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Dirac's formulation of the monopole theory modified by an additional mass term for the gauge field has been

considered as a possible simplified model for quark binding. We discuss methods for the consistent
regularization of the infinitiespresent in the resulting action and equations of motion. In this way we are led

to an action which is the same as that suggested by previous authors. We show that the expression for the

energy of the modified action still hasinfinitiesunless the mass of the gauge field is infinite. Thus the
regularization procedure is incomplete when the gauge field has finite mass. Applications of the regularized

model to charmonium and other meson states are discussed.

I. INTRODUCTION

In the preceding paper, ' we considered the ca-
nonical formulation of Dirac's action' for electro-
dynamics with magnetic charges, modified by the
addition of an arbitrary mass term for the gauge
field. For zero-mass gauge fields, the equivalence
of Dirac's treatment and other treatments which do
not use strings was established. In the static limit,
the string was seen not to appear in the expression
for the energy of the system. In the same static
limit, in the massive case, the string contributed
to the energy of the system a term which could be
interpreted as a confinement potential for the
monopoles. However, this energy expression con-
tained certain infinities which had to be suitably
reinterpreted.

Here we investigate the regularization of these
infinities more carefully. It turns out that the
method we use is very similar to that of Barut and
Bornzin. ' In contrast to our preceding paper, ' we
use the Lagrangian equations of motion rather than
a Hamiltonian approach for this purpose. The
modified action which leads to the correct regular-
ized equations of motion is the same as that sug-
gested by Nambu. ' In the limit when the mass p, of
the gauge field becomes infinite, the modified ac-
tion reduces exactly to the Nambu-Goto' string ac-
tion plus kinetic energy terms for the monopoles.
The corresponding static energy is finite and leads
to a confinement potential. For finite nonzero p, ,
there is also a Yukawa force between the mono-
poles. However, the static energy now contains
infinities showing the incompleteness of the regu-
larization procedure.

In this approach the strength of the confinement
potential can be readily related to the over-all
constant —I/2vo. ' appearing in the Nambu-Goto ac-
tion. This identification leads, as we have pointed

II. REGULARIZATION OF THE MODIFIED DIRAC ACTION

For simplicity we consider the following action
containing two particles with equal and opposite
magnetic charges and no electric charges:

A =
J

d'x(- —,'F„„F"'+-,' p'&„4")

Here &„ is the vector field of mass y, , z"„&(r) (N
= 1, 2) are the monopole coordinates, m„„are the
corresponding masses, and

F""(x}=&"A"(x}—8"A"(x}+ G"',

where

(2.2)

++il v 1 it u eta
a8 t

~~8(~) =g dT «&'(~- y Tya))o~g(~, o),

&~8(&,&) =y (r,&)ys'(&, &} —ys (r,&)y '(T,&),
(2.3}

In (2.3), g is the magnetic charge. Furthermore,
the monopoles are located at the ends of the string
y„(r,&) so that the o integration runs between the
monopole positions. (In Ref. 1, we used an "infi-
nite" string. For our present purposes, however,
it is adequate to assume that the string is of finite

out elsewhere, ' to a suggestive experimental con-
sistency if the monopoles are considered to be
charmed quarks and the new narrow resonances as
their bound states. Some further consequences of
this approach are discussed.
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extension. )
The field equations which follow from (2.1}are

e„F""+p.'A'=0, (2.4a)

'N * N ~ Nv
2(~.ii2 =g„F((„(z)2}z& (no N sum),

(2.4b)

pv a * *
8$p &2 (3') +S &p2(y) +

S 2 + p(3')
Bp 8$

(2.4c)

Here g, =+g and g, = —g corresponding to monopole
1 at the beginning of the string and monopole 2 at
the end of the strxng, while E&, is defined analo-
gously to 0&, . Note also that by construction of*
Ggvy

8 * 8

~X~ ~X~

is clearly peaked around 0 =a'', 7' = T'. As a first
approximation we therefore set

y(r', o') = y(T, o) +(r' r)y(7-, &)

+(v' —o)y'(T, o) (2.7)

Resolving J into components parallel and perpen-
dicular to y',

different nature from those in the last two terms.
The latter can be regularized by giving a suitable
interpretation of G2„(y) while the first term, in

addition, requires an interpretation of the deriva-
tive SG„,(y)/Sy2. Thus we will treat the two

cases separately.
The expression for G()„(y(r,&)),

('p, (3(~P)) =2 jdT'~'5'()(~P)-)(~', ~'))

X &2 „(r', (T' },

= E g f&r ()„'(*—z"„(rl)k" . (2.5)
N

~ g
~ S S I

~r2 Q +~/
(2.8)

- 2 Y—„G„(y)- y'" s, G, „(y) (2.6)

The singularity in the first term of (2.6) is of a

Equation (2.5} indicates the presence of monopole
sources for the vector field.

Note that both (2.4b) and (2.4c) contain infinities
since they involve G2„(y) which is seen from (2.3)
to be infinite. We will now describe a regulariza-
tion procedure for these infinities. This procedure
will also be consistent with (2.5) when it is evalu-
ated on the string. Unlike other authors"' who

have attempted to regularize the action directly,
we will regularize the equations of motion and then

construct an action which leads to the regularized
equations of motion. It turns out that the two pro-
cedures are not exactly equivalent as we shall dis-
cuss later.

The basic idea behind this regularization is to in-
terpret an infinity 6'(0} which occurs in the expres-
sions involving G„„(y}as a finite constant. This is
similar to giving the string a finite lateral dimen-
sion as other authors'4 have pointed out. The
technical problem involved is the unambiguous co-
variant separation of the transverse directions
from the others. This will be achieved by requir-
ing the regularized equations to retain covariance
under reparametrizations in the (r,&) space.

First, consider the part J~ of (2.4c) which con-
tains the singularities:

a
~p = —&"'

2 G„.(y)
Bp

~ J.
~ g p

Resolving this four-dimensional & function into

directions perpendicular to the world plane of the

string and along y' and j gives

6'(y(T, &) —3 (r', &'))

='(o)' (~'-~) ~ (~'- ~),. (-) '*) '*)

x6((r'- 2) (y ')'i'),

Thus

6'(0)6(o' —&)6(r'-2')
[(P yl )2 y2yl 2] 1 f2 (2.9)

2 ()
()ll( ) )

G()2(y) =@ (0}[('.yi)2 y2 2] i)'2 (2.10)

Next, consider the first term of (2.6). SG»(y}/
By~ can be written as

8 Xf3'SX' POP X

s p G2v(y)= 2 + .. 2 s G2. (y)
Bp

+ (n "n("+ n ' n„' ) G (y)
8

(2. 11)

and using (2.'I), we find

6 ty(r o) —y(T', &'))
I

(~'- ) ~ (~'-~),. )"~ (~'-~)(').
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where y'/(- y")' ', y /($ ')' ', n ', s" form an
orthonormal coordinate system. The last two
terms in (2.11) can be consistently defined to be
zero by evaluating the derivative as a symmetrical
limit

lim —[G„„(y+-,'4) —Gp„(y -2&],~0 &

where 4 is normal to the world plane of the string.
This limit vanishes because G„„(x)has support
only on the world plane of the string. On substitut-
ing y q

= y q - (y y '/y") ~' and using (2.10), the first
term of (2.6) becomes

p Gpv(y)8$

Since

~
~ I 2 ~ ~ 2 ~ I I2

~~~ 2 j

2
~@v

f(3 v')'- p~ I'"I
we have

pv ~ &gv gpv P'
» [(y y')'- y y"l'" » [(y y')'- y'y "]'"

=0.

Thus (2.12) vanishes and (2.6} simplifies to

p ~ ( ) y so y s r [(y~,yl)2 y2yt2] 1/2 '

(2.12)

X p 2 ~ 2 p2 1 /'2 ~

(7

[(y y')'-y y"]'" ' (2.12)

If we identify 6 (0) with a finite constant, Eq.
(2.10}defines a finite expression for Gp„(y) and its
derivatives. Then the equations of motion (2.4b)
and (2.4c) become

'N
p N Nv

ms» s ~. ~.ii2 =gN(e„v),p:A (ss}Gp (~s))ks (no N sum),
(Cg Zg)

(2.14)

~ P v 8 8 g 8 y 2 ~ g 8 ~ 8 Ops
pp &y vy s & s (y} s (y} g ( } y so y s &I' ~)p:»&]&&2 (2.15)

Note that for Aq = 0, (2.15) reduces to the equation of motion of the Nambu-Goto string.
Next consider Eq. (2.5}. When x is on the string but away from the ends, the right-hand side vanishes.

The left-hand side, using arguments similar to the above, may be shown after some calculation to vanish.
Also when x = y(r, c) is near the position y(r, c„)=ss(r) of the monopole H, the right-hand side of (2.5) may
be written as

g„de'd7'6 o'-o'N 6' y v, v -y T',o')j, v', 0' no Nsum.

With our approximation (2.9) for the 6 function this becomes

g„6'(0)6(o —o~)y (7' os)
([y(T oz)'y (r &~)] —y (r oN)y (r os))

This is easily seen to be the same as the left-hand side of (2.5}when sG„„(y)/sy„ is evaluated according
to the prescription used in arriving at (2.12}and taking the surface terms into account.

Now the modified action which reproduces the equations of motion (2.4a), (2.14), and (2.15) is seen to be

A'= d'x ——,
' 8 A - A 8"A."-8"A" + 2 P,'A A"

-g d7dge"A" y*o — 62 0 dg da y' '- y12 '~2-m „d7 sN z„" '~'. (2.16)

We see that the third term in (2.16) is exactly the Nambu-Goto action if we set

g'5'(0) = 2„,, (2.11)
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where o" is the universal slope of the Regge trajectories. This same action has been suggested by oth-
ers '4

Note that the choice (2.17) regularizes the equations of motion (2.14) and (2.15) by making 6'(0) finite.
However, we shall see later that there are still infinities present in the expression for the energy of the
system.

The comparison of 4' and A. shows that we have simply made the replacement

4 d &G„vG" =— dT dadT'der'5 y z,a —y 7',a' ~a„v T,u a'" 7', a

85 (ol f & ~[(p x')* —Vy'*]'~' (2.18}

in the term involving E„„F in A to get A . It is amusing that if we had applied the approximation (2.9)
directly to the 6 function appearing in (2.18}, we would have obtained zg 6'(0) rather than g 5'(0) in the last
expression of (2.18). The expression in (2.18) without this factor —, is the one which with a consistent in-
terpretation of infinities leads to the same canonical momenta and Hamiltonian given in the preceding
paper (cf. footnote 7). Furthermore we note that regularization is not required to interpret the zero-mass
theory since the Hamiltonian turns out to be finite except for the well-known self-energy infinities associ-
ated with point particles. '

III. THE ENERGY OF THE SYSTEM

To understand the physical situation represented by the action (2.16) it is helpful to compute the energy
of the system. Making the convenient choices

z«=y, = t,N (3 1)

we write (2.16) as

A'= dt L (3.2)

and compute the energy using the equation

&L 5L N &LE=-L+ d'xA + da y& . + k"„,
W

(3.3)

Here the latin indices are to be summed from 1 to 3 and

sr.
~/p (no N sum),

Bz~& (1-z &'zg~
(3.4a)

5L
(3.4b)

5L cr

-rr5 (o);.- -,, (3.4c}

In (3.4c) &x is in the interior of the string. ' The expression for the energy becomes

m
Z=Q ' ', p, d * —,F 5'„+ —, F 5lq-, gA Aq — E A)

AfN 1 jO 1 $f 2 jf AP

(1-z„z„)' ' a

~I
+ 4 d XG G~g+ & 0 da' ~ ~I 2 ~t2 ~~I2 y/2 2 d XG Ggo.

i y y') +y' -y y' '
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Equation (3.5) will be used in the next two sections
to study various limits of the theory.

IV. THE p ~~ CASE AND ITS STATIC LIMIT

then becomes, on dropping dotted quantities,

(4.6)

In the preceding paper' it was shown that for
p =0, we recover from Dirac's action the electro-
dynamics of electrically and magnetically charged
particles and that the string played, in a certain
sense, no dynamical role. In the p, -~ limit we
shall see that the opposite occurs, namely that the
field A„disappears and we get a theory of a
Nambu-Goto string with monopoles at its ends.

The field equation (2.4a) for A has the solution'

*A(x) =-(~'+&) ', G~ (x), (4.1)

where we have used ~"A„=O, which also is a con-
sequence of (2.4a). The precise definition of the
Green's function (p,'+ ) ' is not necessary for our
purposes. Note that Gq has no dependence on the
mass p.. Thus as p, -~, A -0. The remaining
field equations (2.14) and (2.15} reduce to

The fourth component of (4.2) gives an identity.
This equation just says that the direction in space
of the string does not change along the string.
Hence the string must be a straight line. The po-
tential energy V between the monopoles owing to
the last term of (4.5) becomes

(4.'t)

where r is the distance between the monopoles.
Some consequences of this potential will be dis-
cussed later.

V. STATIC LIMIT FOR FINITE p

In this more general case, we consider A.„as
well as Y~ to be time independent. ' Then

2 ((2( )
( } y So X Sr [(J,y/)2 ~~2y/2]1/2 i

(4.2)

'N
I((i( Ni T)ZN

NNg ( N, N)1/2 ggN ( )[(, i)2 2 i2]lf2

(no N sum), (4.3)

G;~(x) =0,

G«(x) = -g l do 52(x - y) y, ',
*

Ai (x) = —
2 G~;(x),—V 8+~

A, (x) =0.

We also have from (2.5} the identity

(5.1)

4

where in (4.3) y and y' are evaluated at the mono-
pole position 0 =a'„. These field equations may be
derived from the action A" obtained by setting
A„=O in (2.16), namely

8
„sG(( )x=- Q zN6'(x- ZN)
Xf

(5.2)

Substituting (5.1}and (5.2} in the energy expres-
sion (3.5) gives after a straightforward calculation
the static potential

—m~gy dT g~ 'z~) (4.4)
g2

V = 2 d X 2 2 G)0 X) G(0 X
p.
' —V2

The energy expression corresponding to A" is ob-
tained by setting A„=O in (3.5):

1 exp(- i2lz„" —z„ l)+ 2 gNAr'
NNN

2'

mAf N
~ ~

(1 ~zN ' z~N)1l2
~vv (OI f & Iv'I**

~r ~

g 5 (0) [i-. i 12 i2 2-'i2]112m'y) +y -y y

(4.5)

It is interesting to consider the limit of this
theory when the string is static (when y& does not
depend on time'}. The equation of motion (4.2)

Note that for p-~, only the third term, which we
found in the last section, survives. There is now
also a Yukawa interaction given by the second
term for N&N' (for N= N' we have the usual in-
finite interaction self-energy, which may be drop-
ped). The first term in (5.3) is seen to contain an
infinity when we substitute for G;2 from (5.1).
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Thus the regularized action A.' with the interpreta-
tion g 5'(0) = 1j2va' still leads to an infinity in the

energy when p, is finite. "
Finally, we show that the string equation of mo-

tion (2.15) in this case is identically satisfied for
a straight string so that the last term in (5.3) still
gives a linear potential between the monopoles. In
the last section, we showed that the last term of
(2.15) vanishes for a straight static string. The
first term of (2.15) also can be seen to vanish. To
show this we use (2.4a} to rewrite this term as

V(r)= '+ar,

n, =0.2, e, =0.19 GeV'.
(6.1)

=0.18 QeV, (6.2)

They mention that the linear term is the important
one for getting the energy levels right. We notice
that our model gives a prediction for e„

1
CY.2

=
2WQ

In this expression, by (5.1}, Ao(y) is zero while

A(X(o)) =— db'go, o') "' "', x y'(o'),
4v '

ly(&) —y(&') I

(5.4a)

where y(&) —=y(T, &) and

where we have used a' =0.895 QeV ' as the experi-
mental Regge slope. The close agreement between
the two values for e, seems to indicate that the
notion of the dual string as providing a quark bind-
ing force may have some validity.

It may be of some interest to check further the
consistency of this simple model. The S-wave en-
ergy levels" of a quark-antiquark system nonrela-
tivistically bound by the potential e,r are given by

F(o, o') =— for r = Iy(o) —y(o') I.dr r
(5.4b)

Z„=-z„+ +2 (6.3)

Thus A, (y} vanishes for straight strings owing to
the cross product in (5.4a). We have still to show

that S G (y) jay is zero. By (5.1), this vanishes
for 0 = 0, while for 0 = & it becomes

* 8

Bpg
("g((X(&))=-Z &((g

x do'5' y 0 -y 0' )Y&' & - 54c

Here S j&y& can be resolved into components along
and perpendicular to y&'. The latter gives no con-
tribution based on an argument similar to that fol-
lowing (2.11), while the former also gives zero
because of the e symbol. Thus a straight string is
consistent with the static approximation.

where m is the quark mass (we have dropped the
subscripts M and N from the monopole mass m„„)
and z„are the zeros of the Airy function. The
first few of them are"

z, = —2.338,

z, = —4.088,

z~ =- 5.521,
(6.4}

z4 = —6.'786.

It has been pointed out" that the prediction of (6.3)
and (6.4),

VI. CHARMONIUM
m(y, ) - m(((i, ) = ' "[m(ii, ) -m(q, )],

1 2
(6.5}

Even though the above model is certainly far too
simple for it to be a fully realistic description of
hadron dynamics, it contains the interesting fea-
ture that a term in the potential between the mono-

poles increases linearly with their separation.
Such a term would of course prevent the monopoles
from escaping each other and hence suggests their
possible identification with quarks. Several au-
thors" "have recently tried successfully to ex-
plore the recently discovered narrow resonances
as S-wave states of a charmed quark-antiquark
system bound by such a potential. Eichten et al."
actually fit the energy levels as well as the elec-
tronic decay widths with the potential

m„m(g, ) —m(g, )
m, m(p') —m(p}

(6.6)

where g„ li„and g, are the meson states (J)(3105),
P(3695), and iI)(41VO), leads to good agreement
with experiment. Of course, one has equations
similar to (6.5) for the higher radially excited S
states. Beside this, one can look for rough con-
sistencies involving bound states of noncharmed
quark-antiquark pairs. Denoting by m„ the mass
of the uncharmed nonstrange quark and by m, the
mass of the charmed quark, and interpreting p' as
the first radial excitation of the p, we get from
(6.3)
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To derive (6.6) we have also assumed that a uni-
versal r/2za' potential holds for both the charmed
and uncharmed cases. The prediction of (6.6) that
m„ is appreciably less than m, seems reasonable
and encourages us to believe that this approach has
some merit.

Now our static potential (5.3) contains, in addi-
tion to the r/2za' term, a Yukawa term and an in-
finite-string-like term. Neglecting the latter, we
might try to improve the semiphenomenological
binding potential by including the Yukawa term.

Thus we arrive at the potential

e"" r
V=@, +

27T Q
(6 7)

where c, is a negative constant. For large but not
infinite p, one can get an analytic expression for
the energy shift by treating the first term of (6.7)
as a perturbation. This energy shift is, by first-
order perturbation theory,

c,(m/2za')'~' j dz([Ai(z)]'/(z —z„)j exp[- p(z —z„)(m/2zo. ')'~'J

f"dz [Ai(z) ]
' (6.8)

where Ai(z) is the Airy function. The denominator
can be evaluated as

prediction for the mass of g, (for example}:

m(g, ) ~2.47 GeV. (6.14)

[Ai(z)]'dz = [Ai'(z„)]',
~n

dAi'(z) = —Ai(z)
dz

(6.9}

dz exp —JLL g —g„

m 2/3
[Ai'(z„)] . (6.10)

From (6.8), (6.9), and (6.10), we get the energy
shift as

mc,
2w(x p,

(6.1 1)

Note that 4F.„ is independent of n. Thus the pre-
dictions of (6.5) and (6.6) which depend only on

energy differences still hold.
Combining (6.2), (6.3), and (6.11), we find the

following formula for the energy levels in this
large- p case:

by using the differential equation for Ai(z). " Also
for p»(m/2za')'~', "

The inequality in (6.14) comes about because the
last term in (6.12) must be negative. To improve
this result while keeping the present over-all
framework, we may of course consider changing
the value of 1/2wa' given in (6.2). Actually a rela-
tively small change in this quantity from 0.18 to
0.21 is sufficient to shift m, in (6.13) from 0.84
GeV to 1.16 GeV and change (6.14) to m(g, ) ~3.1

Geg ~2

It is natural to speculate that the parameters
I/2wa' and c,/g' are the same for charmed and
uncharmed vector mesons. This would mean that
the formula (6.12) should give the a, Q, or Q mass-
es (for example} depending on the value of the
quark mass m. However, the minimum of (6.12}
as a function of m is uniquely determined once we
specify m(P, ) and m(g, ). It is independent of m, and
is given by (noting z„& 0)

min E„=,z, (- )'z'A' '4

where

Inserting the values for m(g„} and z„, we find

8„~1.8 GeV, (6.16)

m, = 0.84 GeV. (6.13)

Putting (6.13) back into (6.12) gives an absolute

If we apply (6.12) to the [$(3105)—g(3695)] mass
difference, we get an estimate for the mass of the
charmed quark,

which is clearly in disagreement with the observed
vector-meson masses. The simplest way to rem-
edy the situation is to add different constants to the
potential for different cases, as several authors"'"
have done. Qf course, in a presumably more
realistic non-Abelian version of the theory, mod-
ifications of the parameters may occur naturally,
giving rise to the correct mass spectrum.
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=-2g ~ (0) do{y$ y 1)

However, if we approximate

= [1/(y )'y )') ]6'{0)6(a —a'}.

we would get only ~& the required value. The situation
is similar to that described in the discussion after
(2.18),
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To derive (6.9), we multiply the equation d Ai(z)/dz
—zAi{&) = 0 by dAi(g)/d& and integrate from z„ to ~.
Since the integrand on the left-hand side of (6.10) is
peaked around z=z„ for large p, we approximate
Ai(z) = (z -z„)Ai'(z„). Then the integral is easily eval-
uated.


