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We consider the high-energy behavior of Compton scattering near the backward direction and of pair
annihilation into two photons in massive quantum electrodynamics. We study the limit where s, the center-of-
mass energy squared, becomes large and ¢, the square of the momentum transfer, is fixed and spacelike. In
each order of perturbation theory we calculate the leading terms in the s — oo expansion, and then these
leading terms are summed. In the positive-signature channel this leads to a Regge pole. In the negative-
signature channel the amplitude is dominated by a pole when — t is sufficiently small. However, as — ¢
increases the pole moves to the left and eventually the amplitude is dominated by the fixed Mandelstam cut.
In this paper we present the results of our calculations, summarize the most important features of the
calculations, and discuss the physics of the result. The details of the calculations are presented in the 5

succeeding papers.

I. CONCLUSION

In this series of papers,'™ we consider the high-
energy behavior for fermion-exchange processes
in massive quantum electrodynamics, i.e., the
field theory where a photon field A, of mass A>0
and an electron field ¥ of mass m interact via the
coupling gJy,$A,. More precisely, we study the
two closely related problems of Compton scattering
near the backward direction and pair annihilation.
The kinematics for these two processes are given
in Fig. 1.

We define the usual Mandelstam variables

$=(r, +7,F (1.1)

and

t=(2r,)? (1.2)
and study the high-energy limit s -« with ¢ fixed
such that ¢ <0. [We use the metric (+- - -). For
v matrixes and Feynman rules we use the con-
ventions of Bjorken and Drell.®] In this limit, the
only nonvanishing components of », are transverse,
i.e., 27,~(0, 4, 0).

We let 3R, (s, r,) be the backward Compton am-
plitude and 9t w (8, 7,) be the pair-annihilation am-
plitude. We further define 9 (s, 7,) and M (s, r,) by

5)'71;1» (S, 71) =E(73 +71)Yp37n (s, 71)711 u(rz_rl) (1.33.)
and

My (5,7,) =00y +7 (s, 7 )y, ulry=7,) .
(1.3b)

13

(In passing from 9, and 3, to I and I we note
that we are removing a factor of s!’2 contained in
the spinors.) From 91 and 9t we define the posi-
tive-signature amplitude as

M, (s, 7,) =M (s,7,)+IM(s,r,) (1.4a)
and the negative-signature amplitude as
M_(s,7,) =IM(s, r,) - (s,7,) . (1.4b)

In each order of perturbation theory we will, in
the sequel, compute the leading behavior of the

~ry-T,

(b)

FIG. 1. (a) Kinematics for the process of Compton
scattering near the backward direction. (b) Kinematics
for the process of electron-positron pair annihilation
into two photons.
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amplitude as s -« with ¢ fixed. We then sum these
leading contributions over all orders. A convenient
way both for carrying out the summation and for
describing the result is to use the Mellin transform
defined by
M, (0) = [ dssmEm,(5) (1.5)
]

The behaviors of 3, (¢) for small ¢ determine the
asymptotic behaviors for 9, (s) in the limit of
large s.

In this approximation of summing the leading
terms, the conclusions of our study are as follows:

1. For the positive-signature amplitude

In ~ gz ..____1.____ [ -1_ s -
m+(§) §+m‘ l—g-la(—A’) [2§ Wl(!(A)], (1.6)
where

J
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- @k 1 K+R-m
a@ =5 & om) [ G5 i .

1.7)

2. For the negative-signature amplitude

= oy.=gm = a@)+E+ms &; )
MO F T Trea@) - @em)Z,E;0)
(1.8)
where
- gy [k, 1 -
Z3A; p)=imTig —ﬁrma(ﬁiﬂl)ﬂﬁﬁi)
(1.9)

and f(k,;¢) is determined from

1 L+R +R -m

[l—C"a(K+EL)Jf(E;§)=-2ﬂig2§"m+§"g“fd% To Gabik Fom? E+EL+myf ko) .

II. PLAN OF PRESENTATION

The calculations which lead to these conclusions
are both long and exquisite. The length is attested
to by the fact that in sixth order we consider 4
Feynman diagrams, in eighth order we consider 12,
in tenth order we consider 41, and in twelfth order
we consider 142. The calculation is exquisite be-
cause new and intricate features appear in each of the
above-mentioned orders.

Both the length and the elaborateness of this
problem force us to depart from the conventional
methods of presentation. It is patently unrealistic
to use the Aristotelian method of first presenting
the beginning, then the middle and finally the end.
We will instead present our calculation as follows:
In Sec. III of this paper we will discuss the history
of this problem and our physical motivation for
considering it. Then in Sec. IV we will discuss
in an illustrative fashion some of the important
points of the calculation. However, the detailed
and complete calculations will be deferred to the
subsequent papers of the series. We conclude this
paper in Sec. V with a discussion of the physical
implications of our results, It is therefore hoped
that the reader can appreciate both the physics of
our results and the principles of the mathematical
methods which go into its derivation without being
oppressed by the details.

It is, however, mandatory that the details of our
calculation be presented, and this is done in the 5
following papers. In the end there is no substitute

(1.10)

r

for the real thing and no amount of general dis-
cussion is a substitute for the explicit calculation.
The crucial question in investigations of this sort
in this: “How do you know that you have actually
found all contributions to the final result?”’ There
exist many errors in the literature where, in fact,
there are more contributions than those found by
investigators. In all those cases the papers be-
come vague and the reader is asked to accept the
author’s answer to the above question on faith, We
hope, by displaying our explicit calculations in de-
tail, to demonstrate to the reader that our final re-
sults rest on sound calculations.

III. HISTORY AND PHYSICAL MOTIVATION

The study of the high-energy behavior of fermion
exchange in massive quantum electrodynamics by
the method of extracting the largest term in each
order of perturbation theory and then computing
the sum was initiated in 1964 by Gell-Mann, Gold-
berger, Low, Marx, and Zachariasen.” Previous
to this study it had been shown® in ¢* theory that
this procedure of summing leading terms leads to
an amplitude of the form (see Fig. 2)

BE)s=e ), (3.1)

where

.

ao(‘)=—1+g2fd_k;_ 21 P "'Elz z -
16m El +m? (A=K, ) +m

(3.2)
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FIG. 2. A ladder diagram in ¢* theory.

In order to see whether results such as (3.1) obtain
when a quantum number is exchanged, Gell-Mann,
Goldberger, Low, Marx, and Zachariasen studied
fermion exchange in fourth-order perturbation
theory. They found that in the backward Compton
channel, with a(&) as defined by (1.7),

a(d)

1 (4) o 2

m g lnsx el (3.3a)
while in the pair-annihilation channel

) I @

Mm g%(1ns m)y+m . (3.3b)

They then continued to the sixth-order perturbation
theory. With their Feynman-parameter methods
they found the calculation much more formidable
than in fourth-order. In particular they found that
the three diagrams of Fig. 3 each give In®s and not
the In®s which one might expect. However, they
quote an unpublished calculation of Federbush to
the effect that the offending In®s terms cancel and
that one is left in the backward Compton channel
with

21 (ne o2 22@)
g% (Ins -7 ) -Z+_m (3.4a)
and in the pair-annihilation channel with
2
g2 s -2 1) (3.4b)

+m

On the basis of these calculations Gell-Mann, Gold-
berger, Low, Marx, and Zachariasen make the
following conjecture: In (4n+2)-order perturbation

theory the leading behavior of the backward Compton

amplitude is

2n a2n (t

£ +m

~

Mn+2) ~ g2 (Ins - mi) (3.5a)

1
(2n)!

and that for pair annihilation is

W ﬁ
W M
FIG. 3. Three diagrams which contribute to the back-
ward Compton amplitude in sixth order. Each one of

these diagrams is separately of order In3s but the sum
is of order In%.

a® (t)

1
~ g2 2n
g 2n) In SZ +m

In 4n-order perturbation theory the backward
Compton amplitude is

g (an+2) (3.6a)

a?Yt)

K +m

In2""1g

. 1
4n) o o2 =
M~ & G

(3.5b)
and the pair -annihilation amplitude is
_ 1 . azn-l t)
(an) e 52 = - 2n-1
m g @n - 11 (lns - m¢) TA_+m .
(3.6b)

When these leading-order conjectures are summed
they obtain, for the amplitudes (1.4),

2 R - -
M~ gEr (1o e @) se® (3.7a)
and
- & _,mia@)) ~a@) )
M. Xom ([1-¢ Is . (3.7b)

These are very strange results.

The difficulty with these results is seen most
strikingly if we let ~{ become large. Then from
(1.10)

a(t)"‘m ln|t| . (3.8)

For the positive-signature amplitude (3.7a) such a
behavior is fine. However, for the negative-sign-
ature amplitude it means that for sufficiently large
—t (3.7b) will violate unitarity.

Stated more phenomenologically, (3.7) says that
if in the positive-signature channel the amplitude
falls off more rapidly with increasing s when ~¢
is increased, then the negative-signature amplitude
falls off less rapidly with increasing s when ~{ is
increased. Such behavior has never been seen
experimentally.
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A year later in 1965 a more detailed Feynman-
parameter calculation of the s -« behavior of the
sixth-order amplitude was carried out.® It was
shown there that in addition to the diagrams of Fig.
3 which contribute to order ln3s and to order lnZ%s
the 6 diagrams of Fig. 4 must be included since
they also contribute to order ln%s. However, after
summing all these diagrams the result of (3.4) was
obtained (to order 1n?2s),

Further progress was made in 1967 with the work
of Frolov, Gorshkov, and Gribov'° who studied
backward Compton scattering in the massless case
A=0. As a byproduct of their calculation, in Ap-
pendix B they discuss the case A #0. and claim to
obtain the leading term in (3.5). However, in their
calculation in (2n +2)-order perturbation theory
they calculate 2" - 1 diagrams, which does not
agree with the 9 diagrams needed in sixth-order to
obtain (3.4).

After 1967 attention was shifted away from fer-
mion exchange. In 1970 the results were published!!
of a massive study of a related process, namely
elastic scattering in quantum electrodynamics.
Here it was discovered that the total cross section
rises as In%s as s -« and that elastic scattering
is describable as the scattering from a black disk
whose radius increases with energy. This rising
of elastic cross sections was observed in hadron
scattering at CERN ISR in 1973!2 and also at
Fermilab in 1974.13

In this study of elastic scattering it was learned
that the s -« limit may be studied in momentum
space more conveniently than it is studied in
Feynman-parameter space. This insight is very
useful for this present problem because of the ex-
treme difficulty already encountered in sixth order
in the use of Feynman parameters. Moreover,
data for quantum-number exchange processes will
soon become available at Fermilab at the energies
where the rising elastic cross sections are seen.
Because of the increases in our calculational
abilities and because of the imminent prospect of
obtaining high-energy quantum-number exchange
data it seems to be an opportune time to restudy
the problem of fermion exchange and, in particular,
to demonstrate that the peculiar conjecture (3.7b)
is to be replaced by the results (1.8)-(1.10).

IV. DISCUSSION OF THE CALCULATION

With the foregoing discussion of the background
of our problem we may now proceed to discuss the
calculations we have done. This we will do in the
following subsections.

AND TAI TSUN WU 13
A v
AN A n

FIG. 4. Six more diagrams which must be included
with the diagrams of Fig. 3 to obtain the correct answer
for the sixth-order backward Compton scattering. Each
of these diagrams is of order In%s.

A. The meaning of In"s and (Ins-mi)”

It must first be recognized that in expressions
such as (3.5) and (3.6) there is a world of dif-
ference between the statement that the leading term
is

In"s (4.1)

and the statement that the leading term is

(Ins=mi)" (4.2)
The first statement may perhaps be interpreted to
mean that as s -« the amplitude behaves as

In"s +o(In""1s) , (4.3)
but how is the second statement to be interpreted?
Surely the two most obvious interpretations of
(4.2), namely

(Ins =7 )" +o(1) (4.4a)

and

(Ins = m)" +O((Ins = mwi)""Y) , (4.4b)
are both incorrect. The first interpretation is
false because for large » the calculations are not
that accurate. The second interpretation is wrong
because (4.4b) is mathematically identical to

In"s +O(In""1s).

Our first step, therefore, is to analyze the cal-
culations in fourth and sixth order to see what the
meaning of (4.1) and (4.2) should be. This is done
in the next paper' and we see explicitly that both
(4.3) and (4.4) are incorrect. Instead, we find that
in general for (27 +2)-order perturbation theory
the leading imaginary part of the amplitude is of
order In""!s. (For the purpose of this statement
the y matrices are considered to be real.) We are
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able to compute both of these leading real and
leading imaginary parts even though the imaginary
part is one power of lns smaller than the real part.
Therefore, (4.1) means that the veal part is In" s
+0(In""'s) and that the imaginary part is smaller
than In""'s, while in (4.2) the real and imaginary
parts are respectively

In"s +O(In""1s) (4.5a)

and

~nmln""1s + O(In""2%s), (4.5b)

It is also readily seen that in (2n# +2)-order
perturbation theory (for n>1), the leading terms
of a backward Compton diagram and the corre-
sponding pair-annihilation diagram are related by
the substitution

In"s= In"s = nmiIn""'s.

Therefore, while for the positive-signature am-
plitude it suffices to compute the leading real part,
for the negative-signature amplitude the leading
veal parts cancel and the entive vesult comes from
the leading imaginary pavt of the amplitude.

B. Transverse cutoff

We have learned, from the case of elastic scat-
tering in massive quantum electrodynamics'* that
high-order calculations are best carried out in mo-
mentum space instead of Feynman-parameter
space. This procedure involves the introduction
of a cutoff kmax in transverse momentum, carrying
out the asymptotic computation s -« with a finite
value of kmax , adding up the contributions from
various diagrams, and finally letting kn.x increase
without bound. We ave, in effect, intevchanging
the limits kmax — and s -,

Since this procedure works successfully in the
case of elastic scattering, it is expected to work
also for the present case of fermion exchange. In
the next paper, we apply this method to calculate
the sixth-order case in momentum space (as Frolov,
Gorshkov, and Gribov® did). With a finite Rmax,
the three diagrams of Fig. 3 are each of order In®s
instead of In3s. For each diagram, the coefficient
of In®s is an integral over the transverse momenta
which diverges as km.x — . However, if we add the
amplitudes of all three diagrams together, the
divergences cancel in the km., - limit and we are
left with a convergent result. Furthermore, this
result is the same as that obtained by the more
honest Feynman-parameter calculation.

This consideration explains the puzzle as to how
many diagrams contribute to the leading real terms
in sixth order. If a transverse cutoff is not used,

we need all nine diagrams in Fig. 3 and Fig. 4. If
a transverse cutoff is used, it suffices to take the
three diagrams of Fig. 3 into account, since the
six diagrams of Fig. 4 are only of order lns for
finite knax. More generally, with this method of
transverse cutoff, we have exactly as many dia-
grams contributing to the leading real part as do
Frolov, Gorshkov, and Gribov.

C. Imaginary part of sixth-order diagrams

Thus far we have merely refined our understand-
ing of the details of the previous calculations.”!°
However, once it is realized that in order to com-
pute the negative-signature amplitude correctly it
is necessary to calculate the leading imaginary
part as well as the leading real part, we see’ that
the sixth-order results (3.4) are in serious error.

The result (3.4) has omitted the diagram of Fig.
5.

For backward Compton scattering the diagram of
Fig. 5 gives the leading contribution of

) Pk, dk,, 1
g°milns 8 81 Kl N

1
KZ+n

wRuzF=&+m . (4.6)

k,, +k, +AP +m?
14 2.

This is purely imaginary and hence does not affect
the real part of order In%. Furthermore, the
corresponding graph for pair annihilation is pre-
cisely the negative of (4.6) and hence this new term
does not affect the positive-signature amplitude.

But (4.6) will contribute to the negative-signature
amplitude. Therefore the peculiar statement of
(3.7b) is incorrect.

D. Salient features of the eighth-order calculation

In the third paper of this series® we examine
eighth-order perturbation theory. We find that in
addition to the 7 diagrams of Frolov, Gorshkov,
and Gribov” which contribute to the leading real

MV

QN

FIG. 5. A fourth diagram which contributes to the
leading imaginary part of the sixth-order amplitude for
backward Compton scattering.
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part there are 5 additional diagrams which contri-
bute to the leading imaginary part but do not con-
tribute to the leading real part. Each of these 12
diagrams is of order In®s or iln®s and when added
together the cutoff km.x may be removed and a finite
result obtained. But now the cancellation is much
more elaborate than in sixth order. The 12 contri-
buting diagrams in the backward Compton channel
are shown in Fig. 6. The first 7 of these contribute
to the real part of order 1ln®s and when summed give
a result in which the k,,x = limit may be taken.
But while diagrams 1-5 do not have an imaginary
part of order ln%s, diagrams 6 and 7 do. Therefore,
in the imaginary part coming from diagrams 1-7
the cutoff k. cannot be removed. However, this
extra imaginary part coming from diagrams 6 and
T is precisely what is needed to add to the sum of
diagrams 8-12 to allow the cutoff to be removed.
Thus we see that all the diagrams 1-12 must be
included before the cutoff may be removed in both
the real and imaginary parts.

There are, of course, many eighth-order dia-
grams other than those of Fig. 6. Some of these
are shown in Fig. 7. None of these other diagrams
contribute to either the leading real or imaginary
part.

E. Salient features of the tenth-order calculation

In the fourth paper of this series® we discuss
tenth-order perturbation theory. Here there are
41 diagrams which contribute and they are all tied

QRN
{14

Il

w
8 9 10

FIG. 6. The 12 diagrams which contribute to the
leading real and leading imaginary parts of the eighth-
order amplitude for backward Compton scattering.

SCL SR

g

O X

FIG. 7. Six diagrams which do not contribute to the
leading real or imaginary parts of the eighth-order
amplitude for backward Compton scattering.

together in a complicated cancellation which allows
the k. =« limit to be taken. If any one of these
diagrams is omitted, the kmax cutoff cannot be re-
moved. Indeed, the non-Mandelstam diagrams
which we discussed in ¢ theory'® were found be-
cause their counterparts in this problem are needed
to allow the cutoff to be removed.

There are actually 3 classes of diagrams in tenth
order, not 2. In addition to the diagrams (1) which
contribute to the leading real part and the diagrams
(2) which contribute to the leading imaginary part
but not the leading real part we distinguish that
subclass of class 2 whose leading imaginary parts
identically cancel out; such pairs of cancelling
diagrams are shown in Fig. 8.

(1 (2)

(3) (4)

FIG. 8. Four diagrams whose contributions to the
leading imaginary part of the tenth-order backward
Compton amplitude cancel out. The diagrams 1 and 2
cancel and the diagrams 3 and 4 cancel.
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F. Transverse diagrams

It is useful to introduce the notation in 2% +2 order
of perturbation theory:

(m,,m,) =n—1![mlln"s +my(In"s=nmiln"'s)]. (4.7)

In this notation a diagram for backward Compton
scattering and the corresponding diagram for pair
annihilation are (for n>1) related by
(m v mz)backward Compton= (mz’ m, )pair annihilation (4°8)
The results of each of the previous expansions are
all of the form of (m,,m,) times a function of A
which can be represented as an integral in the space
of two-dimensional transverse momenta with an
integrand which can be represented by a diagram in
this transverse-momentum space. Moreover, after
the Feynman diagrams are combined and the
kmax =0 limit taken, the result still has a diagram-
matic representation in transverse-momentum
space. For the transverse diagrams of the final
combined amplitudes we have the following rules:
(1) For each photon line of momentum Kk, there
is a propagator

(k.2+22)71. (4.9)

(2) For each election line of momentum k there
is a propagator

.
L tm

T (4.10)

(3) For each internal vertex through which there
flows a momentum f(l there is a factor

R.-m. (4.11)

(4) Each independent momentum is integrated
over using

f d%k,(2m) 73 .

The results of fourth-, sixth-, eighth-, and
tenth-order perturbation theory are thus succinctly
summarized in terms of the transverse diagrams
of Fig. 9. In this figure we display the diagrams
and the associated pairs (m,,m,) for backward
Compton scattering. As an example of the rules
we note that the result corresponding to the second
sixth-order diagram of Fig. 9 is explicitly written
out in (4.6).

(4.12)

G. Twelfth and higher-order results

Unfortunately, the results of fourth-through tenth-
order perturbation theory are not quite sufficient

to generalize to higher order. This is in part be-
cause in twelfth order there are triplets and
quartets of diagrams which cancel each other in
addition to the pairs of cancelling diagrams found
in tenth order. In higher orders the situation is
even more complicated and the nonexistence of
certain possible transverse diagrams follows from
the cancellation of a large number of Feynman
diagrams (whose number increases with the order
of perturbation theory). Therefore, in the fifth
paper of this series* we consider in detail twelfth-
order perturbation theory and introduce a matrix
method which allows us to rapidly calculate the
contribution of large classes of diagrams in an
arbitrary order of perturbation theory. We show
there, for example, that the Feynman diagram of
Fig. 10(a) does not contribute to leading order [ and
hence that the transverse diagram Fig. 10(b) is
absent]. We also show that the diagram of Fig. 11(a)
does contribute. However, when we consider all
diagrams made up of layers which contain either two
crossed photons or two parallel photons such as
Fig. 11(b) then the complete sum of this class does
not contribute to tenth or higher order. Other
Feynman diagrams which are shown to vanish to
leading imaginary order when summed are given
in Fig. 12.

ORDER
of
PERTURBATION
4™ I
-1,0)
6™ ' L
)
(0,-1)
g™ y D J
ORI,
) (272) ¢1,1) (-1,
(-1,0)
lOTH

~ =~
S~
-
AN
N
LA

/ / /
/
/ / {
L
\|
Y \
N /

(2-2) (2,-2) (-2,2) (-2,2)

PSS

(0,-1)

/
\,
|
/
\
4

(=0 (=0 (,-1

’
\ /
4

\
/

NS
AN
<~

(2,-2)

FIG. 9. The transverse diagrams and their pairs
(m,,m,) which contribute to the backward Compton am-
plitude in fourth, sixth, eighth, and tenth order.
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(a) (b)

FIG. 10. (a) A twelfth-order Feynman diagram which
does not contribute to the leading real or imaginary part
of the pair-annihilation amplitude. (b) The transverse
diagram corresponding to Fig. 10(a).

H. The final answer

From these calculations we find that the following
rules hold (for the backward Compton channel):

(1) Eachtransverse diagram is made up of a
number of segments, each of which may contain
either two-particle states or three-particle states
but not four-or-more particle states.

(2) Three-particle segments may be next to each
other and do not have to (although they may) be
separated by one or more two-particle segments,

(3) If the transverse diagram consists of n two-
particle electron-photon bubbles the contribution

is
(=1, 0)if » is odd, (4.13a)

(0, -1) if 7 is even. (4.13b)

(4) If in 27 +2 order the transverse diagram con-
sists of only one three-particle segment, then the
contribution is

(2,-2)if n=3,
(1, -1) if n=2.

(4.14a)
(4.14b)

(5) If the transverse diagram is made up of a
number of segments with 2 or 3 particles and if

Afa, + m?

2 1
a(A):-Egﬂ—z-_[ d

and we see that in general a(A) is complex. How-
ever, when A =0, «(0) is real and we find

-g% m? me

a(0)= en? mlnF . (5.3)

@ R2a,(1-a,)+a, 2 +(1-a,)m®

BARRY M. McCOY AND TAI TSUN WU 13

JUU-
(a) (b)

FIG. 11. The eighteenth-order Feynman diagrams
which exemplify a cancellation discussed in the text.

the contribution from the i'" three-particle seg-
ment by itself in (2n; +2)-order perturbation theory
is (m;, =my) and if N, is the total number of two-
particle electron-photon bubbles in the diagram,
then the contribution from the entire diagram is

(—1)”2%{1;[(2"% ), -I‘I(ZMa)t .

In the final paper of this series® we sum the lead-
ing terms in each order of perturbation theory and
obtain the results quoted in Sec. I.

(4.15)

V. DISCUSSION OF RESULTS

It remains to discuss the physics contained in the
results (1.8)—(1.13).

First of all, we remark that the amplitudes
9N, (¢) and JM_(¢) are still 2 X2 matrices. However,
the only two matrices involved are the unit matrix
and X, and hence it is convenient to work in the
basis where

A=-ilajo, (5.1)

in diagonal. We diagonalize a(&) by writing (1.10)
in terms of Feynman parameters. Thus

&° [ Ali fld 1-a,
gz A% A Ol‘Kzozl(l--azl)+al)t2+(1—ozl)mz

(5.2)

The s -« behavior of IM_(s) as given by (1.8) is
determined by the singularity of M _(¢) furthest to
the right in the ¢ plane. This singularity may be
either a pole determined from

0=det[1+¢ 'a(R) - (A + m)Z4(&;¢)] (5.4)
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or a cut from Ea(K;g)[a pole in Ea(Z;g) will not
lead to a singularity of JR_(¢)].

It may be seen from (1.9) and (1.10) that (when
the space of transverse momentum is two-dimen-
sional) Z4(&,¢) will have a Mandelstam cut at

L= (0). (5.5)
This cut is present for any value of A so that to
determine the behavior of M_(¢) for A large we
must determine if these are any poles in J_(¢)
lying to the right of (5.5).

We study the possibility of these additional poles
by defining
¢'g®

8m?

x= In A2 (5.6)

and considering x to be of order 1 (and positive) as
InA%~, Then we find that

la@B)--x (5.7)
and Eq. (1.13) for f(k;¢) becomes (for [k| <<|4])

(1 +x)f ~=2mig2c 1K = xf . (5.8)

Therefore f (k;¢) is approximated by
2mig?;!

f~ XA 120 (5.9)
and hence from (1.12) we have
- 2x2
2 PO, . A .10
Z,(4;¢) TR (5.10)
Using this approximation in (1.11) we find
o
M_(5)~-E (1+2)" . (5.11)

3

This approximation has no poles lying to the right
of the Mandelstam cut (5.5). Therefore, for suf-
ficiently large A

M(s)~s*©@ | (5.12)

where the ~ indicates that there will be some addi-
tional power of lns multiplying the expression.

We have thus found that our IR, is given by a
single moving Regge pole at a(¢) which goes to
- as -t -, This agrees with Gell-Mann,

L 7 W

: ar .

FIG. 12. Three twelfth-order Feynman diagrams
whose sum does not contribute to the leading real or im-
aginary part.

Goldberger, Low, Marx, and Zachariasen. How-
ever, we find for sufficiently large A that 9_ is
dominated by a fixed cut at a(0) which is vastly
different from the erroneous moving Regge pole of
Gell-Mann, Goldberger, Low, Marx, and
Zachariasen at —a(¢).

Finally we may study the integral equation (1.10)
when A =0. In this case it may be shown that for
m >0 there is a pole in the amplitude M _(g) which
lies to the right of the Mandelstam cut.

We therefore have the following description of
the amplitude.

(a) The positive-signature amplitude 91 , (¢) is
given by a single moving Regge pole at ¢ = a(t)
which goes to —« as — -, This agrees with
Gell-Mann, Goldberger, Low, Marx, and Zach-
ariasen,

(b) The negative-signature amplitude M _(¢) is
dominated by a pole on the real axis when A=0
which becomes complex and moves to the left as
|| increases. At some finite value of —f the
pole moves to the left of the Mandelstam cut at
¢=a(0) and fixed-cut behavior is obtained for all
larger values of —¢. This behavior is very remi-
niscent to that of the Pomeron’? except that in the
present problem the crossover from pole to cut
occurs for a physical value of .
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