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An analysis of widths of resonant states supports the hypothesis that particle lifetimes are quantized in units
of 2 or possibly ~ the lifetime of the p meson: (4.40 + 0.06) X 10 "seconds. The probability that
the observed regularity in resonance widths (lifetimes) is simply due to chance is estimated to be less than
2 X 10 '. Possible ramifications of this result are considered.

Evidence is presented for the quantization of
particle lifetimes, based on an analysis of the
widths of resonant particle states' using the
Heisenberg uncertainty principle. Since reson-
ances having full widths, I', of 300 to 400 MeV
are well established, the uncertainty principle
implies that the shortest particle lifetime known
is approximately 2 x 10 "seconds, the lifetime
of a 300-MeV-wide resonance. A value half as
great could be established if one can show that a
possible 600-MeV-wide resonance, i.e., e, can
only be parametrized by a single pole, which
is now uncertain. '

Using the uncertainty relation, we have cal-
culated the lifetimes of all resonant states listed
in the 1974 Table of Particle Properties. ' Since
there are no resonances definitely established as
having a width exceeding twice the p width, and
since the p width is very well measured, we cal-
culate lifetimes in units of half the lifetime of the

p meson, i.e., T=2I' /I', where we use I' =149.8
MeV as the average full width of the charged and
neutral p mesons. Since many resonance widths
have a large experimental uncertainty, ~, we
have calculated asymmetric errors in lifetime,
AT, and hT, rather than use first-order error
propagation. However, in those instances where
it is simplest to deal with a single value for the
uncertainty in lifetime, we use dT = ,'(dT, + b, T ). -

In Fig. 1, we display all resonant widths listed
in the Table of Particle Properties' which are
well-measured enough to have an uncertainty in
width, hI' listed in that table and which have
lifetimes less than 9.0. Each resonance is re-
presented by a point in Fig. 1 whose coordinates
are T and 6T. The zig-zag line which touches
the T mais at integral values serves to divide the
plane into two regions. Data points above the
zig-zag line correspond to resonances having
lifetimes, T, which are closer to integral values
than their measurement uncertainty, 6T. From
this figure, there does not appear to be a single
resonance which is particularly inconsistent with
having an integrally valued lifetime, nor are

there any inconsistencies among the narrower
resonances with T & 9.0. Since the resonances
with large uncertainty in lifetime are of little
help in testing the quantization hypothesis, we
tabulate in Table I only those cases for which
AT (0.32, i.e. , those below the horizontal line
in Fig. 1. The choice of 0.32 is arbitrary and
does yield a conservative result, insofar as all
but one of the data points having uncertainties in
the range 0.32 & T& 0.50 are above the zig-zag
line, giving some additional support to the quan-
tization hypothesis.

If particle lifetimes actually are quantized, and
the shortest one is half of the p lifetime, then
each of the lifetimes listed in Table I should,
within the limits of the experimental errors, be
an integer. We note that with the exception of
s(16'lO) and g(1680), this condition is well satis-
fied. The g(1680) has a lifetime which comes
extremely close to satisfying this condition, '
i.e., 1.65+ 0.33 is only a hair below 2.00. This
discrepancy in the case of the h(16VO) can be
explained in terms of the translation from an
experimental error expressed simply as a range
of values to one expressed as a ~ error. In view
of the possible large systematic errors in the
determination of isobar widths, 4 it is clearly not
warranted, for example, to express the d, (1650)
I' = 140 MeV (140 to 200) as simply I'= 140'0~ MeV,
meaning zero error on the low side. Similarly,
for the 6(16VO), the width I"=260 MeV (190 to 2'70)

gives a highly skewed error in b, (1670) lifetime
only if the location of the width very close to one
end of the specified range is taken to literally
mean I'= 260",, MeV. A symmetric error cover-
ing the same full range, i.e. , I'= 260+ 40 MeV,
would yield a lifetime for A(1670) equal to an
integer within the experimental error: 1.14+ 0.15.

Among the resonant states not listed in Table
I (all of which have larger uncertainties in life-
time) only one, 6(1950), has a lifetime which is
not equal to an integer within the given experi-
mental error: 1.30', ~~. However, the 1.3-stan-
dard-deviation difference from an integer for the
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FIG. 1. Resonance lifetime, T =2I p/I', versus uncertainty in lifetime for all resonances in the Table of Particle
Properties which are well-measured enough to have an uncertainty in width, LQ, listed in the table, and which have
lifetimes less than 9.0. Data points which lie above the zig-zag line correspond to resonances having lifetime, T, which
are closer to integral values than their measurement uncertainty, bT. The uniform scale in lifetime, T, corresponds
to the nonuniform scale in resonance width, 1, indicated at the top of the figure.

b, (1950) is hardly significant.
Since the criterion for listing resonances in

Table I is based on the uncertainty in computed
lifetime, resonances with a large or possibly
unknown uncertainty in width have not been listed.
While e has been omitted from the table on this
basis, it would be somewhat surprising if its
width, I'~ 600 MeV, is actually consistent with
300 MeV. Should it be clearly established that
e or other states can only be described by a sin-
gle Breit-Wigner resonance of 600-MeV width,
this would not necessarily conflict with the hypoth-
esized quantization of particle lifetimes noted
here, but it might simply require the smallest
lifetime to be half as great as the value listed,
i.e., —,

' the p meson lifetime.
One noticeable thing about many of the lifetimes

listed in Table I is that they are in fact too close
to being integers, given the size of the experimen-

tal errors. One is tempted to attribute this to a
possible tendency of experimenters to quote re-
sonance widths as round numbers, such as 50,
100, 150 MeV. However, an examination of the
values given by individual experiments in the
data card listings' shows this not to be the case,
at least as far as the mesons are concerned. The
widths listed in Table D are the exact weighted
averages of many individual experiments given in

the data card listings. For those cases, e.g. ,
P(770), K~(1420}, A~(1310}, where widths are
listed in Table I as round numbers, the reason
is that the weighted average of many experiments
which are individually not round numbers turns
out to give a result very close to a round number,
as indicated by the values in Table II. Hence, it
appears that the "preference" for round numbers
is due to the data themselves rather than the
biases of individual experimenters or that of the
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TABLE I. Full widths and lifetimes of resonances
listed in the Table of Particle Properties (1974), which
have an uncertainty in lifetime of 0.32 or less. The life-
times are expressed in units of half the p meson lifetime,
i.e., &=2I&/I', where I

&
=149.3 MeV.

TABLE II. Full widths and lifetimes of meson reso-
nances listed in Table I obtained from parameters given
on the Particle Data Group data card listings. The values
in the table are the combined averages for all charge
states and decay modes of each resonance, and are in
units of half the p meson lifetime.

Resonance Full width (I ) in MeV Lifetime (T'+ ~~+)

Resonance Full width (I') in MeV Lifetime (T+ ~~+)
A(2200)

b,{2420)

b,{1910)

6(1670)

g(1680)

f (1270)

p(770)

~(1675)

b (1650)

E*(1420)

A2(1310)

D(1232)

K+(892)

300 (260 to 330)

300 (250 to 350)

300 (200 to 340)

260 (190 to 270)

180+ 30

170+ 30

150+ 10

142+ 20

140 (140 to 200)

100+ 10

100+ 10

98.8+ 3.4

49.8+ 1.1

0.99", ,",

0 99+-o.i4
0,99 0'gp

1 14+-o'.o4v

-0,24

1.75 0'26

g8+ 0.14

Qg+ 0 ~ 34-0.26

2 12-0.64

g7+ 0 ~ 33

g7+ 0 ~ 33

3 01-o.io
g7+ 0,14

Particle Data Group.
If the true values of the particle lifetimes are

indeed integral, then an alternative explanation
of the values listed in Table I being "too close"
to integers would be that many of the listed
experimental errors have been overestimated.
When the Particle Data Group finds that there
appear to be inconsistencies between some of the

experiments used in computing an average value
for a resonance parameter, then it lists a value
for the error in the parameter in the Table of
Particle Properties which in "only an educated
guess. "' The errors listed in the Table of Par-
ticle Properties (Table I) are thus often substan-
tially greater than the errors given on the Data
Card Listings' (Table H). However, this practice
of enlarging the experimental uncertainty is
followed by the Particle Data Group even when
the individual experiments agree quite well, e.g. ,
in the case of p(770), &u(1675), K"(1420), so as
to allow for possible systematic errors.

Should such systematic errors not be present,
or be averaged out, then this conservative ap-
proach would mean that the measurement errors
of a number of states listed in Table I are indeed
overestimated.

The widths listed in Table II are obtained using
the average widths given in the data card listings,
after the average values for different charge
states and decay modes of the resonances listed
in Table I are averaged. In most cases the values

g(1680)

f (1270)

p(770)

~(1675)

K*(1420)

A2(1310)

K*(892)

152.2+ 10.7

172.5+ 8.4

149.3+2.2

142.1+ 14.6

102.4+ 4.1

100.5 + 2.5

50.2+ 0.8

g6+ 0,15

1.73-o.'os+ 0.09

2 00

2 10+0~ 24

2.92+ '

g7+ 0 ~ os

5.95", ,",

for the various decay modes and charge states are
quite consistent, as they should be. In some
cases, e.g. , g(1680), the values are somewhat
inconsistent, though not extremely so.' In any
case, it would be expected that in the absence of
known systematic errors the average over decay
modes and charge states yields a more reliable
width estimete than any individual value.

In view of the greater systematic error in isobar
width determinations noted previously, we only
show the meson resonances in Table IL We note
that errors listed in Table II are significantly
less than those in Table I, making the closeness
of many of the lifetimes to integral values even
more striking. The one exception is f(12VO),
which is no longer apparently consistent with
having an integral lifetime. However, an examin-
ation of the separate experimental determinations
of the f(1270) width used in finding an average
value reveals that out of eleven experiments, the
one' using a different technique from the rest
(automatic spark chambers), gives a value some-
what inconsistent with most of the others. Since
this experiment is also listed as claiming the
smallest error in f(12VO) width, its effect on
the average is quite significant. If we compute
an average not including this one experiment,
the value for the f(1270) width, 163.5+10.4,
yields a lifetime which is less than 1.5 standard
deviations from being an integer: 1.83,.~.

Since some of the entries in Table II may have
unknown systematic errors, we shall obtain a
conservative estimate of the probability of the
observed regularity being due to chance using
only the entries in Table L However, since the
lifetimes in Table II, with the exception of f (12VO),
are consistent with integral values despite the
smaller experimental errors, we may regard
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Table II as giving some amount of additional
support to the quantization hypothesis.

In order to determine the probability that the
lifetimes in Table I are all close to integers
simply due to chance, we must not of course in-
clude p(770), since our system of units requires
this to be close to 2.00. The probability that
the closeness of the twelve other lifetimes to
integral values is due simply to chance is the same
as that of twelve random numbers being consis-
tent with integers within the listed experimental
errors for lifetimes. This is given by the product
of the twelve experimental errors, i.e.,
p= g& nTj, where nTj is the full (upper plus lower)
error for each lifetime. This yields a probability
of 7x 10

In view of the importance of determining the
probability of obtaining such a regularity as that
in Table I by chance, we calculate the probability
against chance by a second independent method.

Let us take the lifetimes listed in Table I modulo
the nearest integer, i.e., 0.01, 0.01, 0.01, ... , 0.03.
Given that our system of units requires one, i.e. ,
p(770) to be integral, the remaining twelve values
serve to define a point in twelve-dimensional
space whose distance to the origin, R, given by
R =0.01 +0.012+. ~ ~ +0.032= 0.2306, is a measure
of the deviation of the set of lifetimes from inte-
gral values. The probability that a random set of
twelve numbers would give values as close or
closer to integral values as those actually found
is equal to the ratio of the volume of a twelve-
dimensional sphere of radius R to the volume of
the twelve-dimensional unit cube, i.e., P
=2m "~ fl"/gl'(zs)= 2x 10 ', where n=12, and
R'= 0.2306. The proof is simply based on the
fact that twelve randomly generated fake life-
times give points uniformly distributed inside
the twelve-dimensional unit cube, and that only

N (2220)
t5 (2420)
El (1910)
6 (1670)

4J (1675)

g
P

h, (1650)

f
(J (1675)

A (1232)
Ap6 (1650) Ks (1420)

h(12M)
Ag
Ks'(1420)

1

N (2220)
6 (2420)
Q (1910) f
Zi, (1670)

2fp /l

FIG. 2. Ideogram corresponding to the entries in
Table I, for which each entry is represented by an
equal-area Gaussian peak. The central value of each
Gaussian corresponds to a particle's full width and the
standard deviation of each Gaussian corresponds to the
particle's uncertainty in width. The Gaussian distribu-
tions in energy have been transformed to units of time
using the relationship: T =2I'&/I".

2rp /I

FIG. 3. Ideogram corresponding to the entries in
Table II, together with the baryon entries in Table I,
for which each entry is represented by an equal-area
Gaussian peak just as in Fig. 1. Two particles not
appearing in Table II [B(1235) and E(1420)j, due to the
relativity large measurement uncertainty in their full
widths, have also been included in Fig. 2. The dotted
portion of the curve shows the ideogram without the
8 (1235) contribution.
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those sets of fake lifetimes closer to integers
than the actual set would have a smaller value
of R, and would therefore lie inside a sphere of
this radius. We note that in obtaining a value
for R', and therefore P, the fact that "round
numbers" were used for some of the widths makes
very little difference in the result, since the
value of R2 is dominated by the g(1680) and f(12VO)
lifetimes, and it would not be significantly altered
if the "nonround" values of Table II were used for
p(770), K*(1420), A,(1310), and other widths.

Of the two estimates of the probability against
chance it would be prudent to use the larger value,
2&10 ', which still makes the chance hypothesis
somewhat unlikely, and thereby gives strong
support to the quantization hypothesis. However,
we recognize the arbitrary nature of the assump-
tion of a uniform random distribution of lifetimes.
It is quite possible that some other random distri-
bution would be consistent with the experimental
results with a much higher probability than 2x10~.
Thus the probability estimates should not be taken
as a precise indication of the strength of evidence
for the hypothesis. One alternative ad hie hypoth-
esis consistent with the observed regularities in
Table I, i.e. , that resonance widths are integral
multiples of about 50 MeV, is refuted by the ex-
istence of many resonances having widths below
50 MeV.

A graphical display of the data in Tables I and
II may also be of some use in giving one an over-
all impression of the statistical significance of
the result. The curve in Fig. 2 is an ideogram
corresponding to the entries in Table I in which
a number of equal-area Gaussian peaks having
central values and widths corresponding to each
particle's full width and uncertainty in width have
been transformed to a lifetime distribution, based
on the relationship: T =21'z/I'. In Fig. 3, which
is an ideogram corresponding to the entries in
Table II, we also include two additional particles,
B(1235) and E(1420), which were omitted from
Tables I and II owing to the criteria used in elim-
inating particles with large measurement uncer-
tainty. The baryon entries in Table I have also
been included in Fig. 3. While the B(1235) peak
in Fig. 3 lying between lifetimes of 2.0 and 3.0
is potentially fatal to the quantization hypothesis,
we note that the value of the B(1235) width from
the Table of Particle Properties, 120' 20 MeV,
has a sufficiently large uncertainty so that this
possible conflict can only be resolved if more
accurate values of the 8 width are obtained.

It is interesting to note, however, that the
B(1235) width listed in the Data Card Listings
would be significantly more consistent with an
integral lifetime if the one experiment with a

very a.symmetric uncertainty in width.
MeV, is averaged in with the others in a way that
accounts for this asymmetry. In this case, the
weighted average of the B(1235) width measure-
ments would be 110.3+ 7.1 MeV rather than the
listed value 118.3+ 8.1 MeV.

Further tests of the hypothesis of quantization
of particle lifetimes could involve the measure-
ment of new resonance widths or a reduction of
the experimental uncertainty in existing resonance
widths [particularly f(1270), B(1235), and E(1420)],
either based on new experiments or a more care-
ful analysis of existing data. Finding only one
lifetime which is definitely not a multiple of T,
would disprove the quantization hypothesis,
although one might nor be able to eliminate the
possibility of two overlapping resonances simu-
lating a single one with nonintegral lifetime.

Defining the shortest particle lifetime as one
"chronon" we may use the lifetime of the p(770),
the resonance with the smallest uncertainty in

lifetime, to obtain for the chronon a time,
T0= (2.20+0.03) x 10 " seconds, which corre-
sponds to the set of allowed full widths: 298.6,
149.3, 99.5, 74.6, 59.7, 49.8, . . . MeV.

It is clear that any particle, e.g. , A', for which
a direct lifetime measurement can be made lives
for such a large number of chronons that a direct
test of quantization of its mean life is not possible.
In the present work we only examine evidence for
the quantization of particle mean lifetimes. For
a short-lived particle such as p(770), for which
each individual p event has an energy known much
more accurately than I'~, the uncertainty principle
requires the uncertainty in individual p lifetimes
to be much greater than the p mean lifetime. Thus,
it is not possible to observe a distribution of in-
dividual particle times in such a case. Neverthe-
less, one may conjecture that each individual re-
sonant particle also lives a quantized proper time,
or that time itself is quantized in units of chronons.
If this is the case, then the distribution of individ-
ual particle times would apparently have to be
such that both the mean and individual lifetimes
are integral. An additional constraint on the
nature of the particle lifetime distribution follows
from the Breit-Wigner shape of the resonance.
Should it be established that no time distribution
is consistent with both of the above constraints,
this might indicate that individual particle life-
times are not quantized, though this would not
negate the hypothesis of quantized mean lifetimes.

While there have been some attempts to form-
ulate theories in which time is quantized' ", there
are additional theoretical difficulties aside from
the one mentioned above. In particular, a chronon
on the order of 10 ' seconds would apparently be
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several orders of magnitude too large to be con-
sistent with the present experimental lower limit
set on the quantum of distance. " On the other
hand, it is possible that our reasons for believ-
ing that the obvious relation holds between a quan-
tum of distance and a quantum of time may be
invalid. " One may also speculate that the quanti-
zation of time may play a significant role in our
understanding of macroscopic phenomena involv-

ing extremely intense gravitational fields, e.g. ,
black holes, as well as for elementary patricles.

I would like to thank Dr. Joseph Ratau for start-
ing me thinking about an experimental test of the
quantization of time by asking me what it would
empirically mean if time were quantized. I am
also grateful to Dr. C. ¹ Yang for his illumin-
ating suggestion. "
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