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Two chiral-symmetry-breaking schemes are considered within the context of a linear SU(3) cr model. In the
first the symmetry-breaking terms are constructed from the usual linear ( in the fields) (3,3~) (3s',3)
contribution together with bilinear combinations belonging to the (6, 6~) (6~,6) representation of
SU(3) X SU(3). In the second scheme a combination of linear and bilinear (3,3~) (3~,3) terms is employed.
The pseudoscalar mesons (m, K,g,g') and scalar mesons (~,~,cr,cr') are assigned to the (3, 3~) (3~,3)
representation in this model which is used to describe their mass spectra, various scalar meson decays, q' —lyme,
and the me and n K scattering lengths. With the addition of isospin-violating terms to the Lagrangian
additional, electromagnetic effects can be taken into account. In each of the symmetry-breaking schemes

considered it is found that a two-parameter form in which the linear (3,3~) (3~,3) contribution is

SU(2) X SU(2)-invariant and the bilinear contribution is SU(3)invariant is about as successful as the usual two-

parameter linear (3,3~) (3~,3) form.

I. INTRODUCTION

Chiral SU(3) xSU(3) symmetry' is an attractive
framework in which to study the interactions of
hadrons. As this symmetry is not exact, however,
a great deal of effort has been devoted to the ex-
ploration of the manner in which it is broken. One
popular proposal is that the symmetry is spontane-
ously broken2 4; i.e. , in the limit where the La-
grangian is chiral-symmetric, the vacuum is not
invariant under chiral transformations. The octet
of pseudoscalar mesons, which would be massless
Nambu-Goldstone bosons in the chiral-symmetric
limit, acquire a mass through the explicit sym-
metry-breaking terms present in the interaction
Lagrangian.

Of the many possible forms for the symmetry-
breaking Lagrangian, a simple choice"' is to as-
sign it to the (3, 3*)$(3*,3) representation of
SU(3) x SU(3). The symmetry-breaking Hamiltonian
density, 3.'s» then takes the form

K s~ cpQp cs+,
where the u,. (i =0, . . . , 8) are the nine scalar den-
sity operators belonging to the (3, 3*)$(3*,3) rep-
resentation of SU(3) xSU(3). While this choice is
very appealing, especially the Gell-Mann, Oakes,
Renner (GMOR)' scheme with SU(2) xSU(2} a better
symmetry than SU(3) (thus accounting for the rela-
tively small pion mass), it is not the only appealing
scheme and, in addition, it may have problems.
Indications of the latter could be the rather large
mN o term found by many authors, ' the possibly
large vv scattering lengths, ' and the calculations
of the decay rate' for q- m'm m'.

Consequently, other forms of chiral-symmetry
breaking have been investigated. The most popular

choices assign X~s to the (8, 8) (see Ref. 10) and

the (6, 6*)$(6*,6) (see Ref. 11) representations of
SU(3) xSU(3). However, if one associates the
smallness of the pion mass with an approximate
SU(2) xSU(2) symmetry of the strong-interaction
Hamiltonian, these assignments must be rejected
in favor of those that retain the GMOR type of sym-,

metry breaking as the dominant type and add con-
tributions from other possible types of symmetry
breaking as small correction terms. " We would

then have

XSB CO( 0 W 8) XSB (1.2)

where Xzs is a small SU(2) xSU(2)-breaking part
of X s, with its SU(3) x SU(3)-symmetry-breaking
properties being a priori unspecified.

A model of this type was first introduced by
Okubo. " He argued that, if the only SU(3)-breaking
part of Xss belonged to the (3, 3*)$(3*,3) repre-
sentation, then X» must have the structure of Eq.
(1.2) with Xss restricted to be SU(3)-invariant.
The GMOR scheme is a member of this class of
models.

A Hamiltonian of the form in Eq. (1.2) has also
been considered by Sirlin and Weinstein, "who as-
sign Xss to the (8, 8) representation and, in addi-
tion, allow it to break SU(3).

In an earlier work" we investigated these pro-
posals, and others, for Ks~ within the context of a
linear SU(3} o model, '6 with X~s assigned to the
(3,3")$(3*,3)$(8, 8) representation of SU(3) xSU(3).
It was found that attractive alternatives to the
GMOR model do exist. In particular, the Okubo
form seems to describe the phenomena considered
at least as well as the GMOR model.

In this paper we continue our investigation of
various types of symmetry breaking within the
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framework of the g model. We will consider here
two cases. In the first, X» is assigned to the
(3, 3*)$(3*,3)6 (6, 6*)B(6*,6) representation,
while in the second it is constructed out of two dif-
ferent (3, 3*)S(3*,3) representations.

Our methods of investigation in the present study,
as in I, will parallel those of Schechter and Ueda
and their collaborators, " "who employed the lin-
ear SU(3) o' model to study (3, 3*) (3*,3) symmetry
breaking. ' This 0 model is based on a Lagrangian
which is constructed out of SU(3) nonets of pseudo-
scalar (v, IC, q, g ') and scalar (e, z, o, o') fields as-
signed to the (3, 3*)63(3*,3) representation "T. he
"potential energy" part of the Lagrangian can be
separated into an SU(3) x SU( 3}-invariant part, V„
and one which breaks chiral symmetry, V». The
ground state of the system is assumed to occur at
those (constant) values of the fields which mini-
mize V, + V». The Lagrangian is expanded in terms
of fields displaced from their ground-state values,
and the constant coefficients in the expansion are
identified with particle masses and couplings.

We are interested in two forms of V,. In the
general model V, is allowed to be any arbitrary
nonderivative function of the basic fields. In the
renormalizable model"'" V, is forbidden to contain
terms of degree greater than 4 in the fields. In
the general model most of our results can be ob-
tained by specifying only the form of V», the sym-
metry-breaking part of the Lagrangian. However,
a complete description is not possible without
further constraints. To obtain these restrictions
one can consider, as a special case of the general
model, the case where V, is required to be invari-
ant under scale transformations. "

The GMOR symmetry-breaking scheme can be
most simply accommodated in this model by taking

V» to be a linear combination of the appropriate
scalar meson fields. This has been the usual
practice. ' " In I we studied the effect of adding
to this linear (3, 3*)$(3*,3} combination terms
which are bilinear in the fields and which trans-
form like (8, 8}. For the isospin-conserving part
of V» there are, in general, four parameters re-
quired to describe this model compared with the
two-parameter GMOR scheme. Various combina-
tions of terms belonging to (3, 3*)8(3*,3)63(8, 8)
were studied and it was found that, even with one
or two more parameters, most of these were un-
able to fit the data. as well as the simple GMOR
model. However, the two-parameter Okubo
scheme was found to be at least as successful as
that of GMOR.

Here we will consider two further possibilities.
One consists of the addition of bilinear (6, 6*)
6(6*,6} terms to the usual linear (3, 3*}$(3*,3)
combination, leading to a four-parameter model

of the symmetry-breaking Lagrangian. It is found
that the two-parameter Okubo form of this scheme
is essentially as effective in fitting the data as is
the GMOR. For the other case we will add bi-
linear (3, 3*)6(3*,3) terms to the usual linear
ones." This is a four-parameter model of the
Okubo form. In this model there is the a Priori
possibility of an alternative GMOR model in which

Vsa contains, for example, only bilinear (3, 3~)
B(3*,3) terms. While this choice turns out not to
work, we do find another two-parameter model,
whose linear and bilinear parts are respectively
SU(2) xSU(2)- and SU(3)-invariant, which works
about as well as the linear GMOR model. The
precise structure of the (3, 3*)B3(3*,3}$(6,6*)
$(6*, 6) and the linear and bilinear (3, 3*)$(3*,3)
symmetry-breaking contributions in terms of the
fields will be derived in Sec. II.

In the following investigation we will consider
many special cases of the two general symmetry-
breaking forms mentioned above. All quantities
are calculated in the tree approximation. A brief
outline of the calculations will be given in Sec. III.
For our strong-interaction calculations we con-
sider the meson mass spectra, the scalar meson
decays, the decay q'-gem, and the ~w and nK scat-
tering lengths.

Isospin violations are introduced by adding an
I=1 term to V». Terms of this type may arise
from higher-order electromagnetic tadpole contri-
butions. The Lagrangian in this form is employed
to investigate the electromagnetic mass shifts and

the decay g - 3n.
In I an effective nonleptonic part of the Lagrang-

ian was included in a not-too-successful attempt to
describe the K-2z and K-3n decays. We found

that these decays could not be described any more
successfully in the present schemes. As the E
decays do not provide a reliable means of dis-
criminating between the various symmetry-break-
ing schemes, we will not discuss them further
here.

As inputs for our numerical computations we
used the experimentally better determined quan-
tities such as the pseudoscalar meson masses and
the pion and kaon leptonic decay constants. In
some cases scalar meson masses must be input
as well. These are chosen, where possible, from
the latest data compilation. " Details of the nu-
merical analysis are given in Sec. IV.

A discussion of our results will be presented in
Sec. V.

II. THE FORM OF THE SYMMETRY-BREAKING TERMS

As in I we assume that the nonweak symmetry-
breaking part of the Lagrangian has the decom-
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position

Vsa —
Vsa + Vsa + Vss

I=O I=1 (2.1)

where I =0 and I =1 denote the isospin content of
the terms. The isospin-conserving term is neces-
sary for a realistic description of strong-interac-
tion phenomena. The isospin-violating terms,
Vs~=' and V &, are required for a treatment of elec-
tromagnetic phenomena.

We are interested in two types of chiral-SU(3)
xSU(3)-symmetry breaking. These involve expres-
sions both linear and bilinear in the basic fields.
As indicated above, the two forms of interest are

which transform as (3, 3*) and (3",3) respectively
under SU(3) xSU(3). S and P denote the nonets of
scalar (e, z, o, o') and pseudoscalar (v, K, g, g')
fields, respectively. The upper (lower) index de-
notes the 3 (3*)SU(3) index. The barred (unbarred)
index denotes the right- (left-) hand space of
SU(3) xSU(3). For further discussion of the prop-
erties of the basic fields see I.

Using the standard SU(3) Clebsch-Gordan series
for the direct product of irreducible representa-
tions,

3x3 =663*

@~aa linear (3, 3~)63 (3~, 3)83 bilinear (6, 6*)8 (6~, 6)

(2.2)

gz~ &linear (3, 3*)$(3*,3)Sbilinear (3, 3*)$(3*,3) .

and

3+ x 3+ = 6+$32

(2.4}

The linear (3, 3*)63(3*,3) has been discussed in
detail in I and, consequently, we now investigate
the bilinear forms. In particular, we are inter-
ested in the even-parity nonets contained in these
expressions.

The basic nonets of fields contained in the La-
grangian are

M.' =(S+ fy).'

we have

(3, 3*)x (3, 3*)= (6, 6*)e (6, 3)e (3*,6*}e (3*,3)

(2.5}

(3~, 3) x (3*,3) = (6*,6}e (6*,3"}8(3, 6}e (3, 3*).

and

M, =(S—iP), (a, 5=1,2, 3},
(2.3)

Decomposing the direct product of theM's into
forms which generate irreducible representations
under SU(3) xSU(3) we have

+ —,'(M'—,M'—+M'-, M;—-M;-M~ -M~~M-;) ~ (6, 3)

+~(M' M '-M~M'- M„' M—
~ +-M~Mq) ~-(3*,—3), (2 6)

where the representations to be generated are in-
dicated. A similar decomposition can be written
for M', M~ with the representations generated as
indicated in Eq. (2.5). Consequently, the tensors
of interest are

T,~ ~ =MaMf +MrM~ +M~&M j+MrMv ~(6, 6*),
(2.V)

T ' ' =M'M'+M'M'+M'M'+M'M' ~(6~ 6)

T3vp. =M~M~ -MqM~~ -M~aM~+M jMf ~(3*,3),
(2.8}

In Secs. II A and II B below we isolate the even-
parity SU(3) nonet (octet+singlet) for bilinear
(6, 6*)e(6*,6) and (3, 3*)e(P', 3), respectively.

A. Bilinear (6,6~)(6*, 6)

First we note that for a tensor to transform as
an irreducible representation it must be both sym-
metric and traceless. Consequently, to develop
the SU(3) properties of T, '-, ~a&(6, 6~) as given in
Eq. (2.V) we write (with repeated indices summed
over)

T~~p ~
= [M~rM~ + M~~M~ +M~M~r +M~~M~~ - 3 6f (M~pM$ +Mgf ~ )]~2V

+ —,6~[M~M~ +MPH~ —&6~(M)M&+M„-M&)] ~8

+f 6~6q(M~Mp+Ma8Ms~)~1, (2.8)



13 STUDY OF (3, 3*) 63 (3*, 3) 63 (6, 6*) 63 (6*, 6) AND LlNEAR. . . 59

where the irreducible SU(3) representations gen-
erated are again indicated. Thus, the nonet in
(6, 6*) can be written as

N —' =M—)if—+M-'M —.1d cx d (x (2.10)

A similar decomposition can be written for T, ', ,'
with the nonet of interest being

(2.1 1)

Using Eq. (2.3) to express N, in terms of the
scalar and pseudoscalar fields we find

N1d =Set Sd fIt)~pd +Set Sd

+2( Sg'+P S +S'41 +P'S ). (212)

After writing N, d in a similar manner we find that
the even-parity nonet has the form

(2.13)

C. The isospin-conserving part of V

We assume that the isospin-conserving part of
V» has the form

Cp 0 CS 8

where u, and u2 are the scalar SU(3) singlet and

I =0 octet members of the linear (3, 3*)e(3*,3)
representation of SU(3)SSU(3). w, (u,') and 3//2

(u,') are the same respective components of bi-
linear ( 6, 6*)8 (6*,6) (bilinear (3, 3*)6 (3*,3)) .
Following the analysis of 1 we rewrite Eq. (2.21)
as

where

This expression will be used to generate the sym-
metry-breaking terms. In anticipation of calcula-
tions to be made below we note

1
g2 =~ (W C11+ C2),

(3)1/2
(2.23)

and

(E )13
= S13S 8+ S 8 S 13

—P
"
„Q8 —

1I1 8 (f)a

(z')', =s„s', +s'.s™—y. 4, ,'- y'. g .

B. Bilinear (3,3*)(3*,3)

(2.14)

(2.15)

k, = — (3/2 e, + e, ),
1

(
3 )1/2e

1
g2 —~ (W C11 + C2),

(2.24)

From the forms of T, and T2 given in Eq. (2.8)
we see that we must contract T3~bd-' and T„,' with

e„, and e' &;,—,, respectively, in order to
generate a symmetric tensor. Consequently, the
nonets of interest in (3*,3) and (3, 3*) are

and

N t &t bd6 ~~Mc3s sac b d

N — ctbd 6 —-M M4s sac b d~

(2.16)

(2.17)

and

(E )„=-(S„"S8—S8sf—gQ8+Q8 , Qn)

(E'); =2S3S —2S'S3 —2434 +20' 43

(2.19)

—(S13S8 —S8S13 —+@8+$84113) (2 20)

With the above expressions we can now give our
symmetry-breaking terms explicitly. We consider
the isospin-conserving part of Vs~ in Sec. IIC be-
low and the isospin-violating component of V» in
Sec. IID.

respectively. Again substituting for the Ply's, using
Eq. (2.3), and keeping the even-parity terms we
have the even-parity nonet

(E3),' =2S,'S„—2S„'S,"—2P, 41 +243„'g
—5,' (S„S8—S8 S —P„"P8 + P8 43~) . (2.18)

For calculations below we again note

and

gi (3}1/2CI

(2.25)

D. The isospin-violating part of V

This component of V» receives contributions
from two sources, Vs~' and V~~. Vs~' may be
considered to arise from an electromagnetic tad-
pole mechanism. The term Vs&8 is introduced to
account for the effect of ordinary single-photon ex-

Finally, in terms of the scalar and pseudoscalar
fields, we have for the (6, 6*)$(6*,6} case, using
Eqs. (2.14) and (2.15),

g=0 a 3
V» = gpS f)f g3S 3

~o(s a S 8 + S 8 Sn - &g @8 P 8 4113)

—k,(s„s,'+S,'S, —&g&g- P' g). (2.26)

For the bilinear (3, 32)$(3",3) case we have, using
Eqs. (2.19) and (2.20),

I =0 ct 3» 80 ct g3 3

+ g2 (S 13S 8
—S 8 S 13

—1g 4'8 + &P8 $13 )

—A'[2S3'S13 —2S„'S, —2(g4113+2Q'„&g

—(S 13S 8
—S 8S 13

—$13 P8 + (jP8 (f&31 )] .
(2.27)
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TABLE I. Expressions for the derivatives of Vs& with respect to the scalar and pseudosca-
lar fields, evaluated at the equilibrium point, where Vsq is contained in the linear (3, 3 )
EB (3*,3) and bilinear (6, 6*)$ (6*,6) representations of SU(3) x SU(3). We write the expressions
as ( ) p =a&gp+a2g3+askp+a4k3+a5@+a&k&. All derivatives not listed vanish at the equilibrium
point.

Equilibrium point derivative a& a2 a4 ap

8Vss

8Vss

8Vss

(-";-'l).

(-'i-",).
(-'l4).
(-"l-",).
(-"i-".).
(-".'-". ).

(-",-",).
(-'",-".).
(-'."-",).

(
ft'vs

)

p

-(" ', ).
-("l",).

8$ 28']f) p p

-(".".).

-((";".).-")
-(".'",).

-1 0 -2(2n&+n2+n&) -1 -(4n ( +n~)

-1 0 —2(n&+2n&+n&) 1 4n2+n&

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

-1 -1 -2(nf +n2+2ng) (n1+n2+ n3) (ni n2)

change on the pion and kaon masses. This com-
ponent has the form

Finally, for the (6, 6*)$(6*,6) case we have,
using Eq. (2.13),

V 22
= d3 p, (I!2 + dr Q, Q3 . (2.28) V22

' = -g,(S', —S2)

The term Ys~' is assumed to have the form

I=i 33
Vs~ —-c3Q3 ~

Q

Again we rewrite this as

n, [(z'),'—(E'),']
V22 81( 1 2) 1[(E3)1 (E3)2]

where

g, =C3/W,

k, = e3/VY,

(2.29)

(2.31)

2(e,'e,'—el@)- (—e', - el)e' e.'e', .el a-]

(2.32)

For the bilinear (3, 3*)$(3*,3) case we have, using
Eq. (2.18),

V22
' =-g', (S', —S2) —2g,'[(S', —$2)S3 —S3S,+S,S2

(2.33)

In summary we note that the complete Lagrangian
density to be employed in the following calculations
is
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TABLE II. Expressions for the derivative of VSB with respect to the scalar and pseudosca-
lar fields, evaluated at the equilibrium point, where VSB is contained in the linear and bilin-
ear (3, 3*)$ (3*,3) representation of SU(3) xSU(3). We write the expression as () 0

—-a&go
+a2g3+a3go' +a4gs +asg& +aeg&'. All derivatives not listed vanish at the equilibrium point.

Equilibrium point derivative a& a2 a4

@'SB

@ SB

8VsB

(-";-",).
(-";-".).
(-";-'l).

(-";-",).
(-".'-",).
(-".'-",).

-(";",).
-(i", ".).

8&2~&3

-((-";-",).-')
~ VSB

-( .'",
).

p 2(n, +n, )

0 2(n, +n )

2(n& +n2)

2n2

2ng

—2ng

-2(n& —n2)

g =-', Tr[a„ya" y]+-,'Tr[a„Sa"S] III. AN OUTLINE OF THE a-MODEL CALCULATIONS

V V I=0 V I=l
0 SB SB

—dm 4i 4 —4r 4'i &t)3 (2.34)

For calculational purposes the derivatives of the
symmetry-breaking Lagrangian with respect to the
scalar and pseudoscalar fields are given in Tables
I and II for bilinear (6, 6*)$(6*,6) and bilinear
(3, 3*)63(3~,3), respectively.

At this stage two significant differences between
these cases and the bilinear (8, 8) case considered
in I are apparent from the tables. First we note
that, in the present cases, derivatives of the form
(a'Vs~/aSaS}, have signs opposite to (a'V~a/a pa p),
(when they are nonvanishing). Second, we notice
that, in Table II, the gs' term vanishes identically
for (a VS~/aS', }0. This will be quite important in

any calculation involving the I =0 fields. For in-
stance, it is the primary reason that the form of
symmetry breaking employing only the bilinear
(3, 3*)$(3*,3) term fails. In particular, after in-
putting the w and K masses and their decay con-
stants, this type of symmetry breaking cannot ac-
commodate an acceptable value for both the g and
g' masses.

In this section we summarize the calculations
used as a basis by which to assess the various
types of symmetry breaking. As in I the analysis
was carried out as follows. The ground state of the
system described by the Lagrangian of Eq. (2.34)
is assumed to be characterized by those values,
(S,'), and (p,')„of the fields for which

—(v, +v„) =0
j&s&, &@&

=—(v, + v„)a

&s&p ~ & $&p

(3.I)

It is assumed that (p},=0 to avoid spontaneous par-
ity violation. We set(S;}=a, (a=1, 2, 3). SU(2)
invariance of the ground state requires that e, =e, .

The Lagrangian (2.34) is expanded about (S), with
second, third, and higher derivatives of V= V, + V»
with respect to the fields being identified with
masses, three-point couplings, and higher-order
couplings, respectively. For example, the pion
mass is given by (a'V/a gap', ), and the e' -K'v+
coupling by (a'V'/aS, 'asap', ),. Most of the masses
and couplings depend" "only on the z's and the
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symmetry-breaking parameters. The latter may
thus be determined from the well-known pseudo-
scalar meson (i.e. , v, K, and q} masses.

For further details of the computational tech-
niques the reader should refer to I. With the gen-
eral formulas given in I all results can be calcu-
lated using Tables I and II. We consider the
strong- and electromagnetic-interaction calcula-
tions in subsections A and B below, respectively.
All computations are done in the tree approxima-
tion.

A. Strong-interaction calculations

For the strong-interaction calculations we ne-
glect all the symmetry-breaking terms in the La-
grangian except V~~~

' and set n, =a„+—=n, /a [cor-
responding to an SU(2)-invariant ground state) .
We then consider the scalar and pseudoscalar
meson mass spectra, the strong decays, and the
I =0 and 2 nm and I =-,' and —,

' nK S-wave scattering
lengths a„a„a,~„and a, ~„respectively. Two

types of models are considered: the general model
and the renormalizable model. The general model
can be further constrained by imposing scale in-
variance on Vo, if desired.

In the general model we can derive expressions
for the w, K, g, g', and g masses, and e~ (the
q-g' mixing angle}, in terms of the symmetry-
breaking parameters. The cr, o', and e masses,
and Hz (the o-u' mixing angle), remain uncon-
strained. If one imposes scale invariance on Vo,

two further conditions can be obtained relating g,
cr', and Os. However, the e mass remains unre-
lated to the symmetry-breaking parameters. In
our computation the quantities not related to the
symmetry-breaking parameters are input. We
prefer the values o =660, cr'=997, and a=970 MeV;
8, =120 .

Once the mass spectra are determined we in-
vestigate the strong decays. In the general model
we consider the decays z-Km, e -gn, o -w~,
o'- gm, and o'-KK. As the chiral invariance of
V, does not give enough information to calculate
coupling constants involving three isoscalar fields,
we must again impose scale invariance on Vo to
get information about coupling constants such as
g, „„i.With this information, and the value of g
(the Dalitz-plot slope parameter), we can estimate
the width for the decay g'-gnw. In the general
model we also compute the nn and wK $-wave scat-
tering lengths in the usual manner.

In the renormalizable model the condition of re-
normalizability determines the structure of V,.
Thus, all quantities can be calculated directly in
terms of Vo and Vs~, if desired. This gives us
more information than was available, even using
scale invariance, in the general model. Con-
sequently, we can reproduce all the calculations
of the general model, occasionally with fewer in-
puts.

Our results for the general and renormalizable
models are given in Tables III and IV, respective-

TABLE III. Tree-approximation calculations in the general model for various combinations
of (3, 3*) (3*,3) (6, 6*)S (6*,6) chiral-symmetry breaking. Vsg = —cp~p —cs~s —epwp —esses,

gp = (W2cp +cs)/ 6 . For these calculations we have f~ =135, 7t =135, K = 495.8, g = 548,
o =660, o' =997, and e =970 (MeV). Other quantities used as input are underlined.

ep =es=0 es=0 ep =0 go =es-0 go =eo =0 go=0 go=-0 3

cp (7t'3)

cs (7t'3)

ep (m'2)

es (7r~)

cs/co
es/eo
q (MeV)

8& (deg)
z (MeV)
Os (eg
I'(K Xx) (MeV)
r(~- q~) (Mev)
I(o -~~) (Mev)
I'(o' 7tn) (MeV)
I'(o' —KK) (MeV)

ao (n ')
a, (m ')
a)]2 (vr ~)

a 3y2 (7l )

1.56
10.26

-13.28
0.00
0.00

—1.30

1019
—0.3
1029

120
778
201
781
25
68

0.168
-0.038

0.152
-0.050

1.56
21.60

-10.29
-1.91
0.00

-0.66
0.00
958

—0.4
1067
120
760
153
283

54
42

-0.447
—0.219
0.088

-0.078

1.66
10.02

-10.63
0.00

—0 ~ 73
-1.06

958
—2.9

936
120
489
190
630

20
72

-0.078
-0.116

0.169
-0.047

1.56
9.33

—13.20
0.16
0.00

-v2
0.00
1024

-0.3
1026
120
778
205
834

24
70

0.253
-0.011
0.162

-0.044

1.56
10.53

—14.90
0.00
0 ~ 38

—v2

1054
1.7
1046
120
833
198
870

29
62

0.316
0.010
0.148

-0.050

1.66
8.89

-12.57
0.25

-0.25
—v2
-0.99

980
-0.6

951
120
540
199
808
20
70

0.209
-0.025

0.178
-0.039

1.66
8.02

-12.08
0.38

-0.35
-v2
-0.90

980
1 ~ 1
944
120
529
203
831
18
72

0.244
-0.014
0.188

-0.034
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TABLE IV. Tree-approximation calculations in the renormalizable model for several com-
binations of (3, 3~) 6 {3~,3)8 (6, 6*)$ (6*,6) c»ra&-symmetry breakinI, ". Vss ———co Qo —csQs
-epurp —esaes, gp=~2co+cs)/v6. %'e set fr=135, x=135, K=495.8, and g =548 (MeV). Other
input quantities are underlined.

eo =es=0 go =8s =0 go =o go=-0 3

cp (m 3)

cs {x3)
ep (v2)

es (~~)

cs/co
es/eo
q' (MeV)

9& (deg)
g (MeV)
e (MeV)
~ (MeV)
0' {MeV)
es (
I'(g' g7tm) (MeV)
a
I (K-Kn) (MeV)
I'(e —pm) (MeV)
p(0 717() (MeV)
r(~ -~~) {MeV)
I (O' KK) (MeV)

ap {n' ~)

a2 {7( ~)

a((~ (n' ~)

as]2 (7t' ~)

1.66
10.65

-13.83
0.00
0.00

—1.30

988
0 ~ 7
967
952
640

1123
1a3.4
5.4

-0.03
565
169
709

5
506

0.170
-0.038

0.157
-0.049

1.66
9.71

-13~ 74
0.15
0.00

-v2
0.00
993

0.7
964
948
640

1126
124.1
5.6

-0.03
565
169
757

2
540

0.254
-0.012
0.167

-0.043

1.66
8.89

-12.57
0.25

-0.25
-W2
—1.00

980
-0.6

951
935
660

1124
126.1
4.8
0.00
540
157
811

2

584
0.208

-0.025
0 ~ 178

—0.039

1,66
8.02

—12.08
0.38

-0.35
—v2
-0.92

980
-1.1

944
929
660

1119
126.5
4.7
0.01
529
154
830

5
596

0.243
-0.014

0.189
-0.034

ly, for (3, 3*)$(3*,3)6(6.6*)63(6*,6) symmetry
breaking and in Tables V and VI, respectively, for
linear and bilinear (3, 3~)6(3*,3) symmetry break-
ing.

B. Electromagnetic-interaction calculations

For the electromagnetic calculations we add to
the Lagrangian of part A the isospin-violating
terms Vs~' and V&. We can then consider the
mass splitting in the m, K, and ~ isospin multi-
plets as well as the electromagnetic mixing be-
tween I= 0 and I= 1 members of both scalar and
pseudoscalar nonets. The value of the ~ mass can
now be obtained in the general model, since ay 4 Qf2.

In the renormalizable model we can investigate the
width and Dalits-plot slope parameter (P) of the
decay q- m+m n'. The most interesting informa-
tion obtained in these computations is given in Ta-
bles VII and VIII for the (6, 6~)$(6~, 6) and (3, 3*)
$(3*,3) models, respectively.

IV. THE NUMERICAL ANALYSIS AND DISCUSSION
OF RESULTS

During the course of this work many types of
symmetry breaking mere investigated. Tables

QI-IX summarize the most interesting results for
the general and renormalizable models. We do not
present the results for the general model using
scale invariance as we feel they are not acceptable.
Before we discuss our results in detail we will
outline the inputs and assumptions that went into
the numerical analysis.

We begin by considering the value of the pseudo-
scalar masses employed to determine the basic
symmetry-breaking parameters in the strong-in-
teraction calculations. As we do not expect a shift
in the w' mass to lowest order in the electromag-
netic interactions, we identify the pion mass, m,

with the m' mass. " We use this as our basic mass
unit.

Both the K+ and K masses will shift to lowest
order in the electromagnetic interaction. As an
estimate of the kaon mass due to the strong inter-
actions we prefer to average the K' and K mass-
es. Naturally, the symmetry-breaking parameters
are sensitive to the value of K chosen, but the ef-
fect is not severe for small changes in K. Chan
and Haymaker" have pointed out that the value of
Q 3 is sensitive to that of K. We avoid thi s problem
by employing f«/f, to determine a„as will be



H. B. GE DDES AND R. H. GRAHAM

II
Cd
'Q o

8
W CG
N

ae
II

4
O

~ Cb

+
CO

ce ~
II

cd~ n

II

cd

0

N

N Q

0 Cd

at

cd8"
N

40
0

cd W

4 ~0
g0

o I
~&

Ng e~

b0~ N

~O 5

gg~ O

N&y
o
~+ g

~th

O bO
~W

CG%OO

g
II

g4 ~O
V
I

I

Eel
I

O Q
c X

~ca~ II

LLJ

0
II

II

C
II

+OO4
II

bo

II
wD

II
&OO
V

0
II

yOO

II
wO
Q

e O
CO Qo

CU t C4

I

0 0 0
lA M CQ

CO t Cb N Cb
CO CO e4 CO m W M

v-I v-I
I I

I

CG Cb 0
LO ~ CG
Cb Cb

I

O CG CO O Q O
Cb t ~ LO

N O O
I I I

I

CG Q O
LA ~ CG
Cb ' Cb

I

CG ~ M t
OCOCO W N N
CD + CG Cq 8

I I

I

CG
LA ~ CG
CA

' Cb

I

O R N CO 4 H O
CO CG CO W P3 CO CO

Cb N O C R O rE
I I I I

I

CG CO O~ W 00 M
CFi

' Cb

I

M LQ + 0
Cb 0 CO I~ CO

Cb H + O+ O
I I I I

I

CG
CG

CA
' Cb

I

aO CO CFi Cb
CO 0

0% O0+ 8

I

Cb
CA
O

Ot-CO O~~~OI~O~
CONOO+ 0+

I I

I

CO Q O
CO COWQ ' Q

CO t 0
Q N O O + 8

I
I I

C5
LO ~ CG Cg
Cb 0 Cb

I

CG m
N CtIi 0 Cb CD

CD 0 0
I I

I

CG Q O
00 Cg

CA 0 Cb

CG&&OOe«OO~
I

I

O Q Q O
~ CO
~ ~ O 0 0

OO sO ea, CO OO &OO s,
Q V V Q 4 4 V

0 Q CG 0 &
WCG t ~CG

LQ LQ t LO CGt ~ t ~ CO
CO

CG Cb CG 0 CG
LO 0 t CiQ CO
CO ea t-

CLI0 Q S

44444

CO CQ CC0 R 0
0 0 0 0

I I

00 CG 0 t
CO CQ t-W

O R O
O C O C

I I

CG OO ~ 0
aQ

O H O
OOOCD

I I

LQ CO CG
CG CO000
O 0 O 0

I

CG CG Cb 0
CO

O R O
CD 0 0 0

I I

O CG O
O H O

OOOO
I I

C CGtt- Cern
O R 0

0 0 0 0
I I

CG CGt- n ce w0
0 0 0 0

I I

00 00 CQ CG
CO F3 CO
H O R O
0 0 0 0

I I

Q R CG
CG CO M CO

O N O
0 O O

I I

CG CG O4 CD
CO ~ LA LA

O H O
0 0 0 0

I

rH

CO

C5 Cd Cd Cd



13 STUDY OF (3, 3*) 8 (3*,3) 6 (6, 6*) 6 (6*, 6) AND LINEAR. . .

TABLE VI. Tree~iagram calculations in the renormalizable model for several combinations of linear and bilinear
{3,3*) (3*,3) chira1-symmetry breaking, Vga = cpQp csQ:s —cpQo —csQs gp = (W2cp+cs)/W6, and similarly for gp'. We
set f„=135, 7) =135, %=495.8, and q =548 (MeV). Other input quantities are underlined.

cp —cs —0 cs =o co —-0 go =cs= o gp =co =Q gp =0 gp =0 3 cp =0 go =o gp' =0.3

cp {m3)

cs (n'3)

cp {7l2)

cs (m ~)

cs/co
c,/c,
C

g' (MeV)

e~ (deg)
K (MeV)
e (MeV)
(T (MeV)

(MeV)

9& (deg)
Z(q -q~~) (MeV)
a
I'(K Km) (MeV)
I'(e gm') (MeV)
I'(0 nx) (MeV)
I (0' 7|n.) (MeV)
I (O' KE ) (MeV)
a, (7r ')
a2 (7( )
a ~/2 (7t' )

a3/2 {n' ~)

1.66
10.65

-13.83
0.0
0.0

-1.30

-1.30
988

0.7

967
952
640

1123
123.4

5 4
-0.03

565
169
709

5
506

0.170
-0.038

0.157
-0.049

1.66
11.78

-13.25
0.93
0.0
1 ~ 13
0.0

-1.30
958

0.8
947
931
650

1121
126.3
5.6

-0.01
565
168
750

~p
538

0.178
-0.037

0 ~ 188
-0.045

1.66
10.68

-13.49
0.0
0.24

-1.26

—1.30
958

0.8
947
931
650

1121
126.3
4.4

-0.01
515
150
749

2
538

0.169
-0.038
0.164

—0.048

1.66
10,01

—14.16
0.52
p.o

-W2
0.0

-1.30
100')
0.7
97&
963
640

1129
122.5
5.4

-0.04
564
170
710

6
512

0.172
-0.038

0.143
-0.050

1.66
10.53

-14.89
0.0

-0.74
-W2

-1.30
1076
0.6
1028
1014

560
1129

114.0
2 7.0
3.06
734
234
439
148
394

0.185
-0.038

Q.142
-0.050

1.56
9.14

-12.92
-1.02

o.65
-v2
-0.64
-1.30

958
p 4
989
955
660

1129
121.6

2.6
0.00
597
170
787
12

538
0.170

-0.038
Q.141

-0.051

1.56
9.60

-12.83
-0.62

0.56
-1.34
-0.91
-1~ 30

958
p 4
989
955
660

1129
121.6

2.9
0.00
620
178
786
15

540
0.168

-0.038
O.149

-0.050

1.56
0.0

—14.68
-8.91

2.41

-0.27
-1.33

958
p 4
989
955
660

1129
121.6

0.3
O.O8

219
48

838
51

520
0.382
0.040
0.052

-0.016

1.56
9.90

-12.78
-0.36

0.50
-1.29
-vY
-1.30

958
-0.4

989
955
660

1129
121.6

3.0
0.00
638
183
786
18

540
0.168

-0.038
Q.155

-0.050

1.56
10.61

-12.64
0.26
0.38

-1.19
1.42

-1.29
958

-0.4
989
955
660

1129
121.6

3.6
0.00
675
197
781
25

542
0.168

-0.037
0.169

-0.048

discussed below.
The q mass is used in the determination of the

g-g' system as discussed in Appendix A of I. De-
pending on the type of symmetry breaking being
considered, g' is either calculated or fitted. If
not fitted, the value of g' can be sensitive to the
value of g. For example, with linear (3, 3*)8(3*,3)
symmetry breaking alone we have a value of 1019
MeV for g' when q =548 MeV. If we set g = 543
MeV then the q' mass shifts to 960 MeV. Never-
theless, we use g =548 throughout our calculations.
In general, we expect the sensitivity to be char-
acteristic of the linear (3, 3*)8(3*,3) form of sym-
metry breaking for all types of symmetry break-
ing, as small admixtures of the bilinear form are
preferred. We also include some interesting cal-
culations with the q' mass set at 1450 MeV. '
This is near the E(1420) (see Ref. 25) which has
been suggested as a possible candidate for the q'.
In summary we employ @=135, K=495.8, g=548,
and, when possible, q'=958 (or occasionally 1450)
MeV.

With a value of 135 MeV for f„we have" n =0.5
n, which is used throughout all our calculations.
We determine a~ using" fr/f„. We prefer28 fz/f

TABLE VII. Electromagnetic-interaction calculations
for two of the solutions in the renormalizable model pre-
sented in Table IV. The additional quantities used as in-
put are underlined.

eo —-es ——0 gp =es=0

o.
&
-e2 (7t)

d~ (fr)

c3 (r3)
e3 (n )

e+ (MeV)
I'(q r+ P) (eV)

P

-0.0148
0.21

-P.527

S58
114

-0.477

—0.0139
0.21

-0.483
-0.009

970
202

-0.477

—0.0147
0.21

-0.522

957
121

-0.479

—0.0137
0.21

-0.472
-0.010

970
229

-0.478

=1.28 which sets n, =0.78 w. As there is some un-

certainty in this quantity we allow fr/f, to be as
large as 1.33.

Since the variable Q., appears throughout all our
calculations, we must consider the sensitivity of
our results to the value of fr/f, . As an example,
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TABLE VIII. Electromagnetic-interaction calculations for three of the solutions in the re-
normalizable model presented in Table VI. The additional quantities used as input are under-
lined.

cp —cs —0 cs —0 gp =cs 0

n& —n2 (7r)

d~ (7t ~)

c3 (7t3)

c3 (7l2)

e+ (MeV)
r(q- ~+~-~o) (ev)
P

-0.0148
0.21

—0.527

958
114

-0.477

-0.0150
0.21

—0.536
-0.007

970
123

-0.479

-0.0116
0.21

-0.445

995
329

-0.479

-0.0115
0.21

—0.435
0.010

970
307

-0.478

-0.0151
0.21

—0.543

963
94

-0.480

-0.0153
0.21

—0.551
-0.005

970
98

-0.478

consider again the linear (3, 3*)$(3*,3) case.
With fr/f, = 1.28 (and q =548) we have 7i' = 1019
MeV. If we set fr/f, =1.4 we then have q'=958
MeV. (Naturally this result is dependent on the
value of K employed. ) This value of fr/f, is prob-
ably too large. At this point, we might also note
that the sca3ar masses increase as a, approaches
n [see, for example, the expression for the g mass
in Eq. (4.13) of I]. Thus, a larger value of fr/f,
favors smaller scalar masses. In summary, we
prefer to set fr/f, =1.28 and deviate from this
choice only when a change improves the calcula-
tions as a whole.

While the masses of the pseudoscalar nonet are
accurately known (except for a possible uncertainty
with regard to the choice of q'), the scalar masses
are subject to a great deal of uncertainty. First,
we identify the isovector 6(970) (see Ref 25) wit.h

the e. Second, we identify the broad Km signal"
in the 1200-1400 MeV region with the z. Finally,
we use the results of Protopopescu et ai,."to com-
plete the nonet with the 0 around 660 MeV and the
0' at approximately 997 MeV. In our calculations
the above masses are chosen, if possible. If the
model being considered applies constraints to
these masses, we try to fit them, while maintain-
ing reasonable results for the other quantities of
interest. Such a compromise is not always pos-
sible. In the general model we input 0, 0', 8~,

and e. In the renormalizable model we input only

It may be of some value for the reader to study
parts A, B, and C of Sec. VII of I for two reasons.
First, more information is given in I. This infor-
mation should be compared with the calculations
presented in this paper in order to assess the
merits of any given type of symmetry breaking.
Second, the discussion in I concerns linear (3, 3*)
$(3*,3)63bilinear (8, 8) symmetry breaking which
can be used to judge the relative success of the
symmetry-breaking types we consider below.

We will now present a brief discussion of the
(3, 3*)8(3*,3)6 (6, 6*)8 (6*, 6) and linear and bi-
linear (3, 3*)6(3~,3} results in parts A and B, re-
spectively.

A. (3,3*)(3'", 3)(6, 6*)(6*,6)

These calculations did not work particularly
well. From the results presented in Table III for
the general model we consider only the cases
e, =e, =0 (the GMOR" scheme), ga =e, =0 (the
Okubo" form}, g, = 0.0, and g, = -0.3 to be accept-
able. Even the last two cases may be rejected as
they do not allow the q' mass to be at 958 MeV,
but prefer a larger value. This mass is required
to be larger for a smaller value of ~ =a, /n. The
computations with g'=1450 MeV are, however,

TABLE IX. Contributions to the kaon mass squared (in 7t' ) from the co, cs, co, and cs terms in the kaon mass for-
mula K2 =t2go+g3-2u(2go +g3)]/(n+ n3) for various types of (3,3*) (3*,3) symmetry breaking. We have K=3.63m,

K2 =13.497|, and co =1.56. In all but the last case rf =958 MeV, whenever possible.

cp =cs =0 cs =0 co —-0 go=cs=0 go=co =0 go=0 go=0 3 cp=0 gp =0 gp =03 gp =0
g' =1450 (MeV)

Cp

Cs

CD

Cs

9.25
4.24
0.0
0.0

11.30 9.30
3.91 4.05

-1.72 0.0
0.0 0.14

8.66
4.33
0.50
0.0

9.16
4.58
0.0

-0.25

8.24
4.12
0.92
0.20

8.66
4.09
0.56
0.18

0.0 8.93
4.68 4.08
8.04 0.32
0.77 0.16

9 ~ 58
4.03

-0.23
0.12

11.40
5.70

—2.25
-1.37
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B. Linear and bilinear (3,3~)(3~, 3)

These results are more interesting than those of
the previous case. In the first place, there are
more combinations which work. In the second
place, we can rule out a possible GMOR scheme in
which the symmetry breaking is purely bilinear in
the fields (the case c, = c, =0).

Several other forms of symmetry breaking can
also be rejected immediately. These are the
cases c, =0, gp=c, =0, and g,'=c, =0. From Table
V (general model) and Table VI (renormalizable
model) we feel that the c, =0 and g, = c,'=0 cases
must also be rejected. From these tables it is
also clear that there are many acceptable alterna-
tives to the linear (3, 3*)$(3~,3) GMOR scheme.

In the tables the variable c' appears. This is
defined as

Ca —2Q g Cac
Cp —2(X3Cp

(4 1)

This expression reduces to the usual definition of
c if either the linear or bilinear terms are omitted.
We also have c'=-&2 when SU(2)xSU(2) symme-
try becomes exact and the pion mass vanishes.

Before going further, perhaps we should com-

also not satisfactory. The results for the renor-
malizable model follow the pattern of the general
model. The more interesting cases are presented
in Table IV. We also rejected the general model
with scale invariance in all cases for reasons sim-
ilar to those given in I.

Consequently, from these results, we feel that
only the GMOR and Okubo cases merit serious con-
sideration. The model seems to reject the cases
that allow e, to be nonvanishing. The g, =e, =0
case involves a small (6, 6*)$(6*,6) SU(3) scalar
symmetry-breaking term. From Tables III and IV
it is difficult to see where this case gives more
attractive results than the GMOR model. Note that
both give acceptable results' for the slope param-
eter a of the decay g'-qwv Iassuming that the
X'(957) is the q'j.

Although we feel that our electromagnetic-inter-
action calculations should not be taken too seri-
ously, there is one interesting result given by the
e, term. From Table VII we note that the addition
of the e, term generates a larger width for the
q-w'g mP decay, a width roughly twice as large as
that given by the c, term alone. In fact, the e,
term alone was not included in the tables as it
gives a width that is many times too large. We
feel this is worth pointing out as we have not had
much success in obtaining a width for g -n+p g'
that is near the experimental one, "while maintain-
ing a reasonable value for e and P."

ment on the size of the bilinear (3, 3*)(3*, 3) con-
tribution. As a measure of this contribution we use
the magnitude of each term in the kaon mass.
From Table IX we see that all bilinear contribu-
tions are small, except for the c, =0 case, which
gives unacceptable results.

At this point we also note that the solutions with
g' =1450 MeV are successful in the general model.
An example is given in the last column of Table V.
The results, for all forms of symmetry breaking
that allow q' to be 1450 MeV, generally are simi-
lar numerically to those with g' =958 MeV, except
that the g mass increases to about 1330 MeV (and
the width to 2.3 GeV). However, in the renormal-
izable model we cannot accept the g'=1450 MeV
solutions, since they do not allow the o and cr'

masses to be near our required values of 660 and
1000 MeV, respectively.

From the numerical results in Tables V and VI
we feel that the most interesting cases are
co=c8=0 (GMOR), c8=0, co =0, go=can=0, go=0,
and g,'=0. However, most of these cases involve
more parameters than the GMOR model, but do
not give significantly better results. In the other
two-parameter model (g, =c,'=0) the q' mass is
predicted to be further from the Xo(957) than in

the GMOR model. For all of the above cases the
g'-gem slope parameter is predicted to be in ac-
cord with the recent data. Another interesting
observation is that the model requires both the c,
and c, terms. Omitting either or both generates
unacceptable results.

If we consider the electromagnetic-interaction
results we can reduce the number of successful
cases to three (see Table VIII). These cases are
the GMOR, and those with c,'=0, and gp=c,'=0,
respectively. The results with c,'=0 are the best
as they allow a width for the decay g - n'n n' that
is large enough to be consistent with the latest
data. " Most types of symmetry breaking give a
width that is much too small.

V. DISCUSSION

The main results of the preceding analysis can
be summarized as follows. We first considered
the case in which the symmetry-breaking part of
the Lagrangian belongs to the (3, 3*)8(3~,3)
$(6, 6*)$(6 *,6) representations of SU(3) xSU(3).
The (3, 3*)$(3*,3) terms are linear in the basic
fields while the (6, 6*)8(6*,6) terms are bilinear.
While this model involves four parameters in gen-
eral, it was found that few of the possible combina-
tions of terms could give as good a description of
the data as does the two-parameter GMOR" model
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of linear (3, 3*)$(3*,3) breaking. In fact, only the
Okubo form" gives results which are competitive
with the GMOR scheme. In the electromagnetic-
interaction calculations the addition of the I = 1
scalar octet part of (6, 6*)$(6*,6) to that of the
(3, 3*)$(3*,3) representation gives an improved
value for the g -w'm m' width.

%'hen the symmetry-breaking terms were chosen
from linear and bilinear (3, 3*)$(3",3) terms, we
found more combinations of terms to be acceptable
than was the case for (3, 3*)$ (3*,3)$ (6, 6~)$ (6",6)
breaking. Interestingly enough, the possible
GMOR scheme consisting of bilinear (3, 3~)$(3 ~, 3)
symmetry breaking alone does not work. It may
also be of some interest that an g' close to the
E(1420) (see Ref. 25) may be accommodated in the
general model of this scheme. This choice for g'
is about as successful as the usual assignment of
the X'(957) as the g'. However, a high-mass g'
does not work well in the renormalizable model
and, hence, may not be a truly viable possibility.
There is another two-parameter combination
which works almost as well as the linear (3, 3")
$(3~, 3) GMOR model. In it the linear (3, 3*)
$(3*,3) contribution is SU(2) xSU(2) symmetric
and the bilinear terms are SU(3)-invariant. How-

ever, neither of the two-parameter schemes pre-
dicts the width of g -m+m m as well as the three-
parameter combination which has no bilinear
I =0 octet component. The latter scheme predicts
a decay width consistent with the latest data. "

The analysis presented here, together with that
of our earlier investigation, " supports the notion
that chiral SU(3) xSU(3) symmetry is broken in a
very simple way, consistent with having nearly ex-
act SU(2)xSU(2) invariance. Although it is not
possible from these studies alone to select a
"best" symmetry-breaking scheme, the most suc-
cessful of these share several common features.
All have dominant, linear (3, 3*)$ (3*,3) compo-
nents with (except in the GMOR case) small admix-
tures of bilinear terms transforming as (8, 8),
(6, 6*)$(6*,6), or (3, 3*)$(3",3). In fact, despite
the additional parameters available in these
schemes, it is the two-parameter versions char-
acterized by an SU(2) xSU(2)-invariant linear
(3, 3*)$(3*,3) combination combined with an SU(3)-
invariant bilinear contribution which are essential-
ly as successful as the GMOR model. These two-
parameter models are of the Okubo form for the
cases in which the bilinear symmetry-breaking
combination belongs to (8, 8) or (6, 6*)$ (6+, 6).
If we restrict ourselves to strong-interaction re-
sults alone the Okubo form of (3, 3*)$(3*,3)$(8, 8)
breaking is perhaps the most successful of all the
two-parameter schemes, including the GMOR.

Finally, we found no viable symmetry-breaking
scheme in which the chiral-invariant part of the
Lagrangian could also be scale-invariant. " Thus,
these models appear to demand an operator in the
Hamiltonian which is chiral-invariant, but scale-
noninvariant. "
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