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In this paper we present the details of our sixth-order perturbation theory calculation of the high-energy
behavior of Compton scattering near the backward direction and pair annihilation. For each of these matrix
elements, a formula is obtained not only for the leading term, which is real, but also for the leading imaginary
part. Momentum-space techniques are used throughout. In particular we impose a cutofF in the transverse
momentum and then compute the behavior as s (the square of the center-of-mass energy) ~ oo ~ With this

procedure there are 3 Feynman diagrams which contibute to the leading real part. These 3 diagrams each give

a factor of ln's and an integral over transverse-momentum space. Each of these 3 transverse integrals
separately diverge as k ~ oo but when added together the k ~ oo limit may be taken and the result agrees
with the result previously obtained by Feynman parameters. To complete the evaluation of the leading

imaginary part a fourth diagram is needed.

I. INTRODUCTION

In this paper we consider in sixth-order pertur-
bation theory the processes of Compton scattering
near the backward direction and pair annihilation
in the quantum field theory of vector mesons of
mass X (called photons, y) interacting with a con-
served current of spin- —,

' fermions of mass m
(called electrons and positrons, e and e+). The
kinematics of these two reactions are given in Fig.
1. We will study these two related processes in
the high-energy limit, where

s =(r, +r, )'-~
and

able) both across the positive-s axis and across
the negative-s axis for sufficiently large ~ s~ (in
contrast to the fourth-order annihilation amplitude
which only has a cut for s&4m'). We are inter-
ested in both of these discontinuities, and to study
them both we need two pieces of information as
s-~. Loosely speaking, we take these two pieces
of information to be the real and imaginary parts
of the scattering amplitude (where for this purpose

t =(2r, )'~0 (1.2)

is fixed. [We use the metric (+- —-).] In addition
we always restrict ourselves to the case where
the vector meson is polarized in the transverse
direction in the center-of-mass system.

In this limit the sixth-order amplitudes are
known' to have the order of magnitude s'~'ln's.
The factor of s' ' arises from the fact that the
electron has spin 2. It comes from the spinors
of the initial and final electron in the case of back-
ward Compton scattering and from the spinors of
the initial electron and positron in the case of pair
annihilation. Because this factor of s' ' is kinema-
tic in origin and is present (implicitly via spinors)
in every amplitude we write down, we will sup-
press it in all further discussions.

The sixth-order pair-annihilation amplitude
(after the kinematic factor s' ' is removed) has a
discontinuity in s (considered as a complex vari-

BACKBOARD CONIPTON SCATTERING

PA IR ANNIHILATION

FIG. 1. Kinematics of the reactions of Compton scat-
tering near the backward direction and pair annihilation.
The incoming particles are on the left-hand side and the
outgoing particles are on the right-hand side.
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r, =((u+O(1/(u), (o, Q),

r, =((u+O(1/(u), —(u, o),

r, =(O(l/&u), O(1/&u), r, ),
and the invariants are

(1.3a)

(1.3b)

(1.3c)

and

S 2/3 'g2

- (2u))' (1.4)

all spinors and y matrices are treated as real).
It is the purpose of this paper to study in sixth

order both the real and imaginary parts of the
scattering amplitude for Compton scattering near
the backward direction, or equivalently that of

pair annihilation. The real part for both process-
es is of order ln's and the imaginary part is of
order lns. The physics of our result has been dis-
cussed previously. ' Here we restrict our atten-
tion solely to the details of the calculation.

The real parts of these amplitudes have been
studied previously" by use of Feynman parame-
ters. The procedure of Ref. 1, although correct,
is technically very cumbersome to use and it
would be an act of madness to carry out such a
calculation to higher orders of perturbation the-
ory. However, we have also seen that in the case
of elastic scattering that momentum-space tech-
niques' prove to be much more efficient in extract-
ing the leading-order asymptotic behavior than
were the Feynman-parameter methods. ' There-
fore, since our goal is to extend the previous work
to higher orders we will in this paper, in addition
to computing the leading imaginary part, redo the
calculation of the real part by use of momentum-
space techniques. We will present sixth-order
calculations in considerable detail. In suceeding
papers we will use these techniques in a more
summary fashion.

The utility of momentum space stems from the
fact that individual Feynman diagrams have an
asymptotic behavior which is larger (ln's in sixth
order) than that of the complete amplitude itself
(ln's in sixth order). When using Feynman para-
meters there is not much we can do about this.
However, in momentum space, calculations may
be simplified and the number of contributing dia-
grams reduced by adopting the following proce-
dure. First of all, we use the coordinate system
in which the spacial component of r, has magni-
tude & and lies in the direction of the z axis while
the spatial component of r, also has magnitude +
but lies in the direction of the negative-z axis.
We are interested in the limiting behavior as cu

Then

[We use the notation for components of a four-vec-
tor p of (p„p„p~),where p, is a two-vector in the
x-y plane. ] Secondly, in terms of this coordinate
system all integrals over x and y components of
the momenta [called collectively transverse (&)

components] are cut off at some k, „

independent
of cu. For each separate diagram the s-~ behav-
ior with the cutoff will in general not be the same
as the behavior without the cutoff. In particular,
for sixth order no diagram will have a cutoff s-~
behavior of order greater than ln's. Only after
the diagrams are added together is the cutoff al-
lowed to go to infinity.

This procedure involves, in effect, an inter-
change of the limits lim, „and lim~ „.Since
we do not have a mathematical proof that this in-
terchange does not affect the high-energy results,
it is a further purpose of this paper to show that
this method of calculation does indeed give the
same asymptotic behavior for the real part as
was previously calculated using the more rigor-
ous Feynman-parameter method. This gives us
confidence that the same interchange of limits will
lead to the correct asymptotic behavior in higher
orders of perturbation theory.

The outline of the paper is as follows. In Sec. II
we provide some orientation by calculating the
leading real and imaginary parts in the fourth-or-
der perturbation theory. In Sec. III we give a short
discussion of the three diagrams that contribute to
the leading real part in sixth order. The leading
real and imaginary part of these diagrams are
then individually computed in Secs. IV, V, and VI.
We then add these three amplitudes together in
Sec. VII. In Sec. VIII we introduce a device called
a "momentum-flow diagram" which will prove to
be of great utility in simplifying the labor of the
momentum-space calculations. In Sec. IX we use
these momentum-flow diagrams to compute the
additional diagram needed to obtain the complete
leading-order behavior for the imaginary part of
the amplitude. The final answer is given by (9.21).

A word is needed about our notation. The ampli-
tude for pair annihilation is denoted by 9R„„(s,r, ),
while the amplitude for backward Compton scatter-
ing is denoted by K»(s, r, ). An amplitude in the
[2(n+1)]th order of perturbation theory is referred
to as 5g&", (s, r1) and 5Q„",(s, r, ), for pair annihila-
tion and backward Compton scattering, respective-
ly. Finally we define the symbol + to mean that
as s-~ with t fixed in the [2(n+1)]th order of per-
turbation theory, the real parts of order ln"s on
both sides of the symbol are equal and the imagin-
ary parts of order ln" 's on both sides of the sym-
bol are equal. For example, in [2(n+1)]th order

t- —4r (1.5) ln"s =' ln"s + ln" 's (1.6)
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but it is not true that

ln"s = ln"s + iln" 's . (1.7)

r~-r) ~ r, -r, -k

II. FOURTH-ORDER PERTURBATION THEORY

For orientation we will, in this section, study
the behavior of the fourth-order Feynman diagrams
of Figs. 2 and 3. These are the only fourth-order
diagrams that contribute to leading order as s -~.

First consider the pair-annihilation diagram of
Fig. 2. This has the amplitude

)~ -2r —k)

—r -r3 1
-r~-r) -k

FIG. 2. The only fourth-order Feynman diagram for
pair annihilation that contributes to leading order in the
limit tr2+rs)2=s

where

Df' =(k' —)2+is)[(r, x, ——k)' —m'+i&]

x [(2r, +k)' —m'+ ie]
x [(r, +r, +k)' -m'+ ie]

and

[N&'']„„=v(r, +r, )y, ( y', —y', —g-+m)

xy„(-2y',—g+m)y,

x ()., -)'„—)(+m)y, u(r, -r, ) .

(2.1)

(2,2)

(2.2)

dkpdk3 =
& dk, dk

%'e note that

120 +f23

= 2(d+0 )

(2.4c)

(2.5a)

(2.5b)

(2.6a)
To asymptotically expand (2.1) when s is large,

we first consider the integral with [NI'l]„„.replaced
by 1. This integral is conveniently studied when
&u is large by introducing' and

1
r3 = 2(g) +0 (2.6b)

k+= k, +k, ,

k =kp —k3 )

with

(2.4a)

(2.4b)
(2.7)

With these coordinates we may rewrite (2.2) as

Df'~ = (k+0 —k~' —X'+ is)[(r,+-r„—k+)(r, r, —k )-(-r~+k~)'-m'+ie]

x[(2y, ++k+)(2x +k )-(2r~+k~)' —m'+it][(r, ++r, ++k+)(r, +r, +k ) (r~ k~+)'-m-'+i@],

which, using (2.5)-(2.7), may be approximated as

D&'~-D&'& = (k, k -k,' —A.
' ie)+[(k, 2u&)k --(r, +k, )'-m'+ i~]

x[k, k -(2r~+k~)'-m'+le][k, (2sy+k )-(r~+k~)' m'+ie]. -

(2.8)

(2.9)

After this basic approximation we evaluate the k, integral by means of contour integration. The zeros
of (2.9) are at

k+ = k '(k~'+ P.
' —ie),

k, =2ru+k '[(2r~+k~)'+m' —ie],
k, = k '[(2 r~+k~) +m' '—i&],

and

k+= (2&v+k ) '[(r~+k~)'+m'-ie].

(2.10a)

(2.10b)

(2.10c)

(2.10d)

If k & 0, then all these poles of the integrand are in the lower half of the k+ plane and, since the integrand
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vanishes like k+ at infinity the contour may be closed in the upper half plane to give zero. Likewise, if
k & —2+, all poles are in the upper half plane and the integral is again zero. Therefore, to get a non-
zero contribution to the k+ integral we must have

—2'& k &0. (2.11)

When this holds we may close the contour of integration on the one pole which is in the lower half plane,
namely (2.10d), and we find

d kD, '= —mi d'k~ dk 2&+k ' k 2(g)+k )
' r +g +m' —ie —k~' —A.'+it

2'

(r~+k~)'+m' —isx —k 2+ — —(r~+k~)' —m'+i@2'+ k

x[k (2&u+k ) '[(r~+k~)'+m' —ie]-(2r~ +k~)'-m' +if) '. (2.12)

We proceed further by approximately evaluating the k integral. When k is approximately —2& we may
replace k by —2' except in the factors 2++k . The resulting integral converges at k = —2'. Therefore
this end of the integration range does not given any factors of lnw. Therefore we may consider + to be
much larger than

~ k J and hence (2.12) is approximated by

0

7Tz ~ ~~ 2' ~j +~ 2 ra+a~ +tpl 4k —2(cpk —rx+~x —~ + L6
~24)

As e -0 there is a singularity on the integration path at

—k =(2(u) '[(r~+k, )2+m'].

Therefore this integral has an imaginary as well as a real part and we find

(2.13)

(2.14)

dk [—2 k -( +k )' — '+ ' ], (2 ),1
(2~) —(r +k ) —m'+i&

—(2(o) '[ln(4(u')- vi] . (2.15)

This evaluation is correct to leading order in lns for both the real and the imaginary part (even though the
imaginary part is smaller than the real part by a power of lns). Using (2.15) in (2.13) we find that, correct
to leading order,

ss W'k k'-~'+i~ -' ~,-r, -k)'-m'+)~ -' 2r, +k)'-m'+)~ -' ~, +r, +k)'-m'+se -'

r
=' s(lns- si)

J
d k~(k~'+A') '[(2r~+k~)'+m'] '. (2.16)

We turn now to the approximation of the numera-
tor (2.3). Because k =o(+) was the only region of
k space that contributed significantly to the lead-
ing-order result (2.16) and because the k, pole we
closed on (2.10d) is also o(&u) we approximate
[N!' ']„,by dropping k when compared with either
r, or x, . Therefore

[N!']„.v(r. ",)y-. -( e.)y„(-2/-, lf+m)-
x y.y2y, u(r, r, ) . - (2.17)

Now the Dirac equations for the free spinors
u(r, r, ) and v(r, +-r, ) are

(y', +r', +m)v(r, +r, ) =0. (2.18b)

[N,
'

]„„—2v(r, +r, )y„( 2p, —k'+m)-

x y„y',g, u(r, r,)-
—4r, r, v(r, +r, )y„(-2y', —1(+m)

Therefore we anticommute r', to the right and y',

to the left, using the anticommutation relation

&y„,y.'1= 2g„, (2.19)

and employ (2.18) to drop those terms where P,
acts on u(r, r, ) or y, -acts on v(r, +r, ) We obtain.

(P,- ',r- m) (ur, r, ) =0- (2.18a) xy, u(r, r ). (2.20)

and Now p, and v are the vector indices of the polar-



THEORY OF FERMION EXCHANGE IN MASSIVE. . . .II. . . 383

Fi= —
yi ki- y2k2 (2.21)

ization vectors of the external photons. Because
we have restricted our attention to polarizations
which are transverse (in the center-of-mass
frame) to the momentum of the photons r,+r, or
r, -r, we may restrict the indices p, and v to be
x and y (called collectively i). With this restric-
tion on p, and v we see that to leading order i]( may
be replaced by

0
I'P- I'I

r -r-k5 I

V

lP + I'I

f'g- f'I

0

and

if,u(r, -r, ) =o(1) (2.22a)

because k, and )]] anticommute with y~ and be-
cause by (2.18)

FIG. 3. The only fourth-order Feynman diagram for
Compton scattering near the backward direction that
contributes to leading order in the limit {r2+r&) =s

v(r, +r, )]]]( =o(1) . (2.22b)

Therefore [Nii']]„„is finally approximated as

4"]]„,—-4(r. r.) v(r. +r, )

x y])(- 2 f~-)fi+m)y, u(r, —r, ) . (2.23)

By now all dependence of [N~']]„„onk, and k

has been spproximated away. Therefore we may

combine the result (2.16) with (2.23) to find that as
s= (2]d)'-~ in fourth order

3R]i](s )
~ g,l, ) &,k V(r, +r, )y„(2(~+)f~ —m)y, u(r, -r, )

where

=g (lns —vi) v(r, +r, )y„a(2r)y, u(r, -r, ), (2 24)
2 gi+m

with

n(2r )= ~~(2P +m)

2 f~+Ifi —m"J"" '~ [(2r .k )2,m2](k 2+F2)

(2.25)

D, ' = (O' —X'+ ie)[(r,-r, - k)'- m'+ i e]

x [(2r,+k)'- m'+ ie]

x[(r,—r, —k)'-m'+is] (2.27)

This is the fourth-order result of Gell-Mann,
Goldberger, Low, Marx, and Zachariasen. '

It is also instructuve to consider explicitly the
corresponding diagram for backward Compton
scattering (Fig. 3). This amplitude is given by

R'„".]s,r, ) = ))' jd'k(2 ) y"] D"
(2.26)

4"]]„.= u(r. r, )y.(r'. r', -4I+m)-—

xy„( 2])',—k'+m)

xy, (y', -y', —k+m)y, u(r, -r, ) .

The numerator is approximated as

(2.28)

[iV,"]&„-4(r,r, )u(r, -r, )y„(-2g'~-)fi+m)y„u(r,—r, ).
The denominator is approximated by

D, = (k, k —ki'-]]2+is)[(k —2id)k —(r„+k~)'-m'+ ie]
&& [k,k -(2 r~+ki)'- m'+ ie][k+(k 2])))-(ri+ k—~)'- m'+ ie] .

Now the k, integral is zero unless

0& A & 2(4)

and we have

(2.29)

(2.30)

(2.31)
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J
r 2'

d~kD '= —mi d'k~ dk (2(d-k }[-k (2(d-k ) '[(r~+k~)'+m'- ie]-k~'-P. '+is)
~J 0

(r, +k, }2+m'- i~x —k 2~+ — r~+k~ —m + i E
2(a)- k

x[-k (2e-k ) '[(r~+k~)'+m'- ie]-(2r~+k~}'-m'+i@} '.
The largest contribution again comes from the region k =o(&u) so we approximate (2.32) as

(2.32}

2(D

ld kD''- —, 'Jd k'(jt X' '~[-'[(2r, +k, )'+ '] '(2 ( ' dk [-2 k —( +k )'- '~ 'a[ '.
0

(2.33)

Here, if a=0 there is no pole on the path of inte-
gration and thus the integral is real. Therefore
we find

3)I~„'J(s,r, ) =: i(r, +r, )g' Insy„
2 fg+m

&& a(2r~)y„u(r,-r, ) . (2.34)

As presented above, these two fourth-order cal-
culations are very easy to do. Their ease stems
from the fact that we have approximated the nu-
merator and the denominator as early in the cal-
culation as possible. Since the computations in

higher orders of perturbation theory will be done

in exactly the same fashion, the reader should be
convinced at this point that the approximation
scheme is valid. For example, if we do not ap-
proximate the denominator (2.8}by (2.9) before
we integrate over k+, we find that instead of
there being only one contributing region like (2.11)
there are actually three contributing regions of k

space which differ in which half plane the 4+ poles
lie in. One of these regions approaches (2.11}as

The other two have widths of O(1/(d). It is
particularly important to realize that these "little"
regions cannot give a contribution of order cu 'in+.
Loosely speaking, the contribution from such a
"little" region appears to be small by a power of

On the other hand, the process of integration
may restore a power of +. But if an integral is
used to restore a lost power of & it can no longer
be used to produce a power of ln~. Hence all
terms omitted are down by at least a power of ln+.
The reader should be warned, however, that this
approximation is quite delicate and must not be
applied blindly.

Finally, we remark that there are no other
fourth-order Feynman diagrams as large as the
ones computed above.

r2- )')

r2-r -k2 1 1 V

r2 + )') "2 r)

V

f2+r)

k, 1 1
-2r -k r2-r, -k,-k2

-k)-k2-2r)

) f-k2-2r) k2 2 1
k -2 k2

rg+ r)

1 2

DIAGRAM I

r2- r)

r -r-k2 1 1 V

rz-r) -k2

DIAGRAM 2

2+ r)

rp r)

0

-k -2r
1 1

r&- r, -k)-k2 k2

there was only one contributing diagram and since
the resulting two-dimensional integral (2.25) con-
verges when the cutoff is removed. The situation
changes in sixth order.

We commence the study of the sixth order by
considering the three diagrams of Fig. 4. These
are the only diagrams that contribute to the lead-
ing order of the real part and where originally con-
sidered by Federbush. ' We will study each dia-
gram in a separate section, using the methods of
Sec. II, and will sum them up in Sec. VII. We will
explicitly study the backward Compton channel.

III. SIXTH-ORDER DIAGRAMS KITH A REAL
PART OF ORDER In2s

In fourth order it made no difference whether or
not we used a cutoff in the k~ integration since

DIAGRAM 3

FIG. 4. The three sixth-order diagrams for Compton
scattering near the backward direction that contribute to
the leading order of the real part.
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IV. FIRST SIXTH-ORDER DIAGRAM

The amplitude from diagram l of Fig. 4 is

6g&')(s, r ) =g' d~k, (2v)~d'k (2v)~[@&»] D(2~-2

where

[Np ~]„„=u(r, —r, )y, ( r', r'2 ——g2 + m) y „(-k', —2 y'2+ m)y ~

x (-$2-$, -2y', +m)y (-2/2 —f,+m)y, ($,-$2 —p, +m)y )u(r, -r, )

and

D,' = (k,'- 2(.'+ ie)[(r,-r, k, )'-—m'+ ie][(2r,+k, )' —m'+ ie]
x [(k,+k, +2r, )'-m'+ ie][(k,+2r, )'-m'+ ie](k,' X'+-ie)[(r,-r, k, )—' m'+-i e].

We first introduce k„and k„and approximate D~&" as

Dfm)-Dktm) =(k„k, -k~'-)P+ ie}[(k,+-2(d}k, -(r~+k»)'-m'+ie]

(4.1)

(4.2 }

(4 2)

x[k, k, -(2r +k, )' —m'+ie][(k„+k, )(k, +k, )-(k, +k, +2r )'-m'+ie]

x[k„k,—(k»2+r~)'- m' i+]e(k, k, k»'--)P+ie)[k2, (k, -2 (2))-(r~ +k,~)' -m' +ie]. (4.4)

It may be verified that unless

0& —k, &k, &2+ (4.5)

the integration over either k„ork„(orboth) gives zero. When (4.5) holds we may close the k„integra-
tion on the pole in the upper plane

k, =C, (k, -2(k)) ',
with

(4.6a)

C, = (r~+k, ~)'+m'- ie,

and close the k, + integration on the pole in the lower half plane

k„=—k„+C(k, +k, ) ',
with

C,= (k,~+k»+ 2 r~)'+m'- i e .

Thus we obtain

f 2(d 0
d kd k))'(=k—'( )'f, d'k, d R'dk ', dk(k, -2k) '(2, ,~ k, ) '

0 -k~

(4.6b)

(4.7a)

(4.7b)

X kl- 2 — rx+klJ. —FP1 + Z6
C, C2

2u- k2 kx-+ k

x k2 —(k22 +2 rd } —m + 7e
k2 —2(a7

x k, ' -k„'-Z'+ie
k2 -2(gp

(4.8)

The integration in the k, , k, plane is the triangle of Fig. 5. The largest contribution comes from the
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boundaries of the triangle. More precisely, the reader may verify that the region with the largest contri-
bution is

0(- k, «k, «2v.
In this region (4.8) is approximated by

(4.9)

—( i)'(d'k, d')k (-2 ) '(—k, '-&')-'[—(2 k, )' '] '[—(—k, ~ 2 )'- '] '(-k, ' —2)

0
dk, k, '[-2u)k, -(r, +k»}'-m' +is] '

=: (vi }'(2(d]} '-,'[ln's- 2vi lns]

x g'k, d' k, '+g' -' 2ri+k» '+m' ' 2ri+ i +m' ' i'+A, ' '. 4.10

We now turn to the approximation of the numerator (4.2). Again, because both the k, poles of (4.6} and
(4.7) and the k region (4.9) are small compared with 2(d we neglect k, and k, when they are compared with
r, or r, . Therefore

[NI']]»-4u(r, -rk)y„(-$,-2y', +m)t, (-k, -i[[,-2y', +m)t, (-2/2-$2+m)y, u(r2-r, ) .
Now, to leading order (recalling that p and ]2 take on only the values x and y)

u(r, r, )y„(—-)[[,—2/2+m+2-u(r, -r, )y„(-}f,i-2 r'i+m)td, ,

(4.11)

(4.12a)

and

i,(- 2 y'2 —1[[,+m)y„u(r,—r, ) -t', (- 2 r'~ —)(»+m)y„u(r,—r, ), (4.12b)

i'. (-I[[,-I(, -2r', +m)y', -r', (-)(„-k„-2r',+m)y'„

where we have used the Dirac equation (2.18) and

(yo+ y, }'=0

Using (4.12) in (4.11) and anticommuting g, to the left we find to leading order

[N, ']» 8(r, r2) u(r, -r, )y (-)(» —2 pd+m)()(»+)f, k+2 pd+m)(-Qki —2 )k+m)y, u(r, -r, ) .

(4.12c)

(4.13)

(4.14)

This does not depend on k, or k, . Therefore, we may insert it into (4.10) to find

22&„'J(,r, ) =:-2'-,'[) ' —2 & )ss] Jd'2, (2 ) 'd'k, (2 )
'

x (k»'+A. ') '[(2 ri+k, ~)'+m'] '[(2 r~+k»)'+m'] '(k»' +'])) '

xu(r, -r, )y&(-)( i —2 pk+m)(pki+g i+2 pk+m)(-Q» —2][i+m)y„u(r2-rk) .

(4.15)

V. SECOND SIXTH-ORDER DIAGRAM

Consider next diagram 2 of Fig. 3. Its Feynman amplitude is

22&' (s, r, )=d'Jd'k, (2 ) d'k, (2 ) [N&'&], D& (5.1)

where

[N[']]»=u(r r, )yk, (y', — ,1[,[)m+)y&(--g, —2 '+])m2)yz

x (- -kki| 2 '+rm2)y, (y', -y', 1[[2—k', +m)—y, (y', -y'2- $,+m)y„u(r,-r, ) (5.2)
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and

D~'~ = (k, '-)P+ ie)[(r,-r, k, )'—- m'+ ie][(r,-r, k—,—k, )'-m'+ ie]

x [(k,+ k2+ 2r, )' —m'+ ie][(k,+ 2r, )'- m'+ is][k,' )-P+ is][(r,-r, —k, )' m-'+ ie] . (5.3)

We first introduce the coordinates k„andk„and make the usual approximation r„=r,=r„=Oto find

D~&'&-D~&'&=(k„k, -k»'-X' +i )e[(k„2-&u)k, —(k«+r~)'-m'+ie]

x [(k,++k„-2&v)(k, +k, )- (k»+k, ~+r~)'- m'+ ie]

x[(k,++k,+)(k, +k, )- (k»+k»+2 r~)'-m'+ ie]

x[k,+k, —(k,+2r»)'-m'+is](k„k, -k,~'-A.'+ie)[k„(k, 2&v-}-(k»+r~)'-m'+is]. (5.4)

Again it may be verified that if we integrate over
k„and k, + the integral vanishes unless (4.5) holds.
When (4.5) does hold we close the k, + integration
at the pole in the upper half plane,

[N2~'~]„„4(2&v-k, + —k, +)(2u- k, )u(r, -r, )

x y„( k, —-2r, +m)(y, —k„)
x (-g, —k', -2r', +m)y„u(r,-r, ) . (5.9}

k„=C,(k, —2(u) ',
with

C, = (k„+r~)'+ m'- i e,

(5.5a)

(5.5b)

and close the k„integration on the two poles in
the lower half plane,

Since p, and v are restricted to x and y we may
further approximate

u(r, -r, )y„(-ii, -2y', +m)(y', —k, +}

u(r3-r, )y~( g~ —2r-~+m)(y', —k', ~) (5.10)

k, ~= —k, ~+C, (k, +k, ) ',
with

C,= (k»+k, ~+ 2 r~)'+m'- i e,

(5.6a)

(5.6b)

and anticommute /, —k, + to the right to find

[N2~ ~]q, —4(2(u- k„—k,+)(2(u- k, )(2&v- k, )

x(k, +k, )u(r, +r, )y&(-g» —2r'~+m)

and

k,+=2(o-k, ~+Cs(k, +k, ) ', (5.7a)

with

C,=(k»+k»+ r~}2+m'- ie. (5.7b)

(For convenience we redefine the symbols C, in
each section where they are used and in general
the C& of one section will not be equal to the C; of

any other section. }
We now turn to the approximation of the numera-

tor. Because of (5.7) we cannot always neglect
k, ++k,+ when compared with r, . We will also keep
k, when compared with r, . Therefore, in (5.2)
we drop k', + in the first factor and k, and k, in
the last two factors. We then anticommute t', —tt',

to the left, anticommute /, —k'„to the right, and
use the Dirac equation to obtain

[N2~" ]„„-4u(r, r, ) ( y$-, 2/, -m)+(-y', - lt„)
x (-k, —k, —2 t', )y„(r, —Ii„-g„)

xy, u(r~-r, ) . (5.11}

kp

~ ~ ~

M ~ ~

% ~

V

'
~

~

r
4

k,

We now use this numerator with the approximated
denominator of (5.4). It may be verified that the
factor 2a&-k, +

—k, + in (5.11) suipPresses the contri-
bution from the k„pole (5.7). Therefore, we need
only consider the k, + pole (5.6} and we find

(5.8)

Then anticommute P, —ii, + —g, + to the right and ob-
tain

FIG. 5. The integration region in the (k &-, k 2-I pl.ane
for the sixth-order Feynman diagrams 1 and 2.
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2)tip(s, r, )=g'(22()'fd'k, (2w)-'fd'k, (2 ) (-s) (r,-r, )y„(-g, —22', ~ )y„s(r,-r, )

2& 0
x dk2 dk, [k, C, (2&v-k, ) '-k22'-&'+is]

0

x[k, C,(2(d-k, )-'-(k,k+2r~)'-m' +i&] '

x(k, [-C,(2(d-kg ) '+C, (k, +k, ) "]-kkk'-&'+ I&) '

x(k, [-2up-C, (2(d —k, ) '+C, (k, +k, ) '] —(k„+r~}'-m'+is) '

x((kk +k, )[-2(d)+C,(k, +k, ) ']-(f„+k„+r~)'-m'+is)', (5.12)

which may be further approximated as

kki'((*, r )=-g sf'd'k„(kwl 'd'((2s2) ' (,—,)y (—1„—2!',~ )y„(,-r)(k, ' 2') '[(k ky )' ') '

2 QJ 0

dk, dk, [k, C, (k, +k, )
' —k„'—X'+ie] '[-2(d)k, —(k„+r,)'-m'+is] '

0 -02

x [-2(2)(kk +k, )- (k, 1+k,1+r )2 —m2+ C, +i e] '. (5.13)

The integration region is again the triangular region of Fig. 5 and it may be seen that the largest contri-
bution comes from the region

0& —k, «k «24) .
Thus (5.13) reduces to

(5.14)

%2(')(s, rk)
='. g s d'k»(2v} 'd k»(2v) 'u(r, -rk)y„(-g»-2f'1+m)y, u(r, —r, )

x(k»'+X'} '(k„'+X') 2[(k»+2r, }'+m'] '

dk2 2(sfs)kg + kgb+ keg+ rg) kjg+ k2g+ 2 r J )
0

0
x dk, [-2(dk, -(k»+r~}'-m~+ie] '.

-k2

The smallest integration variable is k, and, as e-0, there is a pole on the integration path of ky This
pole gives rise to an imaginary part of order lns. There may also be a pole on the integration path of the
next smallest integration variable (k, in this case}. Such a pole can only give rise to an imaginary part of
O(1). Indeed, it is a general feature of the integrals we are considering over regions like (5.14} that if in
nth order the real part is of order ln" s, then an imaginary part of order ln" 's can only come from a pole
on the integration path of the smallest variable of integration.

With this remark we find the desired result

2)tp'(, r)='g —,'(tw's —2 itss)f d'k, 2'k„tr, —,)y (-k, —2p, + ly, (r, —

x(k 2+(2)-1(k 2+y2)-1[(k ~2r )2~m2] 1 (5.16)

VI. THIRD SIXTH-ORDER DIAGRAM

The amplitude for diagram 3 of Fig. 4 may be obtained from that of diagram 2 by the replacements
k~ p, v and by inverting the order of all y matrices. Therefore

wit (s )=. g ti —2 'i )fd k (2w) d k (2 l" t — )y„(—)t —2P +m)y (r —r l

x(k 2+)P) '(k '+a') '[(2r +k, }'+m'] '. (6.1}
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VII. SUMMATION OF DIAGRAMS 1, 2, AND 3

The separate expressions (4.15), (5.16), and (6.1) do not converge when the cutoff in the transverse-mo-
mentum integrations is removed. Therefore, for our evaluations to make sense these logarithmic diver-
gences in the separate integrals must cancel.

To see that this cancellation does in fact occur, we first rewrite (4.15) using

(-}f,~- 2g'~+m)()f»+}f, ~+2jt~+m)(-}f,~ —2l ~+m)

= (- }f,~ —2 l ~ + m) [(}|,~ + 2 g'~ + m)+ ( }f,~ + 2 p~ + m) —(2 p ~ + m) ](-}t» —2 f~ + m)

= [(k,~+ 2 r~)'+m'](- }(»—2 g'~+ m)+ [(k»+ 2r~)'+m'](- }f»—2 )~+m)- (}f,~+ 2 g'~ —m}(2 g~+ m)(}f»+ 2 P~- m).

(7.1)

The terms in %)~~(s, r, ) which correspond to the first two terms in (7.1) cancel (5.16) and (6.1). Therefore
we obtain the desired result

=.'g ~(ln's-2vilns)

x d'k, ~(2v)~dak2, (2v) 'u(r, —r, )y„(}(»+2tt' -m}(2)~+m)(}|, +2) -m) y, u(s, —r, )

x(k, '+X') '[(k»+2r)'+m'] '(k, ~'+X') '[(k,~+2r~)'+m~] '

=:g —,'(1n's —2vf ins)u(r, —r,)y„[a(2r ~)]'y„u(r,—r, ) .2)j +m (7.2)

Here the cutoff may be removed as all the log-
arithmic divergences have cancelled. This result
(7.2) is the same as that previously obtained using
Feynman parameters. '

VIII. MOMENTUM-FLOW DIAGRAMS

In the evaluation of the leading asymptotic behav-
ior of Feynman integrals by means of the momen-
tum-space techniques used above it is always nec-
essary to answer two questions: (1) What region in
minus-momentum space gives a nonzero contribu-
tion after the plus-momentum integrations have
been d eon(72) Which poles should the plus-mo-
mentum integration contours be closed on? For
the three sixth-order diagrams already considered,
the answers to these two questions posed no big
problem. However, for more complicated dia-
grams of higher order it can become very tedious
to answer these questions algebraically. Therefore
we will introduce a diagramatic technique to find
the answers to these questions.

To each Feynman diagram there correspond, in
general, several "momentum flow" diagrams.
These diagrams consist of arrows drawn on the
Feynman diagram. The arrows represent the di-
rection of flow of the minus component of momen-
ta in that line (i.e., the direction such that if q,
the momentum of that line, points in that direction,
then q, -q, &0). The arrows are drawn according
to the following rules:

1. At least one arrow must point towards and
one arrow must point away from each vertex that
does not connect to an external line. (This is the
conservation of minus momentum, which follows
from the conservation of four momenta at each
vertex. )

2. If an external line carries no minus momen-
tum when &u- ~ (such as r, + r, ), then on the two
internal lines that connect to it one arrow must
point towards the vertex and the other arrow must
point away from the vertex.

3. The incoming line that carries the momentum
r, acts as a source of minus momenta and the ar-
rows on the two internal lines connecting to it point
away from the vertex.

4. The outgoing line that carries the momentum
r, acts as a sink of minus momentum and the ar-
rows on the two internal lines connecting to it point
towards the vertex.

5. There must be no closed loops in which all
arrows point in the same direction around the loop.

These rules determine the contributing regions
in the space of minus momentum.

The first four rules follow from momentum con-
servation. The fifth rule follows from the follow-
ing consideration. There are several different
ways to introduce momentum coordinates into a
Feynman diagram. If there is a closed loop a-
round which the arrows all point in the same di-
rection, choose one of the momentum coordinates
(say q} to flow around that loop in the direction of
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the arrow. The integral over q+ will then consist
of an integral with many factors of the form
(P,+P, -p„'—m, '+is) ', where there is one such
factor for each line in the closed loop, the four-
vector P, is the momentum in the Lth line, and m,
is the mass of the line. By construction all the
pf & 0 and each P „

is of the form q, + something.
Therefore, all the poles of this q, integration are
in the lower half plane and the integration gives
zero. Therefore rule 5 follows.

Now suppose that in this loop not all arrows
point in the same direction. Then if we let the
loop momentum q flow in one direction around the
loop, Bn argument similar to the one just given
shows that we may close the contour of the q, in-
tegration on the poles represented either by the
arrows that point in the direction of q or that
oppose the direction of q. When we close on a
particular pole which contains the momentum p,
this argument shows that we obtain

cate these loops by drawing them on the momen-
tum-flow diagrams. Unfortunately, in a black and
white drawing this is almost impossible to do be-
cause the loops cross so many times. Therefore,
we have labeled all vertices of our momentum
flow diagrams by letters and in the captions give
the letters of the vertices that make up each inte-
gration loop. The reader is urged to trace out
these loops with colored pencils.

Once the integration loops are chosen it is easy
to read off the contributing poles. These poles are
marked by crosses on our diagrams. The number
by each cross indicates which loop momenta is
closed upon the pole.

To illustrate these rules we consider the three
sixth-order diagrams already studied. In Fig. 6
we give the one momentum-flow diagram associ-
ated with the first sixth-order Feynman diagram
of Fig. 4. Using the corrdinates of Fig. 4 with
the arrows of Fig. 6 we have

—2wi ~p, ~

'x [the rest of the integral with

(8.1)

&0,

&0,

+k2 &0,

(8.2a)

(8.2b)

(8.2c)

From this discussion we see that we may deter-
mine which poles to close on by drawing the inde-
pendent loops which we integrate over. Different
loops may be used with each of the (in general)
several momentum-flow diagrams associated with
a given Feynman diagram. We would like to indi-

and

2(d- k& &0 . (8.2d}

Restriction (8.2b) is not independent of (8.2a) and
(8.2c). The remaining three restrictions are just
the inequalities (4.5}.

i2

DIAGRAM 1

F 1 F

DIAGRAM 2

FIG. 6. Momentum-flow diagram for the sixth-order
Feynman diagram 1. The first plus-(+ } momentum in-
tegral is over the momentum in the loop ECDFE. The
second integral, is over the momentum in the loop
CAB DC . The pol.es closed on in doing these integral. s
are indicated by crosses.

FIG. 7. Momentum-flow diagram for the sixth-order
Feynman diagram 2. The first momentum loop is
BDFECB . The second momentum. loop is AlN CA. The
poles closed on are indicated by crosses. -
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The two momentum loops in Fig. 6 we choose to
integrate over are ECDFE and CABDC. %'e may
then close on the poles indicated on the diagram.
This gives the poles (4.6) and (4.V).

Finally, use of the formula (8.1) gives (4.8}
The momentum-flow diagram for the second

sixth-order diagram of Fig. 4 is given in Fig. 7.
The reader should convince himself that the arrows
give the momentum region (4.5) and that the poles
determined from the indicated loops give (5.5),
(5.6), and (5.f).

In Fig. 8 we show the two momentum-flow dia-
grams corresponding to the third sixth-order dia-
gram of Fig. 4. However, these diagrams never
have to be used since Feynman diagram 3 may be
obtained from Feynman diagram 2 as discussed in

Sec. VI.
FIG. 8. The two momentum-flow diagrams for the

sixth-order Feynman diagram 3.

IX. SIXTH-ORDER DIAGIV84S THAT CONTRIBUTE TO THE LEADING IMAGINARY PART

There are no diagrams other than those of Fig. 4 which (when the integrals over transverse momentum

are cut off at k,„)have a real part of order ln's. Furthermore, the sum of the three diagrams of Fig. 4

has an imaginary part of order 1ns which is given in (7.2). However, if we want the comPlete coefficient of

order lns of the imaginary part of the sixth-order amplitude, we must also include diagram 4 given in Fig.
9 which corresponds to the following amplitude:

)))"'(, )=)) fd ):(2m) d'') , (2 ) '[N'"] D"' ' (9 1)

where

[N4' ]~= u(r, —r, )y, (g, —f', —f, +m)y q (f', —f, —f, —f, + m)y„(-}]],—tf, —2 f, + gag)y„

x ( f', —f', —}f,—k, + m)y, ( f', —y', —g, +m)y zu(r, —r, )

and

D&' =(k,' —&'+i &) [(r, —r, —k,)'-m'+i e][(r, —r, —k, —k,)'-m'+i e]

(9 2)

x [(k, +k, +2r, )' —m'+i e][(r, —r, —k, —k, )' —rs'+i e][(r, —r, —k, )' —m'+i a](k,' —g'+i e) . (9.2)

The numerator is easily approximated by first replacing f' —f(, —k, +m with f( —}f, , replacing g
—k, +m with g, —)]f, -}(, , replacing f', —f', -}f,-}t],+m with f', —g„—p„,and replacing f(, —g, -1(],+)u with

Then we find

[N,' ]~- 4(2 ())- k2 ) (2(d- k„-k, +) (2(L)- k, —k, )

x(2~-k„)u(r,-r, )y„(-}f,, -)t, , —2g, +m)y„u(r2 —r,). (9.4)

Furthermore, using k» and k„asvariables and using the approximation r, =r„=r»=0 the denominator
D4" is approximated as

D4' -D4' =(k„k,—k, ~' —X'+i e)[(k„—2(())k, —(k»+r~)' —m'+i e]

x [(k„+k„-2&v)(k,+k, )-$»+ tt, ~+ r~)'- m'+is]

x[(k, +k„)(k,+k, }-(k,~+k»+2r~)2 —m'+is]
x [(k„+k„)(k,+k, —2&v)- (k,~+r, )' —m'+i e]

x [k„(k,—2(u)-(k2, +r~)~ —m'+i e](km, k, —k, ' —x2+i e) (9.5)
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There are two momentum-flow diagrams for this
one Feynman diagram (Fig. 10}. We consider them
separately.

A. Diagram A

We find from Fig. 10 that for diagram A the mo-
mentum region is

r2- r,
—k,-k

0&k2 & 2&,

0 &k, +k2 &2',
&0

(see Fig. 11), and the poles are

k„=C, (2(d- k, )
'

and

(9.6)

(9.7a)

rg- r)-k)- f(~

—k„+C,(k, +k, )
'

I
2(u —k„+C,(k, +k, ) ',

where

and

C, = (k,~+ k, ~+r~)'+m' —i e,

C, =(k„+r~)'+m' —i e,

C~= (k,~+k, ~+2 r~)'+m' —i e,

(9.7b)

(9.7b ')

(9.8a)

(9.8b}

(9.8c}

FIG. 9. A sixth-order Feynman diagram for Compton
scattering in the backward direction which has an ima-
ginary part of the order Ins. This diagram is called 4.
This diagram must be included with those of Fig. 4 to
obtain the complete leading contribution to the imagin-
ary part of the sixth-order backward Compton amplitude.

The factor 2&v-k, +
—k„in the numerator (9.4} sup-

presses contribution from the pole (9.7b'). There-
fore only (9.7b) contributes and we find that the
contribution from diagram A, called 8A, is

4 =. —g (2 ')' jd k, (2 ) d''k, (2 ) (2 )' (r, — , )) ( i, )(, 2 P, )y (

2(d 0

dk, dk, (k, +k, ){k, [-C,(2(()-k, ) '+C, (k, +k, ) ']-k, '- (.'+i)e} '
0 k2

x(k, [-2(()-C,(2(d-k, ) '+C, (k, +k, ) ']-(k»+r~)' —m'+i&}

xok, +k, )[-2(d+C, (k, +k, ) ']-(k,~+k,~+r )' —m'+ie}-'

x[(k, +k, —2(d)C, (k, +k, )
' —(k,~+r~)' —m'+is] '

x[k, C,(2(o-k, ) '-k, ~' —)P+ie] '. (9 9)

The only edge of the triangle (9.6) which gives a contribution to (9.9) of order ln's (for the real part) is

0& —k

Thus (9.9) reduces to

(9.10)

8A
=' g d yg 2w) d k2j 277) sQ x3 'Yl)yp — j j x —2 z+m)y„u(y2 —yg)

x (k»'+)(.') '(k»'+A. ') '[(k»+k ~+2 r~)'+m ] '

2(d p0
dk, (-2rgk, +C, —C, )

' dk, [-2(()k, —(k„r,+)' -m' i]'e(-9.11).
0 k2

The smallest integration variable is k, and there is a pole on the k, path of integration as c -0. Hence
(9.11) has an imaginary part and we obtain
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(2

A:

0 ~

FIG. 10. The two momentum-flow diagrams for Feyn-
man diagram 4. In both momentum-Qow diagrams the

first loop momentum is ADFCA and the second loop mo-
mentum is ABBECA.

FIG. 11. The region ink &-, k 2- space that gives a
nonvanishing contribution to the sixth-order diagram 4.
The subregions A and B correspond to momentum flow
diagrams A and B.

8A ——. -g'-, (In s —2mi 1ns)

"(k» +~') '(k»'+&') '[(k,+k, +2 r )'+m']-' (9.12)

B. Diagram B

We find from Fig. 10 that for diagram B the momentum region is (see Fig. 11)

0& ki y 0&k2 y kz-+k2 &2w

and that the poles to close on are

k2~= k, 'C, ,

k„=—k„+C,(2(u —k, —k, } ',
with

C = k ~'+ A. —i e,
C, = (k»+k„+r~)'+ m' —i e .

Thus we find

(9.13)

(9.14a,)

(9.14b)

(9.15a)

(9.15b)

8z ——'
. —g6(2wi)' d'k, ~(2m}~d'k, ~(2v) (2&@)'u(r, -r, )y&(-}(,~ —}(,~ —2)~+m)y„u(r, —r, )

$2(d 24)

dk, J dk, k, '(k, [-k, 'C, +C, (2&v —k, —k, ) ']-k,~' —A.'+is]
kp p

x(k, [-2m —k, 'C, +C, (2u&-k, —k2 ) ']-(k«+r~)2 —m'+ie} '

&&((k, +k, )[-2&u+C, (2&v —k, -k, ) ']-(k«+k»+r~)' —m'+is) '

&&[(k, +k, )C, (2&a —k, —k2 )
' —(k,~+k2~+2r~)' —m'+is] '

&& [(k, —2&@}C,k, ' —(k»+ r~)' —m' + i&]

It may be verified that the only edge of (9.13) that contributes to Ieading order js

kl & k2 2

We then find that

(9.16)

(9.17)
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II
=' —d'(2tr) Jd'k, (2 ) 'd'k, (2 } 'd(r, —r, )y„(—2, —2, —2P +kdy„(r,—r, }

&(k,k'+X') '(k»'+A') '[(k,~+k,~+2 rk)'+m'] '

2(d

&& dk2 Jl dk, k, '[- 2(dkk —(k,~+rd ) —m'+ ie] '.
0 0

(9.18)

In the k, (smallest variable) integration there is no pole on the integration path as s -(). Theregore the in-
tegral is real and we obtain

8&=g'& ln's 0'k» 2m) 'd'k» 2n 'u r, -r, y„—jJ 2J 2 J.+m)y„ur, -r,
x (k»'+a') 2(k2~'+ A.') '[(k„+k,~+2 r~)'+m'] '. (9.19)

C. Summation of momentum- flow diagrams

It remains to add (9.12) and (9.19). The real parts cancel but the imaginary part does not. Therefore

22I,'„I(,r, )=d' 'I fd k, (2 ) ''d'k, (2 )
' (,—r, )y„(-k, —d, —2d + )y, (,—r, )

x(k»'+A. ') '(k, k'+A. ') '[(k»+k ~+2 r~)'+m'] '. (9.20)

These integrals over transverse momenta converge at large momenta so the cutoff k may be removed.
We emphasize that this calculation is not accurate enough to compute the real part of the sixth-order am-

plitude to order lns.
Finally, we may add (9.20) to ('l.2) to obtain the complete leading-order contribution to both the real and

the imaginary parts of the sixth-order backward brompton amplitude:

3V„'„'(s,r, ) =g'-, (ln's —2si 1 s)nu(r, r, )y»-[a(2r~)]'y, u(r, —r, )& 2 p~+m

d'k
+g'}(i lns (2,', (k2~'+a') 'u(r, -r,)y„a$,+2r~)y, u(r, —r, ),

)( +2 )( +m

where a(2rk) is given by (2.25).
An identical analysis may be carried out for pair annihilation and we obtain

(9.21a)

IIt')(s, r, ) =g' —,
' ln's v(r, +r, )y» [a(2r~)]'y„u(r,-r, )"2y~+rn

—g'«»s 2", k„'+&')'«, +r,y„nk, +2r )y„~r,—r, .
)(22 + 2 p' +m
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