows the
three X= 5 lifetimes and the seven X= 6 lifetimes
plotted as relative lifetimes on an expanded log-
arithmic scale, with the seven X=6 lifetimes
sorted out according to isotopic spin. As can be
seen in Fig. 9, these supposedly independent par-
ticles have lifetimes that occur in accurate ratios
of 1:2 and 1:2:4. These results have been pub-
lished before"; they are repeated here because
of their usefulness for studying phase-space cor-
rections. As we show in Sec. II, these observed
factors of two in the lifetime ratios cannot be at-
tributed to phase-space effects, and the systema-
tics of Fig. 9 in fact constitutes a powerful phe-
nomenological tool for evaluating the accuracy of
phase-space corrections as applied to lifetimes
(total widths).

From the point-of-view of theories of elemen-
tary particle decays, the factor-of-two lifetime
ratios shown in Fig. 9 may provide significant in-
formation. " However, it is beyond the scope of
the present discussion to go into this matter. We
merely note that (1) particle lifetimes empirical-
ly have a factor-of-two fine structure which is
superimposed on an over-all scaling in powers
of o, ; and (2) the I = 0 g and g' particles (see Fig.
3), whose lifetime ratio is 3.3+1.1,"may or may
not fit in with the systematics shown in Fig. 9.

II. PHASE-SPACE CORRECTIONS

The lifetime systematics displayed in Fig. 1-9
were obtained by working directly with the experi-
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mental lifetimes, and not with phase-space-cor-
rected lifetimes. The striking lifetime regularit-
ies noted for the particles in these figures indicate
very directly that phase-space corrections to
these lifetimes must be small (-20%%uq or less}.
This is a fortunate circumstance, because in gen-
eral it is impossible to correct particle total
widths (lifetimes) for phase-space effects, owing
to the different dimensionalities of the various
final states. In the present section, we first
sketch the manner in which phase-space correc-
tions are applied, and we then show the results of
applying (or trying to apply) these corrections to
the particles of Fig. 3 and Table I.

else highly relativistic. These two limiting cases
give

dN(3)/dE =4v'[V'/(2v}']

x [~,m, p» /(m, + ~, + m, )]'&'q'

(6)

and

dN(3)/dE = (7v'/240)[V /(2w) ]E'

respectively, where m& are the masses of the non-
relativistic final-state particles, Q is the reaction
energy, and E is the total energy of the resonance.

A. Phase-space formalisms

Discussions of phase-space calculations are
given, for example, in books by Feld and Kallen. "
The transition probability Az; for going from a giv-
en initial state i of a particle to a given final state
f is given by Fermi's "golden rule"":

-8
10 sec

0

KL

In cases where the transition matrix M&; is slowly
varying, the phase-space density dN~/dE becomes
the dominant factor in determining the distribution
of the decay products f. Since particle wave func-
tions, and hence particle transition matrix ele-
ments, are unknown, we are forced to use very
general phenomenological considerations when we
attempt to apply Eq. (3) to actual experimental
situations. In particular, the accuracy of the as-
sumption that the matrix element Mz; is constant
over the region spanned by the final-state phase
space can only be ascertained by the results to
which this assumption leads in specific situations.

If the final state in Eq. (3) contains only two
particles, the phase-space factor dN/dE has the
simple form (in the barycentric system}2'

0

KS

I

-10
~ - 10 sec

10
dN(2)/dE = (V/2v')(Pc, e,/E), (4) Relative experimental li fetimes

where V is the normalization volume, p is the
linear momentum of either particle, ~, and e, are
the particle energies, and E is the energy of the
decaying resonance. If the decay products are all
strongly interacting hadrons, then the normaliza-
tion volume is sometimes replaced by the short-
ranged interaction volume v, where v ~(h/mc)',
with m being a characteristic mass for the reac-
tion. This gives

dN(2)/dE [(R/mc)'/2v'](PEf/E)'
for the two-particle final state of Eq. (4). If the
final state contains three particles, then dN/dE
can be handled analytically only in the cases where
all three particles are either nonrelativistic or

FIG. 9. This is a logarithmic plot of the relative ex-
perimental lifetimes for the three particles observed
near X = 5 (&- 10" sec) and for the seven particles ob-
served near X=6 (& 10 sec) in Figs. 2 and 3. The
three & 10 lifetimes occur in the ratio 1;2:4, which is
surprising for these supposedly independent particles.
The seven 7 - 10 lifetimes, when sorted out according
to isotopic spin, also exhibit factor-of-two lifetime
ratios, which indicates that these results are not acci-
dental. If phase-space corrections are applied (see
Fig. 11), the (",= ) and (~+, ~ ) pairs shift slightly
to even more accurate 1:2 lifetime ratios (see Eq. 10
in the text). This indicates two things: (1) the factors
of two shown in this figure do not arise from phase-
space considerations; and (2) phase-space corrections,
if properly applied, are probably small for all of the
particles shown in Fig. 9.
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Equation (6) is applicable to K- vvv decays, and
Eq. (7) is applicable to the p -e+ v+ v decay.

By comparing Eq. (4) with Eqs. (6) and (7), we
can see an immediate difficulty if we attempt to
apply phase-space corrections to total widths,
and hence to lifetimes. The g meson, for exam-
ple, decays 38% of the time into yy, which is a
two-particle final state, and 54/o of the time into
wnn, which is a three-particle state. The phase-
space correction for the q- yy decay involves the
normalization volume V, and the correction for
the q- non decays involves V'. Thus the ratio of
these two corrections depends on the normaliza-
tion volume V, which of course is a completely
unphysical situation. The only way out of this
dilemma is to assign to V a specific value that
comes from physical considerations, and the only
logical choice here is to replace V by the interac-
tion volume v, as we did in going from Eq. (4) to
Eq. (5). However, the effective interaction radius
is not known to better than a factor of two or three
(for example, on p. 68 of Ref. 12 Feld suggests
the pion Compton wavelength; and on p. 158 of
Ref. 12 he suggests a radius h/mc, with m =335
MeV), so that the effective interaction volume v

is not known to better than an order of magnitude.
Hence there is no meaningful way that we can cor-
rect lifetimes for phase-space effects if the final
states are of different dimensionalities. Further-
more, even if two final states have the same di-
mensionality, they may still have quite different
effective interaction radii (e.g. , K'- p+ v and
K'-nv). The final states may also contain differ-
ent spin factors. As a result of these intrinsic
difficulties, the only way to judge the significance
of making phase-space corrections to lifetimes
(total widths) is the operational procedure of ap-
plying the corrections and seeing what happens.

In addition to the difficulties just discussed,
there is some arbitrariness in the choice of equa-
tions to be used for representing phase-space ef-
fects. The transition amplitudes can be written in
the form of Eqs. (4)-(7}above, which are not co-
variant and hence must be used only in the center-
of-mass system, "or they can be written in a co-
variant form, as described for example in RPP74. '
Also, there is some choice as to whether certain
energy-dependent factors should be left in the
transition matrix elements or else removed and
added to the phase-space factors. If we go over
to a covariant form for the transition matrix ele-
ments, the factors d'P; are replaced by ' d/P&e
in the density-of-states term, which removes the
factors e, and e, from Eq. (4). Also, in RPP74
a factor of E ' is removed from the transition ma-
trix element. Thus, for meson resonances, the
RPPV4 two-body transition probabilities are of

the form

(8)

in the notation of Eqs. (3) and (4). For baryon de-
cays to baryon plus meson, the spin terms supply
an extra factor of E, so that for the ha~yon de-
cays, the RPPV4 two-body transition probabilities
are of the form

(9)

The above discussion has been centered on the
phase-space factor dN&/dE in Eq. (3). However,
the matrix element Mz, in Eq. (3}also merits
some discussion. If we study Eq. (3) from the

point of view of the experimental-particle decay
rates, it seems clear that the large differences
observed between the very slow (inhibited) decays
and the fast (strong) decays must be due to funda-
mentally different decay mechanisms, and not to
phase-space factors. Since phase-space factors
dN/dE can change by factors of 10-100 in going
from one resonance to another, we can account
for variations in A, by factors of 10-100 as aris-
ing from phase-space effects, "but we cannot ac-
count for variations by factors of 10' or so in
this manner. For example, the J =1 meson
resonances p(770)- vv and &u(783)- wry have life-
times v-4x10-" sec and ~-6&10 "sec, respec-
tively, and the factor of 15 difference in their life-
times is logically attributed to the difference be-
tween 2m and Sg final-state phase-space volumes.
But if we now compare p(770) vw with K~(498)-
-wn, we find lifetimes T-4x10 ' sec and 7
-1x10 "sec, respectively, which is a lifetime
ratio of more than 10". This large a difference
in the lifetimes cannot be attributed to phase-space
or spin effects. The K~ decay is inhibited, and

the inhibiting factor (strangeness and/or parity)
must be in the matrix element Mz& and not in the
phase-space factor dN/dE. From this viewpoint,
it seems reasonable that the matrix elements M

for all of the resonances in the resonance region
of Figure 5 (to the right of the arrow) do not con-
tain inhibiting factors, and the matrix elements
M for all of the particles in the particle region of
Figure 5 (the region X ~ 11) do contain (electro-
magnetic) inhibiting factors. In particular, the

p and g' resonances, which stand at the boundary
between these two regions, are clearly inhibited,
since otherwise their large mass values would

lead to very rapid decays. If the matrix elements
M differ discontinuously in these two regions,
then the validity of the way in which phase cor-
rections can be applied may also differ. Empir-
ically, as we have already discussed, the total
widths of the resonances appear to be responsive
to the dictates of phase space, whereas the total
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widths of the particles are not. This leads to the
conclusion that the "inhibiting factors" in the par-
ticle matrix elements are essentially independent
of phase -space considerations.

There is another viewpoint that we can use in
studying phase -space corrections. These correc-
tions are based in essence on the Gibbsian assump-
tion that the hadronic interaction has a statistical
distribution of final-state momenta. Now the (d

meson, for example, has a lifetime 7-6x10-"
sec, so that the & resonance persists for a dis-
tance of about 18 F (where we ignore any special-
relativistic distortions). Thus the ~ stays togeth-
er for a distance that is about ten times the
"length" of the interacting particles, and then
breaks up. Hence it seems plausible that this
relatively brief existence will be strongly influ-
enced by statistical considerations. This result
is even more true for the p meson, which persists
for a distance of about 1 F; the p breaks up essen-
tially as soon as it is formed, and statistical con-
siderations must be all important in such a case.
However, the 7I' meson, for example, which per-
sists for a distance of about 8 m, is a stable par-
ticle in comparison to the p and ~ mesons, and
there is no reason to assume that the factors
which lead to its eventual decay bear any resem-
blance at all to the Gibbsian statistical production
and decay mechanisms which obtain for the p and
e mesons.

0 Experimental
data

~
I

Phase-space
corrected

(constant volume)

Phase-space
corrected

(volume ~ 5/mc)

umn V kept the same for all decays. As is shown
in the middle row in Fig. 10, these phase-space
corrections have only a small effect on the life-
times near the logarithm X =0 (which was the log-
arithm X =6 in Fig. 3), but they shift the m', Zo,

and TI' lifetimes so as to destroy the scaling in
powers of n. Since these last three lifetimes are
for decays which include particles that are not
hadrons, the interaction volumes for these decays
may be different from the interaction volumes for
the particles near X =0. To investigate this pos-
sibility, we next apply Eq. (5) to these same life-
times, with the interaction volume now set pro-
portional to (5/mc)', where m is the mass of the
decaying particle. As is shown in the bottom row
in Fig. 10, the scaling of lifetimes in powers of
o. is again destroyed. [In these last results, we
have also included a corrected lifetime for the p.

'
meson, which has a three-body final state, by us-
ing Eq. ('l) for the correction. ] Finally, if we ap-
ply the covariant correction factors of Eqs. (8)

B. Phase-space applications

The seven particles clustered near X=6 in Fig.
3 are the only particles which decay primarily
into two-hadron final states; hence these are the
only particles to which phase-space corrections
can be applied with any degree of confidence. The
m', Z', and m particles in Fig. 3 also have decays
into two-particle final states, but the final-state
particles for these decays are not both hadrons,
so that the effective volumes for the decay inter-
actions may vary from decay to decay. The other
particles in Fig. 3 either have three-particle final
states or else have a mixture of two-particle and
three-particle final states, so that phase-space
corrections for the total widths of these particles
either are difficult to compare with the correc-
tions for the two-particle decays just described
or else are essentially impossible to apply at all.

If we confine our attention to the particles in

Fig. 3 which have two-body decays, then we
should use a particle such as the Z for a refer-
ence lifetime, since the neutron has a three-body
decay mode. Figure 10 shows the results of ap-
plying phase-space corrections to these particles.
We first apply Eg. (4), with the normalization vol-

+6 +7 +8 +9 +10 I = uni tyneutron
0 +1 +2 +3 +4 ~, - = unity

LIFETIME PARAMETER X 'AITH THE LOGARITHMIC BASE cx

FIG. 10. Phase-space corrections as applied to some
of the particle lifetimes of Fig. 3. The ten particles
shown in the top row of Fig. 10 (excluding the p. ') all.
have two-body decays, so that their phase-space correc-
tions have the same dimensionality and hence can be
intercompared. The Z lifetime, which corresponds to
a two-body decay, was used as the reference lifetime
for this intercomparison. Applying Eq. (4) in the text
with the normalization volume V kept the same for all
particles gave the corrected lifetimes shown in the mid-
dle row of Fig. 10, and applying Eq. (5) withV propor-
tional to the Compton wavelength gave the results shown
in the bottom row f Eq. (7) was used for the p,

~ meson in
the bottom row] . Applying the covariant phase-space
corrections of Eqs. (8) and (9) gave results simil. ar to
those of Eq. (4) (except for the Kz meson); some of
these corrections are indicated by the small open cir-
cles in the middle row of Fig, 10. As can be seen in
the figure, the seven particles near X=0 (X= 6), which
all have two-hadron final states, are only mildly affect-
ed by the phase-space corrections, whereas the life-
times of the other particles, which have nonhadronic
final states, are shifted radically so that the seal. ing in
e is destroyed.
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and (9), we obtain results which are very similar
to the results obtained by using Eq. (4); these re-
sults are partially illustrated by the small circles
shown in the middle row of Fig. 10. The main dif-
ference between using Eq. (4) and using Eqs. (8)
and (9) is that in the latter case the K~ meson,
owing to its different energy dependence (Eq. 8)
from that [Eq. (9)] of its X = 0 neighbors, is shifted
to the right by about one power of Q. . Once again,
applying these phase-space correction factors
destroys the observed scaling of lifetimes in pow-
ers of a.

From a visual inspection of Fig. 3, it seems in-
tuitively clear that the observed correlation be-
tween particle lifetime ratios and the fine-struc-
ture constant n = e'/hc must be physically signifi-
cant. If this conclusion is correct, then the fact
that the phase-space corrections shown in Fig. 10
destroy this scaling in powers of u must mean
that these corrections were not properly applied.
We can investigate this possibility by studying in
detail the seven particles in Fig. 3 which are
grouped together near X = 6, since these are the
particles for which phase-space corrections can
be most reliably applied. The effect of applying
phase-space corrections to these seven particles,
which was shown on a compressed scale in Fig.
10, is shown on an expanded scale in Fig. 11
(which is a plot analogous to that of Fig. 9).
Phase-space corrections are applied with the
most reliability to the Z, Z+ and ", - pairs in

Fig. 11, and it can be seen there that the ratios
of these pairs of lifetimes remain essentially con-
stant as corrections based on Eqs. (4), (5), and

(9) are successively applied. The A/0 lifetime
ratio, on the other hand, changes somewhat with
the various phase-space corrections. Two pos-
sible reasons for this change are that the spin of
the 0 is not known and that the 0 - "m and 0-AK decays, which have considerably different
phase-space corrections, have an unknown branch-
ing ratio (in making the A/0 corrections shown
in Fig. 11, a branching ratio of —,

' to -,'was as-
sumed, and spin differences were ignored). The
-" /Ez phase-space correction is expected to be
the most uncertain since the "- is a spin-& bary-
on and the K~ is a spin-0 meson, and as can be
seen in Figs. 10 and 11 the " /Kz lifetime ratio
varies wildly as Eqs. (4) and then (5) and then (8)
and (9) are successively applied.

If we now compare Fig. 11 with Fig. 9, we can
by inference draw some rather powerful general
conclusions about phase-space corrections for
particles. In the only two cases in Fig. 11 where
the phase-space corrections are known to be re-
liable, namely in the lifetime ratios Z /Z' and
:"'/", the corrections turn out to be small. In

I =0 ~
0

K

I =' ~
+

ZI=1 ~

Experimental data
A

Z

Phase-space-corrected data
(constant volume)

I=0
0

K

Z

I = 1 ~

Phase-space-corrected data
(volume ~ 5/mc)

I =0 ~

+
Z

I = 1 ~

~ 0

A

0 0
0

K

10

Rel ati ve 1 i fetimes

FIG. 11. The effect of applying phase-space correc-
tions to the seven particles near X = 6 in Fig. 3, which
al, l have two-hadron final states. The experimental data
at the top of Fig. 11 are from Fig. 9. The constant-
volume corrections of Eq. (4) are shown in the middle
row of Fig. 11, and the Compton-wavel. ength-normalized
corrections of Eq. (5) are shown in the bottom row. The
covariant corrections of Eq. (9) are indicated by the
open circles in the bottom row (the effect of Eqs. 8 and
9 on theK&/& ratio is illustrated in Fig. 10). The
stability of the (. , ) and (Z+, Z ) pairs indicates that
phase space is not responsible for the observed factor-
of-two lifetime ratios; this indicates in turn that the ob-
served factors of two in the (O, A) and (Kz, " ) experi-
mental lifetime ratios are probably physically signifi-
cant, and that the phase-space corrections calculated
here for these particles are not quantitatively reliable
(they should be small. corrections). Thus we conclude
that, with our present theoretical limitations, experi-
mental. lifetimes rather than "phase-space-corrected"
lifetimes are the proper quantities to study for the
particles of Fig. 3.
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1.85 1.90

1.79 2.05

(10)

These results are crucial to the present discus-
sion, because when they are applied to the syste-
matics of Figs. 11 and 9, they lead to the follow-
ing chain of conclusions:

(1) The factors of two shown in Eq. (10) for the
phase-space-corrected Z /Z' and "'/: lifetime
ratios must be physically significant.

(2) These factors of two must be inherent in the
(covariant) transition matrix elements ~MP, and
not in the phase-space factors dN/dE, so that the
observed factor-of-two lifetime ratios are not a
phase-space effect.

(3) If the factors of two observed for the Z /Z'
and /:" lifetime ratios in Fig. 9 are physically

particular, if we apply the most reliable phase-
space correction to these ratios —namely Eq. (9),
which is covariant and contains the proper spin
factors —we obtain the following results:

Lifetime ratio Experimental Corr. by Eq. (9}

significant, then all of the other factors of two

shown in Fig. 9 are probably physically signifi-
cant, and they should likewise be attributed to
factors in the matrix elements rather than to
phase-space factors.

(4) Conclusion (3) suggests in turn that the phase-
space corrections to all of the particles in Fig. 9,
if properly applied, must be small, since the ex-
perimental lifetime ratios are very nearly factors
of two.

(5) If we carry the factor-of-two line of reason-
ing of Fig. 9 over to Fig. 3 and apply it to the ob-
served factors of z, we can at least tentatively
conclude that phase-space corrections for all of
the particles of Fig. 3 must be small (which im-
plies that the "electromagnetic lock" on the de-
cay modes of each of these particles is indepen-
dent of phase-space considerations).

(6) The above results indicate that the large
phase-space corrections shown in Figs. 10 and
11 for the p. ', m', 0, K~, Z', and m' lifetimes
are not meaningful. In particular, the large fluc-
tuations observed for the phase-space-corrected
lifetimes of these particles as we go from Eqs. (4)

TABLE II. A list of the 74 hadrons whose spins and lifetimes (or widths) are described in

RPP74, Ref. 6, as being well known. Although sorted here into spin states, the mesons and

kaons follow the listing order on p. 8 of RPP74, and the baryons and hyperons follow the
listing order on p. 10. The lifetime or width values used for the plot of Fig. 12 are the aver-
ages quoted in RPP74.

Mesons (24): (J=O) m, &+, g, &, q', 6, S*
(J = 1) p, cu, g, A&, B,p', D, p', ~, & (or J'), g'

{J = 2) f, A2, f', A3
(J=3) g
(J=4)

0) &'»i &s K

(J =1) A+, Q

(J=2) K*,l
Baryons (19): {J= )) p, n, N(1470, 1535, 1700, 1780), &(1650, 1910)

(J= 2') &(1520, 1810), &(1232, 1670)

(J=
2 ) N(1670, 1688), &(1890)

(J =
o ) N(2190), &(1950)

(J=-,') &(2220)

(J= i~1 ) ~(2420)

Hyperons {23): (S= —1) (J = ~) A, A(1405, 1670), Z+, Zo, Z, 2{1750)

(J = p) &(1520, 1690), ~ (1383,1387, 1670, 1750)

(J = p5) &(1815,1830), +(1765, 1915)

(J = pv) &(2100), Z(2030)

(S=—2) (J= ~)

(J = 23)
- (1532), " {1535)

Kaons (8)

The only ambiguous states included here, the D and & mesons (see Ref. 24) and the
4 kaon, have been assigned their most probable spin values. The g (or J) and g' mesons
are from Refs. 1 and 2, and the & is from Ref. 25.
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to (5) to (8) and (8) are an indication that the mag-
nitude of the correction depends in an essential
way on (unknown) normalization factors, and con-
clusions (1)-(5) suggest that with properly chosen
normalizations the phase-space corrections would
in fact be small.

Hence, for the particles of Figure 3, we are
forced back to experimental lifetimes as the most
meaningful quantities to study from the point of
view of the present systematics.

III. AN EMPIRICAL CORRELATION BETWEEN SPINS
AND LIFETIMES

Up to this point, we have been discussing the
manner in which elementary-particle lifetimes
scale in powers of z. There is one additional
lifetime result which does not relate directly to
this scaling in e, but which should be included
here for completeness. In Sec. IF, we grouped
particle lifetimes into SU(3)-suggested J spin
and parity groups. If we instead group lifetimes

into baryon number B and strangeness 8 groups,
and then sort these (B,S) groups into spin states
J, we discover an empirical relationship between
spins and lifetimes: thehigherthe spin, the short-
er the maximum observed lifetime.

Table II lists the 74 hadron states for which the
spine and the lifetimes (or widths) have been re-
liably determined. "' ' '" lf we plot the lifetimes
of these 74 states in (B,S) groups, using the same
universal lifetime grid as in Figs. 2-8, we obtain
the results shown in Fig. 12. The dots in Fig. 12
are the lifetime parameters X, and the envelopes
surrounding the dots denote the range of lifetime
values observed in each (B,S,j) state. Within
each (B,S) group, the maximum observed life-
time (the minimum value of X) increases as the
spin J decreases. In particular, the 14 particles
with long lifetimes (r & 10 "sec) occur in the low-
est possible spin states, J=0 and J =-,'. The only
exception to this empirical result is the $ = —3
0 hyperon, whose spin has not been determined
experimentally as yet, "but which is identified on

BARYONS
s s sea a J = 1/2

J = 3/2
J = 5/2
J = 7/2

J = 9/2
J = 11/2

HYPERONS
S=-l

J =1/2
J=3/2
J =5/2
J= 7/2

S = -2
J =1/2
J=3/2

S=-3

MESONS

~ ~ I J
O

= 1

= 3

KAONS
m J —

Q

J= 1

J=2
I I I I I I I I I I

3 5 6 7 O 9 10 ll 12

LIFETIME PARAMETER X WITH THE LOGARITHMIC BASE ct (LONG LIFETIMES ARE TO THE LEFT)

l I

12.25 12.50 12.75

FIG. 12. The lifetime parameters X [Eq. (2)] for the particles in the hadron families of Table II, using the logarith-
mic base u [Eq. (2)]. The dots denote the parameters X, and the envelopes surrounding the dots indicate the range of
experimental lifetimes observed in each spin state J (note the expanded scale for X & 12). As can be seen, there is a
well-defined correlation in each family between the spin and the maximum observed lifetime |'the minimum value of X).
The & hyperon, whose spin has not been measured, is included here for comparison purposes.
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the basis of SU(3) symmetries as a spin 4 =-,' reso-
nance. The lifetime of the Q is T =1.3@10 "
sec, whereas the lifetimes of the 12 known J=-,'
hadrons in Fig. 12 are all less than 10 " sec (the
quantum numbers of the 0 prevent it from having
a strong decay).

1V. CONCLUSIONS

Although the lifetime regularities displayed in

Figs. 2-12 lead to many ramifications, as noted
throughout the text, the principal conclusions with

respect to the present discussion seem to be the
following:

(1) All particles —leptons, mesons, and bary-
ons —appear in the lifetime systematics on an
essentially equal footing, so that there must be
some underlying theory which includes all of them
(in contrast to many of the present-day hadron the-
ories, for example, which have no place to in-
clude the muon).

(2) The observed lifetime scaling in powers of

z extends uniformly throughout the regions of
both "weak interactions" and "electromagnetic
interactions, " so that the so-called weak interac-
tion must in some fundamental sense be electro-
magnetic, and the fine-structure constant n
should appear in theories of weak interactions.

(3) There appears to be a real lifetime dichoto-
my of particles and resonances: resonances have
fast decays that depend strongly on phase space;
particles have electromagnetically inhibited de-
cays that depend only weakly on phase space.

(4) Half-integral-spin fermion decays involve
only even powers of n, whereas integral-spin

boson decays include odd powers of n.
(5) The same SU(3) spin-parity-baryon number

groupings which lead to striking isotopic spin re-
gularities also lead to striking lifetime regularit-
ies.

(6) The |) and q' new particles constitute a new

type of lifetime group, but one that fits into and
extends the lifetime patterns of the SU(3) groups.

(7) The key to the special qualities of the P and
g' new particles (that is, their unique combina-
tions of large masses and long lifetimes) must be
electromagnetic in nature, so that the constant a
should logically appear in new-particle theories.

Note added in Proof. There is an important point
to be brought out in connection with the spin versus
lifetime relationship shown in Fig. 12. In nuclear
physics, centrifugal-barrier effects lead to the re-
sult that resonances with high spin values have
narrow widths (long lifetimes). In Fig. 12, how-
ever, we see just the opposite situation —reso-
nances with high spin values have broad widths
(short lifetimes). This indicates that centrifugal-
barrier effects (see Ref 6, p.. 194) do not apply in
the same manner to these elementary-particle
resonances. This result can be understood by not-
ing that nuclear rotations are adiabatic, so that
the over-all central potential (to which the cen-
trifugal-barrier term is added) is not appreciably
affected by the rotational motion; elementary-par-
ticle rotations, on the other hand, are highly non-
adiabatic, due to their small masses, and distor-
tions of the rotating system can be large enough to
overwhelm the effect of the conventional centrifu-
gal barrier.

*Work performed under the auspices of the U. S. Energy
Research and Development Administration under Con-
tract No. W-7405-Eng-48.
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