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Quark self-energy
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A model of colored quarks interacting through non-Abelian vector gauge potentials is analyzed. An analogy
with the Kondo effect of solid-state physics is exploited to suggest approximations to the coupled integral
equations for the quark field two-point function. Conditions are described for which the self-consistently
determined quark mass equals infinity. A covariant bound-state equation for color singlet mesons is derived
which is essentially three-dimensional. The internal Minkowski space, parametrized by the relative coordinate
four-vector x ", is replaced by a hyperplane in that space defined by x "P~ = 0, P" being the four-momentum
of the meson. Thus, "quark confinement" to the "inside" of the meson induces a contraction of the four-
dimensional, internal Minkowski space to that hypersurface orthogonal to P". Some pecularities of the
equation are briefly discussed.

INTRODUCTION THE KONDO MECHANISM

In recent years more and more attention has
been focused on theories of weak, electromag-
netic, and strong interactions consisting of spinor
fields interacting via non-Abelian vector gauge
potentials. This interest was rekindled by the
demonstration that such theories are renormaliz-
able' and further intensified by the discovery that
they are asymptotically free. ' Complementary
to this "softness" in the ultraviolet region, it is
suggested by renormalization-group arguments
that such theories will exhibit a very strongly
coupled infrared behavior —that is to say in the
region of time-like momenta. This heuristic argu-
ment taken together with the practical fact that, in
perturbation theory at least, the Green's functions
of such theories are beset with uncontrollable in-
frared sigularities near the mass shells has given
rise to the hope that infrared effects could con-
spire to "confine the quarks. " Said another way,
despite the persistent use of quark fields in the
formal construction of currents and in various
phenomenological models for the hadron spectrum,
the basic elementary quantum of those fields —the
quark itself —have never been observed. The pres-
ent work analyzes this puzzle within the frame-
work of certain physically motivated approxima-
tions to the quark self-energy equations. We shall
see that the key to understanding how the basic
spinor fields y(x) can escape having to create
long-lived, colored, single-particle states when
applied to the physical vacuum lies in there being
specific dynamical processes which inhibit the
localization of those color charges carried by the
quark fields. The quarks, then, as well-defined
particles carrying color and having a finite mass
are not permitted to exist.

We assume that the strong gauge group g = G
xSU(3) (color) with G the spectrum-classifying
factor. All we have to say concentrates on the
color SU(3) factor. Suppressing indices with re-
spect to G one has typically

~(x) = — G,~"(x)G'„„(x)

-X(x)r" —.S„-N A„(x) X(x)+

where

G,""(x)= & "A", —&'A," +i@A,"(T,)~'A", and t and
Tare the representation matrices appropriate to X

and 4", respectively. What we need is an effi-
cient language for discussing at least in a quali-
tative way the different kinds of physics that can
lie hidden in this symmetrical Lagrangian func-
tion. To this end, introduce y —y +A as the
symbolic expression for the coupling between the
two fields y and A. The double arrow —is in-
tended to express that energy, momentum, and
color (as well as other elementary properties)
flow back and forth between the two fields. Clearly
it is only under quite special circumstances that
one can speak of an equilibrium situation,
tionary state of the so-expressed dynamics. These
are the conditions that we seek.

SU(3), being a group of rank two, has its irre-
ducible representations labeled by the eigenvalues
of two Casimir operators. For the purpose of il-
lustration and simplicity it will suffice to analyze
the case of SU(2), the generalization to SU(3) being
straightforward.

Write

z (x) = —x(x)r" —.a f ,'7 A„x — G&"G'„„. -
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The complete list of elementary transitions is
given by

and

problem of self-energy. A single-particle state,
to be long lived, must be an equilibrium con-
figuration of all the elementary mechanisms oper-
ating.

What then do we conclude from the above obser-
vation? If

A' —A'+A'; A —A'+A'+A' . (lb)

Such a system may be termed the minimal "com-
pletion" of an Abelian theory by the consistent
inclusion of charge-exchange process.

Let us now assume that the lowest excitation in
the spinor spectrum occurs from m & 0 and in the
vector spectrum for M' = 0 and furthermore that
m and ~' are proportional to their respective
unit matrices. To make clear what we have in

mind let us begin by asking the following question:
Since the vector spectrum extends to zero mass
do we expect the spinor particles (assuming there
are spinor particles) to be surrounded by a
Coulomb-type field just as in Abelian electro-
dynamics? Well, just how does the Coulomb field
come about? The elementary process e' —e'+y
implies that (in the limit of soft, long-wavelength
y's) the states

~
e &, ~ey &, ~ ~ ~, ~ey ~ ~ y& are de-

generate in energy. The Coulomb field is the
dynamical expression of this degeneracy. In the
language of chemical equilibrium the relative con-
centrations of e and y (see Ref. 3) adjust them-
selves so as to yield a stationary state. That
stationary state is the physical electron. Crucial
to this conclusion is that the electron charge is
localized in a volume -X'=(m ')'. The charge's
inability to escape from this volume allows es-
tablishment of a final equilibrium with the electro-
magnetic field. How does this picture change upon
the inclusion of explicit charge-exchange proces-
ses? Or, in other words, how do the reactions
y'' '—X" '+A. ' affect the above arguments? We
have insisted that the charged as well as the neu-
tral vector spectra extend down to zero mass.
Now focus on those transitions in which A' (just
as y above) is soft (wavelength -~). One encoun-
ters a catastrophe: The charge +-,'f which w'as

assumed initially localized in a small three-
dimensional volume -(m) ' —that is, after all,
the operational definition of a particle —has dis-
solved into the boson field, becoming thereby de-
loealized and diffuse and leaving behind a charge
—&f ~ Obviously our hypothesized single-charged-
particle state is not an eigenstate of all dynamical-
ly allowed processes. By now it should be clear
that what is at issue here is the connection be-
tween the assumed spectra of the individual fields
in an interacting system and the primitive mech-
anisms which couple those fields —in short, the

(i) m &0 and the vector spectrum begins at i)f'
=0

(ii) the matrices m, M' are proportional to their
respective unit matrices, i.e., m = 1m, M'= 1M',

(iii) the charge-exchange y" '—y" '+A'
transitions are treated symmetrically with the
neutral process y' —X' +A', and

(iv) the strength of these transitions is suffi-
ciently strong in the limit of soft (long-wavelength)

then long-lived, charged, single-particle -like
states X" ' cannot exist.

Phenomena of this genre are familiar from solid-
state physics. The Kondo effect4 arises due to the
coupling of a spin-& impurity to soft collective
spin waves in the solid. An initially localized
impurity is not an eigenstate of the total Hamil-
tonian as the boson spin waves are capable of
transporting spin out of the initial region of lo-
calization. Thus the spin-& impurity quickly "dis-
appears. " Another viewpoint is that the soft, spin-
carrying transitions induce an uncontrollable av-
eraging over the up (down) configuration of the
spin, resulting in an observable value of zero.
This reasoning applied to our Yang-Mills example
suggests that insisting on the gluon's spectrum
extending to zero mass will, under favorable dy-
namical conditions (still to be discovered, of
course), induce an uncontrollable, energetically
favorable averaging over the charge states avail-
able to the fermion, resulting in there being no
fermion of definite charge at all. In honor of the
solid-state example which inspired this observa-
tion, we term this effect the Yang-Mills-Kondo
mechanism. The above argument generalizes
trivially to SU(3) and forms the basis for our con-
viction that soft Yang-Mills excitations are the
agency ultimately responsible for the nonexistence
of color quarks, and explains how quark fields
can play such an important role while the quanta of
those fields simply do not exist.

Let us now begin translating this qualitative pic-
ture into the quantitative language of Green's func-
tions. The mathematical statement of the quark's
not being permitted to exist will be that the only
self-consistent solutions to Ne self energy equa-
tions for the renormalized, physical quark mass
m, will be m =~. Let us see how this comes
about.
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THE QUARK SELF-ENERGY

Any nonperturbative question about the quark
single-particle spectrum must be addressed to the
Schwinger-Dyson equation for the quark propa-
gator G (P ), namely

G '(P) =y f +m,

+ig', y" t, C~ -k I'~ P -k, P g'„~ k

(2)

where we have included a bare mass for reference
purposes. The f, =-,'X, [a = 1, ~, 8, the funda-
mental representation of SU(3} color]. All refer-
ence to other quantum numbers (ordinary electric
charge, hypercharge, and perhaps charm) is sup-
pressed. %e are explicitly assuming that as far as the
determination of the single-quark spectrum is con-
cerned, any dynamics that may be coupled to these
quantum numbers can be ignored for the present,
to be treated later as a perturbation.

Clearly, without additional information about I",
and g,"", Eq. (2) is useless as it stands, being sim-
ply the first in an infinite hierarchy of coupled
equations. Using the physics of the Kondo mech-
anism as a guide, however, we shall guess reason-
able small-momentum-transfer behavior for 1

and small*' behavior for 9"' in terms of which
we shall be able to conclude something about the
quark spectrum.

The first Slavnov' identity guarantees that b,"~(k)
may be decomposed as

with $ the gauge parameter ($ =0 the Landau gauge,

$ = 1 the Feynman gauge}. All dynamical infor-
mation is contained in the invariant, dimension-
less function d, ~ (k ). Complying with point (ii)
above that we are seeking symmetric solutions,
we put d, ))

(k') = 5,), d(k'). Our fundamental assump-
tion —that the vector spectrum extends down to
zero mass —we parametrize as the behavior of
d(k') near k'=0, namely

posed on top of the power as well as essentially
singular behavior) but will be general enough for
our purposes. The quantity X (in general a func-
tion of g2) is at this stage to be regarded as a
parameter of the Ansatz. It is left to a more com-
plete future theory to determine A(g') self-con-
sistently by solving the integral equations for the
gluon propagators. The present work makes no
further comment about this difficult problem.

As d(k2) is dimensionless the Ansatz in Eq. (4)
introduces a further parameter 0' having dimen-
sion (mass)', which has no counterpart in the
original Lagrangian. This mass parameter will
ultimately be relatable to the normalization point
chosen to define the mass-zero Yang-Mills theory
and as we shall see is the quantity which sets the
scale for the physical hadron masses.

It is, of course, not enough to know d(k2) for
small k' only as the f (dk) in Eq. (2) instructs
us to integrate over the entire Minkowski space.
To this end we assume d(k'}-1 as k'-~. This
assumption may oversimplify the ultraviolet be-
havior, but as it is an assessment of the con-
sequences of specific infrared behavior that we
are after, a more sophisticated treatment of ultra-
violet asymptotics will be deferred to a later date. '
Thus, the full Ansatz for d(k'} becomes

(5)

For large k' the infrared term dies out (for X & 0
as we assume) leaving the canonical "1" behind.
lf in the process of solving Eq. (2) an ultraviolet
divergence is encountered (as it will be) it will
be cut off at some maximum momentum A.

Our final input is the assumption that

for small momentum transfers and for -P'=m'
(m being the quark mass). This structure re-
flects points (iii) and (iv) above, namely that the

g2
limd(k') =
$2~ p

k'-s~ (4)

The case X =0 would correspond to a pure single-
particle pole as in quantum electrodynamics. One

expects in general, however, X+ 0, for certainly
the fact that the openings of all multiboson thres-
holds collapse on top of the one-particle pole
will be enough to transform what would have been
a pole into a cut. See Fig. l. Equation (4) is, of
course, not the most general imaginable behavior
(there could be logarithmic dependences super-

FIG. 1. Cut structure of the gluon propagator. Anti-
cipated structure of d(k ) has all cuts telescoping onto
zero.
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transitions X —y +4 continue to occur symmetri-
cally even in the limit of very soft A. 's. From the
point of view of our four-dimensional equation
this is a drastic assumption. It does, however,
have the virtue of simplicity and emphasizes the

nonsuppression of low-frequency, long-wavelength
trans itions.

Now we can make a bit of progress. Defining
G '(P) ~A(P )[y.P+m(P')], Eq. (2) can be written
as two coupled equations for A(P') and m(P'),

A(P')m(P') =m, —tc, g' (dk)m((P —k )')
(2II)'m'((p -k)') +(p -k)R "' A((p -k ))

and

with

4 (2II)'m'((p -k)')+(p -k)' "' A((p -k)') (8)

1 Q~ ~ ~ kgkv
BRU( ) gRU k2 k~ k2 t ' 2)2(k

and c, is the Casimir invariant defined by +8 I(t')':cp 1 Two fe atures prevent the straightforward
extraction of physical information from Eqs. (7)
and (8)—the nonlinearity of this highly coupled
system and, because G(P) is a Green's function of
a colored field, its gauge dependence. This gauge
dependence enters implicitly via the explicit de-
pendence of 8"' on $. Now, structure which de-
pends on the gauge is useless for drawing phys-
ical conclusions. However, there is one feature
of G(P) which must be independent of gauge if the
theory is to be consistent, namely the postion of
its pole and cut discontinuities corresponding to
one quark and one quark plus multi qq pair thres-
holds. The residues of these singularities will,
in general, be gauge dependent and not directly
connectable to properties of physical states. An

equation for the quark mass itself, however, is
physically reliable information and in fact pre-
cisely that information we are after. We now

propose to use the gauge dependence to achieve a
partial decoupling of Eqs. (7) and (8). Assume that

X(g ) is sufficiently large and positive so that the

dominant region of integration is from small k"
(what is meant by sufficiently large will be de-
termined later). Since the eigenvalue equation
for the quark mass reads m(p')~ I,2 & =m we ignore
the k dependence of m((P —k)') and A((P -k)') under
the integral and choose the gauge so that A(P') ~-I,2- 2

=1, i.e., we fix the gauge so that in the vicinity of
the assumed quark mass shell we have

(dk) 1 &Rr (k p)y
B (k)(2II)' m'+(p -k)' "' p2. R

singularity (in the two-point function) are removed
by the choice $ = 3. We are now left with an eigen-
value equation for the quark mass m

(dk) m
0 Og (2II)4 2 ~ (p k)2 g BRv (

which will be the equation of concern in the rest
of this paper. Arguments such as the above have

many predecessors in the literature. " All pre-
vious cases, however, were concerned with ap-
proximations (and/or Ansatze) tailored to the "ex-
pected exact ultraviolet behavior. " We are re-
versing the priorities here by anticipating that the
greater portion of the self-consistently determined
quark mass will be controlled by the low-momen-
tum region of integration in Eq. (11).

Let us now define

g2 1
&""BR.(k) =g kR +(2+()P-

= B IR+ B
vv (12)

with the X-dependent term emphasizing the in-
frared contribution and the 1/k' term the ultra-
violet contribution. Furthermore, as many of our
integrals are potentially infrared divergent we in-
clude a control parameter iI in Eq. (12) so that

3 g2
8 k2+~ 2 k2+ 2

This will be a gauge resembling the Yennie gauge
in quantum electrodynamics where all soft-photon
corrections to the residue of the one-electron

with the understanding that p. is set equal to zero
at the end. This trick enables us to assess the
role played by formal infrared divergences in our
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self-energy equations. It will turn out, when we

come to constructing bound-state equations, that
a criterion for which states may or may not exist
(having finite energy and standard parity proper-
ties, etc.) is that the equation generating those
states as eigenstates be independent of p. , that
is to say, free of infrared divergences.

THE SELF-CONSISTENTLY DETERMINED QUARK MASS

To illustrate the general case with a specific
example let us temporarily set X = 1 and perform
the (dh} integration. The result can be written
in the spectral form

(3+(), ' dM' M'-m'
(4&) 2 M M +p —k'

where we have restored the P' dependence of m(P') momentarily and A' is the ultraviolet cutoff. Now let
—P'- m' and obtain the eigenvalue equation

(4v)' ~, „)~ M M -m [M —(m+p) ]' [M —(m —W) ] + (4&)'

A 2

(14)

The reader may have been wondering why we have bothered to make specific reference to a bare mass
m, in the above. Here we see that its sole role is to resolve an ambiguity inherent to Eq. (14). If m,
were zero Eq. (14) clearly has as a solution m =0 which we want to reject. This solution, incidentally,
would be the one favored by ordinary perturbation theory. In any event, once m, has ensured that the
system chooses the nonpe~turbatige mode, we set m, = 0 and find

(4&)
~ „~2 M M'-m' [M' —(m+g) ]' '[M' —(m-p, )']' ' («}' 2 M

(15)

Suppose for the moment that Q = 0; then the solution to (15}is

4n 2 1m2 =A2exp
g c,(3+ $)

which could have been anticipated as A, the ultraviolet cutoff, is the only dimensional parameter left upon

which m could depend. This result is typical of those solutions found in Ref. 7. With 0 c 0 an entirely new

possibility presents itself. Ignoring the ultraviolet term in Eq. (14) for the moment, recall that the phys-
ical situation is defined by the limit p —0. But the first integral in Eq. (15) is infrared divergent if we

blindly set p, = 0, that is to say there is a divergence coming from the vicinity of the lower limit of inte-
gration, M=m'. How then is it possible that this integral can satisfy the sum rule, namely Eq. (15)?
This wiB only be possible if as p. —0 the region of integration shrinks accordingly so that this shrinking

of the integration region and the divergence of the integrand succeed in compensating one another. This
is what happens. The integration in Eq. (15) may be performed, yielding

3g2c Q2 p' 1 w . , p 1 m] g'co(3+$)
1

A'
(4v)' m (4m' p,

' p')'&' 2 m m p, ) (4v)'

0 A.
1 = a, —+a,(()ln-'mg

with a, = 3g'co/(4v)' and a2($) = 2g c,(3+ $)/(4w)'. As m - A the ultraviolet term vanishes (in a gauge in-
dependent manner) and we obtain the previous solution: m -~ in the limit p, -0. The implied interdepen-

Still ignoring the ln (A'/m') term we see that Eq. (17) defines a function m (Q, p, ) which in the limit p/m «1
becomes m =[g'co/(4v)'] (2Q'/p), i.e., the only value of m(p, ) compatible with p. -0 is m- ~. No finite val-
ue of the quark mass is possible.

It is a delicate question whether the presence of the ultraviolet cutoff A can alter this conclusion. As
our treatment of the large-momentum region is provisional anyway a completely conclusive argument can
not be given but one can say something. Et is clearly meaningless to speak of a quark mass m»A as A

represents a maximum momentum, but we can imagine m being driven large until it becomes of the order
m. Write Eq. (1V) as
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dence of the ultraviolet and infrared cutoffs was to have been expected since as m —~ there ceases to be
a" region of momenta where all mass parameters may be ignored. " Consequences of this intriguing inter-
twining of the ultraviolet and infrared will be pursued elsewhere.

Let us now analyze Eq. (11) for the case of arbitrary X. Dropping the ultraviolet term which is the same
as above, we find

sg'c, (n2)'r(~} ' dz(1 z)"
(4v) V(1+X) ~ t

—p z +(m +p )z+p, (1 z) —k]&
~

~2 ~2'

Evaluating the right-hand side in the limit p, /m=& 1

gives

3g'c, r (X)
(4v)' r(1+x}

g2 X.

B(I+&, 1 2X), 0&X&-,'m'
(19)0' '

p.—c (~),
m

where B(1+X,1 —2X) is the usual B function, and

C (X}-=lim (1 —z/x)"
dz ~, with C(l) =z'/2.

1 —z!x+z' &

(20)

Clearly, for A. &-,', m (p)- ~ as y.—0 just as in our
test case A. =1. What is interesting is that for A&-,'

the infrared singularity is insufficiently strong to
overcome phase space and m is not forced to in-
finity. Under these circumstances the ultraviolet
region becomes at least as important in deter-
mining the physical mass, and an entirely dif-
ferent situation ensues. For the rest of this paper
we assume that X(g') & —.'.'

COMMENTS ON THE RESULT

Let us now ask for the probable stability of the
result (m -~ provided X & —,') if we were to have
more detailed information about the behavior of
the functions d(k'), I'"(p —k, p), and A((p —k)') in
the region of small k" near -t)'=rpg'. A glance
at Eq. (7) reveals that if only the ratio
1 "(p —k, p)/A((p -k}') remains finite as k"- 0,
then for A. &-,' the infrared divergence will obtain
and the self-consistent mass m will be driven to
infinity. Consider the contribution to the integral
in Eq. (7) from the origin in k space. It will be
(-p'=m')

r
(d~) m (n')'

(2x) m +p —2p k +k (k +p, )'+~

(g 2)X (dk) m 1
(2z)' —2p k (k'+g')" ~ '

which diverges as (I/p, )' ' as p, —0. Seen in this
light our result has a very simple, almost trivial
interpretation. The Yang-Mills propagator is made
sufficiently singular so that the contribution of
soft radiation of the self-mass is infinitely large.

That m = ~ is caused by an infrared effect will
be of importance when we begin discussing in the
next section which operators are expected to pro-
duce finite-mass states when acting on the vacuum
as opposed to the action of a single-quark operator
y(x) which only produces states of infinite energy.
Operators carrying color quantum numbers we
expect to suffer the same fate as the quarks them-
selves as the Yang-Mills fields couple universally
to color. If, however, an operator is neutral it can
be expected to decouple from the infinite-mass-pro-
ducing soft radiation and has a chance at least of
exciting only finite-mass states out of the vacuum.
This argument, by the way, would clearly be false
if m =~ had been caused by an ultraviolet effect.

The time has come to face up to two serious
problems our approach engenders.

(i) Having demonstrated that ~ - ~ the propaga-
tion of single quarks is described by a two-point
function G =0. How then are we to ever build up
higher Green's function which are not trivially
also equal to zero?

(ii) At the heart of our proposal is the require-
ment that the colored Yang-Mills gluon spectrum
extends down to zero mass and is sufficiently con-
centrated at M'=0 so that ).(g')&-,'. But does this
not require the existence of massless, strongly
interacting particles for which there is no experi-
mental evidence& If that were the case our scheme
would have to be rejected. One would have solved
the quark puzzle forcing m -~ only to be plagued
by massless gluons which could not be confined.
We feel that it would be being premature to con-
clude that this model predicts "zero-mass effects"
acting between physical hadrons until we have
clarified point (i) above as to the detailed nature
and inner structure of those states. If, for exam-
ple, we could show that during the collision of
colorless hadrons the radiation of zero-mass col-
ored bosons is dynamically suppressed then we
will have trouble neither with unitarity nor with
observation. We will come back to this difficult
point later and proceed now to the construction of
bound states.

BOUND STATES

We begin our discussion of bound states with the
fermion-antifermion Bethe -Salpeter' equation
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P

FIG. 2. Bound-state Bethe-Salpeter equation.

where -P' =~' are the eigenvalues we seek and

K is the Bethe-Salpeter kernel. In the approxi-
mation that K =ig'y" t, g'„'„y't, we can write (see

Fig. 2)

I' (p) = —ig2 t,y "G(-,P +p —k)I (p k)
(dk)

(2x)' '

x G( ',P +P k-)t, &'g& (k), (22)

r,"I(p) = -ig' , c,y "G(q, -k)r,'"(p -k)
(2v)

and

xG(Q- -k)r" g, .(k) (23a)

xG(q -k)y'g„„(k),
where Q, =+ &P+P. The only visible difference

(23b)

with a similar equation for the fermion-fermion
case. It is our purpose to describe how r~(p) can
exist (and be nontrivial) for fini te eigenvalues P-
even though the individual factors G(+ ,P +P -k-)
when taken alone are, in accordance with m -~,
equal to zero. This vanishing of individual factors
requires all Bethe-Salpeter equations for com-
posite operators to be homogeneous. Thus pn -~
has caused these equations to all become "of
bound-state type" as is to be expected if the phys-
ical constituent threshods recede to infinity.

The form of Eq. (22) provokes two questions:
(i) Upon writing in color indices rp~(P) =r«~6''

+'Q, I'„' '(t„) can one see any qualitative dis-
tinction between the singlet and octet vertices
directly from the equation?

(ii) How reliable does one expect the ladder ap-
proximation for the kernel to be? Is there a de-
gree of trustworthiness left in any information
obtained from such an equation?

These two questions are intimately related. To see
this we make explicit the dependence of g "'on the col-
or indices, i.e., g,"~ = 6, , g"'(k), and define the
group-theoretic factors P,', t't' =c,l; P,', t't't':c f I' One obtains

between Eqs. (23a) and (23b) is the appearance
of different effective coupling constants g'c, and

g c l in the singlet and octet channels, respectively,
and hence we must conclude that, in the ladder
approximation at least, octet solutions will appear
if singlet solutions do and vice versa. But color-
carrying representations were supposed to have
had infinite energy. %hat has gone wrong? The
culprit may be seen to be the ladder approxima-
tion itself. For imagine we could solve (23b) ex-
actly for a set of eigenvalues ( —P' =M') and let
$'„'~(X) be an effective wave function describing the
center-of-mass motion of one of these "particles. "
Our guiding principle has been that a state can be
long-lived only if it is an eigenstate of all dy-
namical mechanisms at work in the system. But
since P'„" describes a localized color carrier
(degree of localizability -M ') there must exist an
additional, uncontrollable, minimal (for wave-
lengths»M ') coupling of gI„'~(X) to the colored
gauge field. This is so because it is the defining
role of such fields to couple universally to color
wherever it be found (and in whatever form). In
the language of an effective Lagrangian one would
have

~.A
= q'„"H" -—.&„T'A„. ('„"-(X)+, (24)

1

where Il" are a set of matrices appropriate to the
spin of P~„'~(X) and one expects this Lagrangian to
be accurate for wavelengths (of A,")»M '. But
now the same scenario which forces the quark
mass m —~ causes an infinite infrared "renormal-
ization" of the octet eigenvalues (calculated in the
ladder approximation). To see this remember that
our quark equation was as in Fig. 3. Calling
---0 --- the propagator for /~~8~ one anticipates a
similar self-energy equation (Fig. 4) whose solu-
tion will inevitably require a shift of the eigen-
values M«~'- ~. The set of numbers (M,g play the
same role in the (I)'„'~ self-energy equation as the
bare quark mass m, in Eq. (2). Thus, once the
infinite-mass -producing mechanism is established
for the quarks themselves, it becomes universal
in the sense that any localized color state suffers
the same fate.

This is not so for the singlet eigenvalues (M«~').
Precisely because the corresponding states do not
carry color, they decouple from the long-wave-
length Yang-Mills degrees of freedom and escape
being infinitely renormalized. In this sense the
singlet eigenvalues fM«&g computed in the ladder
approximation can be expected to be roughly cor-
rect (apart from finite shifts which may come from
"short-distance" improvements of the kernel,
quark form factors, etc.) while the octet eigen-
values (M«&') so computed are totally unreliable.
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= ffl, +~+

FIG. 3. Quark self-energy equation.

Introducing the relative internal coordinate x"
(conjugate to p") by

e, (x)=,e"*e, (p)
(dp);, .
2)t ' (26)

we can write Eq. (25} in internal coordinate space
as

[m+y (2P '+p)1+ (p)x[ m+y (-2P+p. )']

= -ic,g'8„, (x)y"Cp(x)y", (27)

where we have replaced G '(p) by m +y p and g
= —i(S/8 ).xIn terms of quark field operators
it can be shown' that

(28)

Now we are searching for a meson wave equa-
tion that is implied by the specific quark-quenching
mechanism proposed here. As written, Eq. (27)
still retains explicit dependence on m (or what is
the same thing on the infrared cutoff t(, } and is,
therefore, unsatisfactory. We now define ac-
ceptable hadronic states to be those that survive
the limit p, —0 for it is precisely these states for
which the dependence on the quark mass drops
out of the equation and whose scale of length will
be set by 0 ' and not by m '. Since

fF+h +
ll)

FIG. 4. Bound-state self-energy equation.

In graphical language this means that corrections
to the kernel. coming from graphs of the form
shown in Fig. 5 are expected to be crucial in the
octet channel as they form the basis for the self-
energy process in Fig. 4. In the singlet channel
the above arguments suggest (but of course do
not prove) that as far as the gross features of the

spectrum s&» [ are concerned, the process sche-
matized in Fig. 5 may be ignored. From now on
we concentrate on the singlet equation (23a).

It is convenient to define a wave function (ks(P)
by (kp(p) =G '( ', P+p-)I'p(p)G '( ,'P+p) -so-that Eq.
(23a) becomes

G '(-'P+P)4 (P)G '( ', P+P-)-

= -ic,g'
2 ),y" 4 (P -k}y"g„„(k) . (25)
(dk)

FIG. 5. Typical process contributing to the bound-
state self-energy of Fig. 4.

(dk}, )„.1 Q'""" . (2.) "'"k"'
x (g"' +gauge terms),

the right-hand side of Eq. (27) also depends on t). ,
but on1.y in an innocuous way as the limit p. —0
there is smooth. This is not so on the left-hand
side, of course. To understand physically what
must happen in the limit gpss

=~ recall the meaning"
of the relative time variable (in the rest frame of
P") introduced in Eq. (28). At t = —xo/2 the oper-
ator y acts on the vacuum and produces a "parti-
cle." After the elapse of x seconds the operator
y acts to produce the companion "antipartic1. e";
the two objects proceed then to interact and form
a bound state. The point we wish to stress is that
x' measures the length of time one particle can
exist by itself &efp&e its bound-state partner is
even created. There is no logical objection to
this possibility when the constituent mass is finite.
However, as m- it becomes impossible to create
one of the particles alone, thus leading us to ex-
pect that in some sense Cr(x) = 0 unless xo = 0 or,
said another way, that the internal space becomes
essentially three -dimensional.

To see how this can come about in detail, in-
troduce for an arbitrary vector V" its projection
orthogonal to P" by

Vu= u' — V VP=0p2

and consider the left-hand side of Eq. (27) written

P)m+y P +y P+ ,y P-"
P2

~ o,(()( .,p. .)-:,~ .. ()))(p p)
p2

As the eigenvalues of the matrix y P/p2 are +lif '

we see that if only it is required that -p P-Mm
we have a good chance of eliminating all explicit
~ dependence. For values of P" not satisfying
the relation, (kr(P) =0." This hunch is corrobo-
rated by inspecting

4 (x)=,4 (P)exp(iy x}exp(ix P)(dp); . (p P)

(32)
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If the integration is made to extend over only those
p" for which p—P-Mm-~ (-P'=M' fixed) we
must have 4j, (x}=0 unless x P =0. This is the
covariant generalization of x =0 in the rest frame
of P". The matrix character of Eq. (31) unfortu-
nately makes this passage to the limit a bit more
delicate. Not only do we anticipate a support con-
straint on 4~(p} but also restrictions on the vari-
ous spins and parities as well. If we expand

n =e'1+ e'y +e'y~+e"y~iy +-,'e' ~~

it can be shown that in the limit yn-~ 4 =4"„=4„,
= 0, the only surviving amplitudes being pseudoscalar
and vector. The tedious details of the derivation
will be published elsewhere. " Suffice it to say
that the solutions to Eq. (27) take the form

4~(x) = exp( im-T)4j, (7), i =P, V

where X P = 0 by definition and the covariant prop-
er time r is given by 7 = —(x P)/M Q.(X) and

Q„(X) satisfy
C

2

('M'+p' )0 (&) = '; 8 (&)[g" @ (7)], (34a)

(-,'M'+ p'}y'„(x)
2

= —'.—9 8(~)[g"'y"„(x) -g„"4"(~) -g'„p' (~)]

(34b)

supplemented by P"P„=p" $„=0. It is easy to
show that if we reassemble (I) and Q„ into the ma-
trix Q = Q y, + Q„y" that (34a) and (34b} are de-
rived as appropriate projections of the single ma-
trix equation

(:.'M+y p)4(~)(-', M+y p)= 'g e.e(x}y y(~}y' .
2

(35)

Since P x =P x =t) x and y P =0 one has

three-dimensional will be important for eliminat-
ing the "timelike ghost" problems usually associ-
ated with Bethe -Salpeter' equations.

(ii) The factors y P +-', M may be interpreted as
defining what is meant kinematically by a quark
inside a hadron. The eigenvalue Af refers to the
state in which the quark is propagating. This "in-
verse propagator" has, of course, no meaning
except when applied to a color-singlet meson wave
function. Nevertheless, it is instructive to ask
whether the factor y p + 2M can have any zeros, as
the zeros of inverse propagators specify energy
and momentum relationships for physical asymp-
totic states. For definiteness ask whether

—,'M+y p=0

has any solutions. If so, then

""=0
p2

(37)

(38}

By assumption -P' =~'& 0 as lightlike solutions
would not be relevant for hadrons; but the com-
bination p' —(p P)')P' = p is positive definite.
Thus there can be no solution to Eq. (38) for real
mementa. Physically this means that our quark
propagators describe excitations which can never
be forced onto their mass shell no matter how
much momentum one expends although under cer-
tain circumstances they may act as if they "had a
mass equal to 2 of the meson mass. " This fact
is consistent with m —~.

(iii) The absence'4 of constituent thresholds
promises a purely discrete spectrum of eigen-
values( P't which sh-ould be welcome for iden-
tification with Regge (?) families of states.

(iv) Equations (34a) and (34b) reduce to equations
of Schrodinger type in the rest frame of P"

C
2

V'+ '. g ~g ~(x) y (x) =--', M"P (x).
2

1 „8 1 „9—.P —4p(x) = —.y" 4p(&)
2 ~X 2 ~X

(36) (39)

Equation (35) is our proposed covariant wave equa-
tion for the mesons.

It is apart from our main purpose in this paper
to begin constructing solutions to Eqs. (34a) and
(34b). This will be done in a sequel to the present
article. " We feel, however, that several attrac-
tive features warrant specific mention:

(i) The meson wave equation is essentially three-
dimensional. The limit rye -~ has caused what was
an internal four-dimensional Minkowski space with
indefinite metric to shrink to a three-dimensional
Euclidean space with positive-definite metric.
The vector space (x ") is replaced by a hyper-
surface in that space characterized by x P =0.
That the internal configuration space has become

This essentially nonrelativistic-looking dynamics
taken together with only Q„and Q being nonzero
dovetails nicely with the prediction of the naive
quark model that the expected families of states
are to be (J =0 ', 1', 2 ', . . .) and
(j' c = 1,2",3, . . .}. Note also that the
eigenvalues of this equation are the squares of
the meson masses.

COMMENTS AND PROBLEMS

Before we can assess the implications of this
model for deep-inelastic scattering, form factors,
e'e annihilation into hadrons, etc. , it is neces-
sary to study the solutions to Eq. (35) in detail.
This will presumably also shed light on the dif-
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ficult question of whether there are long-range
forces, due to the underlying mass-zero spectrum
of the gauge fields, capable of acting between
colorless hadrons. We emphasize that this ques-
tion cannot be settled by group-theoretic argu-
ments alone, but rather only by detailed examina-
tion of the dynamics, i.e., Eq. (35). Re-expressed
in the language of "unitarity" the question devolves
on whether or not the space of color-singlet states
is complete. At this stage we can only hope that
it is.

A related question concerns possible ways of
determining the function X(g'). At our present
stage of development we have been content to re-
gard A. as a phenomenological parameter. But
being that parameter which fixes the strength of
the singularity in the gauge field two-point func-
tions at k'=0 it must be determinable by self-
consistently solving the Schwinger -Dyson equa-
tion for the gluon propagator. As any such pro-
gram necessarily must come to grips with the
fierce self -coupling of the pure mass -zero Yang-
Mills system, this poses quite a technical chal-
lenge. It seems unlikely, however, that X(g')
considered as an analytic function of g' would have

a behavior as to make Rek(g') &-', impossible.
Thus it is quite natural to assume that for some
g' we can arrange X(g') & —,'. Whether that g' is
"small" or "large" is a question only to be an-
swered after solving the giuon self-energy integral
equations.

Equation (35) bears much in common with the
phenomenological equation employed by Feynman,
Kislinger, and Ravndal" to analyze low-energy
baryon and meson data. We see now that the ad
hoc "throwing away of the timelike excitations"
advocated by these authors is intertwined with the
very problem of quark confinement itself. This
suggests that —taken from a purely phenomeno-
logical point of view —one should investigate clas-
ses of equations where the confined-quark dif-
ferential operators are given by y p„— instead of
y.p„and the meson and baryon wave functions be-
come Q(x») and tt(x», X», 7»), respectively. Such
a program will occupy us for some time to come.
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