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The gauge dependence of the effective action I and potential V are studied in general gauge theories. Explicit
expressions which manifest all the gauge dependences of I and V are obtained. From these equations, it is
concluded that I (or V) has gauge-invariant values for any solution of the Euler-Lagrange equation
grlgy = 0 (or away = 0). Introduction of a certain concept about the categories of gauge conditions resolves
the appearance of a gauge-dependent unphysical "vacuum. " Any gauge can be used to calculate I'. A wide

class of gauges are allowed for the effective potential V; for instance, in scalar QED the allowed gauges are
—(1/2a)(BA), —(1/2a)(9A —~42) (where the direction of condensation is restricted to 4&), the Coulomb

gauge, and the axial gauge. In particular the R& gauge is also an allowed gauge.

I. INTRODUCTION AND SUMMARY

The effective potential V has recently received
much attention and has been widely discussed by
many authors. ' It is the ground-state average
energy density given as a function of an order
parameter, such as the expectation value P of a
scalar field 4. The corresponding quantity in
statistical physics is the Gibbs free energy. For
discussions of spontaneous breakdown of sym-
metries, the effective potential plays a fundamen-
tal role; that is, the true ground state of the the-
ory should realize an absolute minimum of V(P).

When gauge fields are present in the theory,
however, V depends on the choice of the gauge.
Although theories with gauge fields are much more
interesting and important theoretically, quantities
derived from V seem to depend on the gauge. ' '
An interesting possibility of symmetry breaking
due to radiative corrections, discussed by Cole-
man and Weinberg' in the model of scalar quan-
tum electrodynamics, may have gauge dependence,
as pointed out by Jackiw. s Weinberg' calculated
in the A~ gauge' the tadpole graphs T at the one-
loop level and was led to the following conclusions:
V itself cannot be defined in general in such a way
that T is given as & V/SP, and only in the Landau
gauge t' —~ can we define V. Dolan and Jackiw4
chose another gauge and calculated V, but they
found a peculiar unphysical minimum of V. They
claimed that calculation of V should be done in the
unitary gauge.

One usually says that the effective potential V

(or action I") is an off-shell quantity and is not di-
rectly related to a measurable quantity; therefore,
it may depend on the gauge. But one can also
argue the other way: The effective potential V at
any stationary point gives ave~age energy den-

sities of the (quasi-) stationary state of "vacuum"
and is a physical quantity. So the values of V at
any stationary point should not depend on the
gauge. Our main conclusion of this article is that
these latter statements are true, and we see that
this supplies a sufficient raison d'etre for V in
gauge theories.

Consider W[J], the generating functional of the
connected Green's functions. Let us expand it
around J'=0 (with all the indices and the symbols
of summation and integration omitted):

W[J] =W[0]+J + —G"' J'+ —G"' J'+ ~ .1
5J ~ 2 3t

(1.1)

We know that the position of the poles of Gt" (p),
G '

(p, q), . . . (the Fourier transforms of Gt",
Gl'l, . . . ) in any channel is gauge invariant and
that the gauge dependence of residues of these
poles can be absorbed into wave-function renor-
malimations, i.e., the S matrix is gauge invariant.
Further, the value W[0] is gauge invariant, al-
thoughthere is no concept of "on-shell" for W[0].
This is proved in Sec. II and is directly related
to the above arguments about the physical mean-
ing of V. Translate (1.1) into the language of ef-
fective action I', I"= W-Z(&W/&J):

I'[4 = I'[P]+—(P —P)' I'"+—(y —y)' r"'+ ~ ~

2

where p corresponds to J=gl'/gp( & &
=0.

I' [Q] = W[0], gauge invar iance of W[0J leads to the in-
variance of I'[P] and also to gauge invariance of
the effective potential V(tP) =-- I'[Q]/ jd'x. Thus
we have the following: In the expansion (1.1), each
term except for the second term Z(&W/&J) [ ~ c
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has the gauge-invariant content. And in the ex-
pansion (1.2), the value I'[P] and the zeros of
I'~'i(P) are gauge invariant. [For I ~'i(p, q),F, . . . gauge-invariant contents are somewhat
complicated. ] We can say from this statement
that symmeA"y breaking i s a gauge-Agggyignt con-
cept. We remark here that if we expand W[Z]
around some J =Jo+0, then everything depends on
the gauge, for example the value of W[JO] and the
position of the poles of the Qreen's functions.

Precisely speaking, the gauge invariance of
W[0] is not sufficient for the invariance of I'[Q]
because W[J'] is, in general, multivalued around
J=0. So the proof must be given directly for the
single-valued functional I . This is done affirma-
tively also in Sec. II together with the considera-
tion of renormalization complexities. There we
will get the expressions which manifest all the
gauge dependences of the renormalized effective
action I"

[&f&] [(2.26) and (2.2'1)], and which directly
shows gauge invariance of I' at its any stationary
point.

We stress that any gauge can be used to calcu-
late the effective action I'. Some care is needed
for the gauge choice to calculate the effective
potential V(Q). Consider the definition of the func-
tion V(P) from the functional I'[Q(x), a„(x)]. (Up
to this point, the argument Q of I [P] represents
all the fields. But in this paragraph we denote
scalar fields as P(x) and vector fields as u„(x)
for definiteness. ) V(Q) is defined as
—I'[p(x) = p, &„( )x=0]/ fd'x and its stationary
point Q

= p (x-independent) is supposed to corre-
spond to the true ground state of the theory. But
we must note that the true ground state does not
necessarily realize P(x) =

Q and a„(x)=0 because
of the existence of gauge freedom. In a certain
class of gauges, which we call "good gauges" in
Sec. Ill, the true ground state realizes Q(x) =Q,
a~(x) =0. But in another class of gauges, "bad
gauges, "

Q(x) =
&j& and &„(x)=0 do not satisfy the

Euler-Lagrange equation & I'/& P = &I'/«~ =0. In
the latter case, the true ground state has the ex-
pectation values of x-dependent P and nonvanishing
a„. So in bad gauges the stationary point of V(Q)
is deceptive. In order to search for the true
ground state of the theory by the use of the effec-
tive potential V(Q) we must use good gauges. We
have to work directly with the effective action
I'[P(x), a„(x)] in the case of bad gauges; we define
in any gauge the average energy density V at sta-
tionary points of I', Q(x) = Q(x), a&(x) =a&(x):

4(~)=4 {~)
a {x)=a {x)

Gauge invariance of this quantity for any gauge is

II. GAUGE INVARIANCE OF THE EFFECTIVE ACTION AND

POTENTIAL AT STATIONARY POINTS

A. Ward-Takahashi identities —A review

In order to study the gauge dependence of the
effective action and potential, we need the Ward-
Takahashi (WT) identities. ' So we briefly review
the WT identities for the generating functional of
the connected Green's functions. Let us start with
the infinitesimal local gauge transformation

4; -4 i = 4; + (A; + t,"~4,) u„+O(u'), (2 1)

where we have used the "condensed notation. "'
4; stands for all the fields and the index g for all
attributes of them. For the gauge field A&(x), i
stands for the group index a, the Lorentz index p.,
and the space-time variable x; for the scalar field
4,(x) (we use the same letter C for the scalar field
and for the condensed notation of a general field,
but it will cause no confusion), i stands for the
representation index a and x. Summation and in-
tegration over repeated indices will always be
understood unless noted otherwise. The inhomo-
geneous term A;" in (2.1) is nonzero only for the
gauge field 4; =A.~(x) and is given as

a direct consequence of the invariance of I'. The
definition (1.3) of the effective potential V may be
obJected to because it is not a true local quantity
and has only the meaning of average. But we
should note that even the "genuine" effective po-
tential V(g) in good gauges is not a local quantity
and it becomes inevitably nonlocal by quantum
corrections. Thus, the defect of bad gauges lies
only in the inconvenience in practical calculations.

Wide varieties of gauges are included in good
gauges: for instance, the Coulomb gauge, the axial
gauge, the gauge -(I/2o. )(SA)' for any o., and especi-
ally the A~ gauge. All these can be used to cal-
culate the usual effective potential V(P) and give
gauge-independent stationary values, in contrast
to the conclusion of Dolan and Jackiw4 and Wein-
berg. ' These are discussed in detail in Sec. III.

The remaining contents of the present paper
are as follows. Section IV includes discussions.
The explicit calculation up to O(h), which gives
all the gauge dependences and gauge-independent
stationary values of V(Q), is contained in Appen-
dix A. Appendix B includes a combinatorial direct
proof of the gauge invariance of V(Q) and a sta-
tionary point up to O(h'). Examples of good gauges
in some non-Abelian gauge theories are given in
Appendix C. Finally, in Appendix D the equiva-
lence of two approaches using the effective poten-
tial and tadpoles is proved.
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(2.2}

and t,".

z is a representation of the generator labeled
by a on the fields 4&.

The generating functional W~ [J] of the connected
Green's functions for the given Lagrangian I. in
the F gauge, is expressed as

exp —8"z J

where

(2.4)

and &~[4] is the Faddeev-Popov determinant, "
&|;[4]= detM~ . (2.5)

M~ is determined by the character of the gauge-
fixing term E„(4), which transforms under the
gauge transformation (2.1) as

dC 4+ 4 exp —S 4 —
~ F„' C +J;C;

(2.3)

E (C)-E (4') =E„(4)+(M~) 8u]]+O(u') . (2.6)

If we change, in (2.3), the integration vari-
ables 4 to 4' as in (2.1), we can obtain the WT
identity for W~[J]:

+J,. A, +t, —.
Z

exp @@~J =0. (2 'I)

A slightly different (nonlinear) change of integration variable, " such as

4; -4 =4; +(A;"+tg~4~) (M~ ')„Bus+0(u ),
gives another type of WT identity' ":

exp —8'~ J =0. (2.8)

With the help of this WT identity, we can estimate the change of Wz[ J] under the change of the gauge-
fixing term F to F+4F:

«v ~~.«]~I -Bw r& I&I = I&&]& ]&]8~ ~]&[&]-l&.'(&]+«&])

x —J](A, +t,")4q) [M„'(4)]„]]AE8(4) . (2.9)

This gives the simple relation

W, [J]—W [J]=J, (f~),
ith the following notations

fj =—(A; + t;14,) [M~ '(4)] 8 AE8(4),

f[dc] A~[4]II exp((i/8) (S[4]——,
' E '(4) +J; 4,] )

J [dc] A+[4] exp((i/k)$S[4] —-', E„'(C) +J; 4;j)

(2.10)

(2.11)

(2.12)

B. Gauge dependence of the effective action

The generating functional of one-particle irre-
ducible (1PI) vertices I'[P], or the effective action,
is given by the I.egendre transform of W[J]:

&Fz[4"]
i 6)E (2.15)

By the use of these relations, (2.10) is trans-
formed into the equation for I:

F| [4& ] = Wz[J] - ~~ 6',
where

z 5Wz[J]
z

(2.13}

(2.14)

r , [y
' ]- I",[y'] = - —J, ((4,f, ) - (4, ) (y,.))J,.

—= —
@

J;(4;fq), J) . (2.16)
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Here ( ~ .), means the connected part of ( .) and
/should be expressed intermsof P, (2.15). Equation
(2.16)gives the difference of two effective actions with
the same source J.

%e can also easily evaluate the difference with
the same argument 1t1:

(2.17)

E1luations (2.16) and (2.17) give the response of
the effective action to the infinitesimal change of
the gauge. We see that the values of 1" at its sta-
tionary points (8 =0) are gauge independent. This
is obvious from (2.16}. Some care is needed in
order to derive the same conclusion from (2.1'l}.
%e should compare the values of I' at different
Q's which realizethe stationarity of I'with different
gauges. But the change of stationary points due to
the gauge change causes no change to the values
of F at stationary points:

1'.~[4 ] —f' [4 1=1'.11F[4 ] —1 [4' 1

F[$ ] nyF O(~2)5pF

=J;(f;)+O(t1E') .

(2.18)

Therefore (2.17) is sufficient to lead to the same
conclusion. Up to this point all the quantities are
unrenormalized. The problem is whether this
conclusion about the gauge invariance of I' at sta-

tionary points is also true for the renormalized
I', and this is the subject of Sec. IIC. Since the
(unrenormalized) P-fixed relation (2.17) is easier
to discuss than (2.16), only the renormalization
of (2.17) will be discussed. This is sufficient for
our purpose.

g (@02 +@02)2

1

(+0)

(2.19}

(2.20)

where the index zero indicates unrenormalized
quantities and the direction of would-be symmetry
breaking has been chosen to be 4,. The reason
for this special choice of I' will be discussed in
the next section. The change of gauge 4I in this
case is due to the changes of the parameters n0
and v, . Equation (2.17) can be written in dif-
ferential form:

C. Gauge dependence of the renormalized action and potential

Although the formulas of Secs. IIA and II B
are completely general, it will be more trans-
parent to base the discussion on specific examples.
Let us take the following unrenormalized Lagran-
gian density L of scalar quantum electrodynamics
(scalar QED) and gauge-fixing term Il:

I, = —2 I'q, Il 2" +2 (Bq4, —eOAqC, )'

+ —(B 4 + e 4 C )' ——'m ' (4"+C")

J',e,'- J,'C', --,8.J0 — ', a A'- V,C,', (2.21)

(2.22)

The renormalized version of these equations is obtained as follows. %'e introduce the renormalized
quantities'

([Alt 429 a/i] P +09 ol ofm0 e0}

= I' ""([ Q „1t1„a„],c2, v, z, m 2, e),

1pO z 1/21t1 a0 z 1/2a gO z 1/2 J'
1„2 2 122& P 3 gt 1,2 2 1,2&

g 1/2Z 1/2
0 2 3 ~

J0 =Z -1/2J
p 3 Q,

(2.23)

(2.24)

(2.25)

From these relations we have

(1-2y, a) -+(y, —y, )v ——y1A. ——y m —y"e ——y" p +p — — —Z'
n ~ n n ~ n ~ n 2 ~ n ~ n

Bu ' ' Bv BABm. ' ' Be ' '51t1, 251t1 y2 u5a»

1 1 eJ4 —J 4 ——&'J (B A —vC ) (2.26)2
XP
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[1+(y,"—y",)v] —-2yaa ——y&A.
——y"„m', —y",e ——y", P, +Q, -y,"a„—I'

8 g e

The definitions of y's are

n - / /y 3= 2Z lnZ23& y2 3 2Z2 Z lnZ2 38&o 8vo

(2.28)

(2.29)
where these derivatives are evaluated with the
other bare quantities fixed. " Since Z3 is inde-
pendent of no and vo in our Abelian case,
y, =y,"=0. Some comments are required about
(2.26) and (2.27). Though they are "renormalized"
version of (2.21) and (2.22), they are not free from
infinities. First y's include divergences. Second,
since the stationary point of F is infinitely dis-
placed in the gauge with nonvanishing v, (this is
the case' even in the symmetric theory, i.e.,
m'& 0), P, should be replaced by Q, +ur, where ur

absorbs this infinity. Correspondingly, the term
y,"'"Q(5F/5P, ) in (2.26) and (2.27) is replaced by
5, '"(51"/5P, ), where

[The matrix element ( ~ ~ ~ ) here is evaluated with
the theory (2.19) in the presence of an external
source J, =BV/&P ].The equations (2.31) and (2.32)
are the final expressions, which manifest all the
gauge dependences of the effective potential V(P).
These expressions clearly show, we remark here,
that gauge dependences of the effective potential
V are not solely due to wave-function renormaliza-
tion in contrast to the conclusion of Ref. 13. Wave-
function renormalization causes only a part of the
first terms of the right-hand sides of (2.31) and
(2.32) [the y, '" terms in (2.30)].

A direct consequence of (2.31) and (2.32) is
gauge independence of the values of the renormal
ized effective potential at its stationary points;
that is,

(
n—+y v —-y x —-yam' V =0n 2 8v ~ @ 8~2

(2.33)

8 y 2 8(I+y" v) ——y" ~ —-y" m' V =O,
J

5,"=y", (P, +u )+Z,
8&o (2.30) (2.34)

5" =y "(P +w)+Z 't'Z't'—~K

0

Because of these infinities, (2.26) and (2.27) are
meaningful only when suitable regularizations are
performed. We adopt the n-dimensional regular-
ization, which is perhaps the most convenient.

For the effective potential

d4x,

we have, corresponding to (2.26) and (2.27),

(
e 8 n 8 n—+y v —-y, Z —-y~rn', V

8Q 8v 8A.

=I!." 8—+
2

—@„)( A —vO, ),),~ 8V & 8V e

j. xy

(2.31)

8 8 2 8(1+y" v) ——y&A. ——y" m2 V
8v 8A, 8m

(2.32)

8 8—V= —V=0,
8~ 8v

(2.35)

Equations (2.33) and (2.34) indicate that the ex-
plicit n and v dependence of V is compensated
for by the implicit dependence through A. and m'.

We have checked (2.31) and (2.32) up to O(h').
We explicitly reproduce this calculation up to
O(h) in Appendix A, which is necessary for the
discussions below, also. Further, there is an in-
teresting proof of (2.33) and (2.34) which is shown
in Appendix B up to O(h').

We want to emphasize the importance of the di-
rect check. From a simple-minded point of view,
it might be thought that the following arguments
are sufficient to prove the gauge invariance of the
value of V at a stationary point.

We have

where Q=Q maybe any stationary point of V. A
more explicit statement of gauge independence is
obtained if on-shell renormalizations of A, and m'
are performed, in which case Z& and Z become
independent of no and v„ i.e., y z =y~ =0. So
we get, at the stationary points,
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——'v(e) fd »' = —W[J =0]2

r
=tn [de;da;dA„']exp —S[e;,e;,A„'])

=1n]( [de; de; dA„'] j[ [t(s] n~ [e '] I!(P'(e, A„)—c)exp(—s[e;, e;,A'„])

=ln [dg]+ln ~ [dC]exp ——— ( [d4,'d4,'dA„c]&c~[4']5(F'(O', A„') —C)

»exp —S[e;, d,",A„'])

= 1n [ds] a 1n [de", de,"dA„' I
n" [e"] exp —[S[e,', e,",Aa I - - F (t"A„")j),

=(n [dd]a(n [de, dd, dA, IA,[e]axp —'[S[Z,'*e„Z,"e„Z,"A„I—[P'(e, d)j)

dex(lnZ, + —,
' lnZ, )5e(0), (2.36)

where dg is the invariant Hurwitz measure' over the gauge group and the equations

&',[C'] [dg] 5(F'(CM, A") —C) =1, (2.37)

n~[e]=net( " ",)=dat(
e ™)=n [a], (2.38)

F'(CO, A') =,&, (sA' —v,Czc) = (8 A —v4, ) =F(C,A)
1 0 0

0
(2.39)

are used. Since all the procedures of the transformation of equations in (2.36) apply for any gauge F, the
value of the effective potential at a stationary point given by

p(e) = tn] [de, de, dA„] n»[e] exp —[S[Z,'1'e„s,'ne„Z, 'ada ] —] p'(e, A)j)1' d'x

—ik5 (0) lnZ, + (gauge-independent infinite const) (2.40)

is manifestly gauge invariant. [Only the first term of the right-hand side is included in the ordinary defini-
tion of the effective potential. Then a gauge dependence appears due to the neglected second term
—ih5'(0) lnZ, . However, this term gives no gauge dependence to the differences of the values of the ef-
fective potential between its stationary points. ]

The above naive proof, although it is simple and is found in the end to be essentially correct, may create
objections because of two ambiguities: One is due to the fact that W[J] is a multivalued function(al) of J.
The point is that we do not know whether the above argument applies to any branch of W[J] about the point
J=0. The other ambiguity is the question of whether the renormalizations may work destructively against
the formal proof. In order to reject the former objection it is necessary to check (2.31) and (2.32) direct-
ly without reference to the multivalued W[J], and direct calculation can answer the latter question also
(see Appendixes A and B).

With the results in Appendix A, we cite here the difference of average energy densities between two
stationary points of the theory (2.19) with mz & 0, a symmetric one (j)' and a broken one p':

3 ppg4 @ ppg2 2ppg2 3 g4 6e2 yyg2 3
V((([)') —V((][) ) = ——+,m' 2 ln —, —3 —4 ln, —— —108—, ln64p2 p2 p2 2 )P, g p2 2

3 m4

~ (f), —2f ). (2.41)
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This is gauge independent in the sense of (2.33)
and (2.34); that is, the explicit gauge dependence
of the last term (f~,f„) cancels the implicit gauge
dependence of the first term. (f~ and f„are fi-
nite parts of counterterms which are fixed by re-
normalization prescription. } A manifestly gauge-
invariant, i.e., n and v independent, result is ob-
tained if we renormalize on the mass shell (m',
A., f, and f~ are ct and v independent in this case)
or if we take f~ and f simply to be zero. Since
our proof applies irrespectively whether the value
of V is real or complex, gauge independence holds
for the real and imaginary parts of V separately.
The imaginary part of V may be interpreted as the
decay probability' per unit space and time of an
unstable "vacuum":

pB —ZC
ImV(p') =Im 32, m'ln

327r 2

32r '

where we note that m'& O.

(2.42}

III. GOOD GAUGES AND BAD GAUGES

f(x) =
Q =const,

a&(x) =0
(3.1)

in good gauges. It is of course true that the theor-

In the theories of spontaneously broken gauge
symmetry, the gauge fields A.„do not necessarily
have vanishing vacuum expectation values a„-=(A„).
This is because the gauge freedoms are there. It
may happen to be true in some gauge that a„=0.
But in some other gauge, it must be that the ex-
pectation values a„are not zero but are the gauge
transforms of the above ones at least in the tree
level": a„=(1/g)[B„U(8)]U '(8)+O(R).
[a& ——(1/e) 8& A+0(S) in Abelian gauge theory J.
Thus we are led to the concept of two categories
of gauge conditions, namely, good gauges and bad
gauges. The former ones are defined as the gauge
conditions which realize the vanishing vacuum ex-
pectation values of the vector gauge fields A&. The
others are called as bad gauges.

Let us further examine the meaning of this con-
cept. In the search for the true vacuum, a„can
be set to zero in the effective action in the case of
good gauges; hence the effective action contains
only scalar fields P (fermion fields, if they are
there, are of course set to zero). Then, setting
P tobe a space-time independent constant, we can
define the effective potential: V(P)
= —I'[p(x) = p, a„=0]/f d~x The mini. mum point
of V(p) corresponds to a translationally invariant
vacuum. That is, the vacuum realizes

a„(x)= —[S„U(8(x))]U '(8(x))+O(R)
1 (3.2)

in bad gauges, where u (U) is a representation of
gauge transformation on the fields 4(A„). Since a& e 0
in bad gauges by definition, the gauge-transf ormation
angle 8 is x dependent; therefore, we conclude
that the scalar fields' vacuum expectation value
Q(x) is x dependent in bad gauges. This leads to
the consequence that the true ground state must
be searched for with the help not of the effective
potential but of the effective action in the case of
bad-gauge conditions. This fact makes bad gauges
inconvenient from a practical point of view. The
calculation of the effective action is much more
tedious than that of the effective potential.

Let us see more specifically in the scalar QED
model with Lagrangian (2.19}what types of gauges
are good (or bad). First, let us start with the
tree-level approximation. The effective action
I' "" is a classical action with a gauge-fixing
term:

p &ree

L' = [L of (2.19)]-~ E'.
(3.3)

Choose E= (1/~~)S A. Then the Euler-Lagrange
equations,

g p &ree
gp tree

g p &ree

5$, 5$, ba„

have a well-known solution which corresponds to
the ground state in the case of m2&0:

(3.4)
y, (x) =a„(x)=0.

Next, consider the linear gauge E= (i~a)(S A —vC, ).
Since any solution in this gauge should be a gauge
transformation of solution (3.4), we try the follow-
ing form:

y, (x) = y, sinA(x),

P, (x) = P, cosA(x),

a„(x}= —&„A(x) .1
e

Equations of motion with (3.5) lead to

1
vn E= — A —P vcosA=O.

8 0

(3.5)

ies with bad gauges have the same physical con-
tent. We know that in classical theory (h -0) Q
and a„, which realize the minimum of I' in differ-
ent gauges, are connected with each other by
gauge transformations"; thus,

P(x) =u(8(x)) Pu '(8(x))+O(h),
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This has a constant solution A(x) = —,m, which is
nothing but (3.4), and a space-time-dependent
solution A(x)--,' eve, x„' (near A-0). It should
be noted that there is no solution such that P, is
nonzero and a„=0which gives a nonvanishing
gauge-fixing term F. (It is easily proved in gen-
eral that any gauge-fixing term F must vanish for
any solutions of the Euler-Lagrange equation. ")
Conversely speaking, if ave presuppose as usual
that symmetry breahdogen occurs, such as (4, )
=const and (4, )=(A&)=0, gee cannot use the gauge
,' E' = (—I/2o.) (8 A —v, 4, —v, 4,)'(v, e 0), i .e., thi s is
a bad gauge. With the above presuppositions, a
gauge of the type, E= (1/Wa )(8 A —v P, ), is a good
one.

The last statement can be proved in full-order
arguments. Let us assign even and odd quantum
numbers to fields as follows:

4, : even,

C 2, A&. odd.
(3.7)

V(~„e.) = ''(e,"e.'-)' 4—, ~(~,"e.')'
1+

2~ (vi Pi+ v2 Q2)

They found the unphysical solution of 8 V/8$, = 0
(a =1,2),

(3.8)

(3.9)

Even after the condensation, (4, )=conste0, the
Lagrangian (2.19), the gauge-fixing term ——,

' E2
= (I/2o, )(8 A —v4, )', and the corresponding ghost
interaction conserve this quantum number. So the
effective action F must not include linear terms
of Q, and a„such as f(Q, )Q, or g(P, )a„. There-
fore, the point Q, =a„=0 remains a stationary
point of l in any order; i.e., the gauge E
= (I/Va )(8 A —v4, ) is a good gauge in full theory.
We stress here a relative nature of the concept
of good and bad gauges. Under the presupposition
of breakdown in the direction of Q„such as (4, )
= const' 0, (4, )=(A„)=0, the above classifications
are interchanged. Goodness or badness is nothing
but a relation between the gauges and the solutions
we choose.

Similarly, we can classify gauges as good and
bad ones in any gauge theory, although classifica-
tion in general is difficult. In case we can find
simple even-odd rules such as (3.7), this classifi-
cation becomes easy. Some examples in non-
Abelian cases are given in Appendix C.

We comment here on the gauge-dependent un-
physical solution of Dolan and Jackiw. ' With the
gauge-fixing term 2F' = (1/2n)(8 A —v, 4, —v,4,)',
the effective potential of the theory (2.19) is, in the
tree approximation,

besides the usual physical solution,

b
~/2

4a ab ( 2)1/2 (3.10)

The former solution (3.9) is manifestly unphysical
because the value of the effective potential (3.8) at
that point depends on the gauge parameters n and

For any solution P, ~~ v, like (3.9), the gauge
condition F= (I/v n)(8 A, —v 4,) is easily seen to be
a bad gauge. (Note that it does not make E vanish. )
Therefore the constant "solution" (3.9) is not a
solution, "because the true solution in a bad gauge
is inevitably x dependent. In the case of the latter
solution (3.10), Q, J.v, . So E=(l/vn )(8 A - v,4,) is
a good gauge for this solution [and therefore (3.10)
is the physical solution, of course]. Note that this
solution (3.10) makes E vanish and respect the
conservation of even-odd quantum number similar
to (3.I).

Next, consider the R, gauge',

1
2 E' = (8 A - n eg4 )'

2Q 2 (3.11)

where we have used the usual presupposition of
the constant (x independent) breakdown in the di-.

rection of C„(4,(x)) = Q. This is a good gauge
since v is just specified to be o eQ in the pre-
viously consideredgood gauge E =(I/Wo. )(8 A —vC, ).
Shifting the field 4, -C, + Q, we can evaluate the
effective potential Vs&(p). Identification of two
different quantities has been made: the shifted
magnitude Q and Q in E, P=v/cue. Note that

V'~(Q) = V(4, v) I„.... (3.12)

8'&(p) 8V dV
dv

BP 9 8
+ne (1+y,"v)——y", x—

-y".m', , V
862

(3.13)

[The term y,"v(8/8v) comes from the change of v

induced by the change of Z, (v).] The second term

V(Q, v) on the right-hand side of (3.12) is the ef-
fective potential calculated with the gauge condi-
tion F= (1/vn)(8 A —v4, ). Speakingmorerigorous-
ly, (3.12) holds only when the same renormaliza-
tions are carried out on both sides. Since con-
stants Z„X, and m' depend on v, (3.12) should be
lead as

V"~(y) = V(y, v; Z, (v), ~(v), m'(v)) ~„.„.(3.12')

From (3.12')
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on the right-hand side of (3.13) is proportional to
s V/sf as is seen from (2.32). So we can write
(3.13) in the form

e v~i(y) s v(y, ~)

II - 4I44
(3.14}

where we have explicitly shown that the second
term on the right-hand side is O(k). Since appar-
ently 1+Sr„40 (at least in the sense of perturbation
in k), the stationarity condition of R L. gauge and

that of the good gauge F= (1/Mn)(8 .A —v43, ) are
equivalent. The values of the effective potential
at its stationary points are the same for these two

gauges. So we can say that the R& gauge is also a
good gauge. There is no trouble in calculating the
effective potential in the RL gauge.

We discuss here the arguments of Weinberg. ' He
calculated tadpole graphs T~+ in the R~ gauge in
the one-loop level and found that they cannot be
written as a derivative of any potential. His re-
sult, in the case of model (2.19), is

. 8V~
1T —-z (3.17)

8 4 =Op

For the case of the R&-gauge, the right-hand side
is evaluated by setting v =ne (t), after the Q differ-
entiation, i.e. ,

+ =~o
v = ee4p

(3.18)

Incidentally, the O(S) terms in Eq. (3.14) lead to

Weinberg concluded that the effective potential
approach in the R& gauge works only in the
Landau gauge, i.e. , $- ~, where the nonderivative
term drops out.

But our arguments above show that all the R,
gauges can be used without any trouble. First, we
note that the perturbative approach using tadpoles
is completely equivalent to the effective-potential
approach. (A proof of this statement is given in
Appendix D.) Tadpole graphs can be given in terms
of the effective potential (see Appendix D). Es-
pecially at O(S), [from (D2) and (D6)], the one-loop
tadpole T, is given in terms of the one-loop ef-
fective potential Vy..

Vt('= '
d 4k 3 In(e'(t)' k')

2(2w)4

(3.15)
8Vj+& Bvk((t), g)

4 = tt]p
v = ee4p

sv.(y, v)+ p 8
v = O.ceo

yg2 +— 2 jP
2

+Inm +—
Q —k

6
(3.16)

where (t), is given by (3.4). From the existence of
the nonderivative term, the second term of (3.15),

= TRg
1 (3.19)

where the stationarity of the tree effective potenti-
al V, at Q = (II)o has been used. Thus, in contrast
to Weinberg, we can express the tadpoles T, & as
the derivatives of the potential in two ways, (3.18)
and (3.19). V, ((()), v) and Vp&(p) in the model (2.19)
are (see Appendix A)

V,(p, v)=, d 4k[2 In(eve —k') —3 In(e'31)' —k') —ln(m'+ 2 &(t)' —k ) —ln(k4+ &,k'+ &,)],2(2)T)'
(3.20)

Vee(4) = f d k(ln(nek —k') —3 In(e'4 —k ) —In(m'+ —'kk —k') —In(m + Ink ene'4' —k')], (3.31)

where a, and a, are given in (A4). It is trivial to
check (3.18) and (3.19) with T,"):given in (3.15) and
(3.16).

Finally, let us consider briefly Lorentz nonin-
variant gauges such as the Coulomb gauge V A

=0, the axial gauge A, =0, etc. Any gauge
is a good gauge if the even-odd quantum number
(3.7} is conserved. So the Coulomb and axial
gauges are good. Since these gauges are at-
tained by the gauge-fixing term &E'
= (1/2n)(a„„s "A"+b„A")' with suitable choice of
a „and b„and n-0, the arguments of gauge de-
pendence in Sec. II are also applicable, and especi-
ally the gauge independence of the values of 1"

(or V) at its stationary points which holds for these
gauges also. It.is interesting to consider more
generally the gauge which breaks the symmetries
of the theory (Lorentz invariance, internal sym-
metries other than gauge group, and some other
discrete or continuous symmetries). How are
these symmetry properties preserved in the values
of I' (or V) at its stationa, ry points? Consider any
transformation T of such symmetries. Denote all
fields and their transforms as C and 4 . Note
that the action S[C] and the path integration mea-
sure [d43] are invariant under such transformation;
[dO] = [dC ] and S[C]=S[C r]. The transformed
action is
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pT
er/6e =v=0

=ln dC A~ 4

&& exp —$ @~

=ln dC A~ C~

which holds if T commutes with any gauge trans-
formation g, we get I'rr

I ~ 0
= I'»

I ~,. The trans-
formation T induces a gauge transformation
F-TF. Thus gauge invariant guarantees the
invariance of stationary values of I (or V) under
the transformation T; r~r

I ~ -0 = I'»
I ~ ~ = I"~

I ~ -'
In the Coulomb gauge, for instance, the value of
I' (or V) at a stationary point does not depend on
the Lorentz frame.

IV. DISCUSSIONS

What we have shown can be summarized as
follows.

(a) Calculate the effective action I" as a function
al in any gauge and renormalize it in an arbitrary
way. Find the stationary points of the resulting l
and evaluate the values of the average energy den-
sity V, (1.3), at these points, which are gauge-
invariant quantities. The smallest among these
values is the energy of the true ground state.

(b) If the gauges are limited to good ones, we
can define the usual effective potential V(Q) as a
function of P (an x-independent variable). Among
good gauges gauge invariance of stationary values
of V(Q) of course holds.

We believe that these properties are sufficient
conditions for ~ or V to have a raison d' etre in
gauge theory. Some other related problems are
discussed below.

(1) When we consider finite temperature, the
effective potential becomes a function of temper-
ature T, V(P, T). Our conclusions are applicable
for V((t), T) without any change; V((t), T) is gauge
independent at its stationary points. Physical
quantities derived from V without involving the
derivative with respect to (t), specific heat for
example, are gauge invariant.

The conventional definition of the critical temp-
erature T, is that [&'V((t), )/T&P']I~, =O. This is

x exP —[s[@]—-',(7')")'(e)}),

where the transformed gauge-fixing term TF(C)
is defined to be E(C r). By the identity [see (2.3V)]

a gauge-invariant definition because the on- shell
condition is satisfied in this case. However, we
can think of another gauge-invariant definition of
T, which is more transparent physically. Sup-
pose we have two stationary points, a symmet-
ric one (Q'=0} and a spontaneously broken one
(Q 40). We define T, as Re[V((I)', T,)]—V(Q~, T,) = 0.
[At T„ imV((t)', T,) should be zero simultaneously. ]
When we examine scalar QED of (2.19) for exam-
ple, the only sensible small expansion parameters
are X-e'-(1/T)', i.e., high temperature. " To
zeroth order in these parameters V(P, T) has
only one stationary point at Q' and the new defini-
tion does not work in this order, higher-order
corrections becoming important. We believe that
the two definitions should be identical if full order
is taken into account.

(2) Our results can be extended for the more
general effective action I'((t), G~2},G+', . . .), where
t""~,G"', ... are two-point, three-point, ... func-
tions,

G[»(x, y) =&0Ic(x)c(y) 0},
G[»(x, y, z) =&0 C(~)c(y}C(~}I0&,
~ ~ ~

The value of I' is gauge invariant at the points
where I' is stationary with respect to (t, G@),Go',
... , and this gives the energy of the correspond-
ing state.

(3) Some comments are needed about the
Coleman-Weinberg model, ' massless scalar
QED. Our results can of course be applied
to this model. However, if one wants to check
our results perturbatively in 5, one immediately
gets into difficulty: We use the expansion formula
(B6) to evaluate V at a stationary point. This ex-
pansion turns out to be impossible because
In/-O(l/5}. The cause of this trouble is that a
spontaneously broken stationary point appears
only in order S. Unless we find a sensible gauge-
invariant expansion parameter (other than h), we
cannot apply our results to this model perturbatively.

(4) We have little to say about the unitary gauge.
However, if we sufficiently regularize the theory,
the value of unrenormalized I' at a stationary point
in the unitary gauge is obviously the same as in
the renormalizaMe gauge. If the unitary gauge is to
be renormalizable at stationary points (we believe
this is the case because there is no reason for uni-
tary gauge to be unrenormalizable), then renor-
malized I' in the unitary gauge gives the same val-
ues at its stationary points as other renormalizable
gauges.

Note added in proof After complet. ing this
paper, we became aware of a paper of N. K.
Nielsen [Nucl. Phys. B101, 1'l3 (19V5)]. He
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reached the same conclusions in a class of Fermi
(Lorentz) gauges by the help of Ward-Takahashi
identities similar to ours. We think that the rea-
son for the trouble of the Dolan-Jackiw gauge is
not clear in his paper because of the lack of the
notion of two gauge categories, good and bad. We
have also noticed the paper by B. de Wit [Phys.
Rev. D 12, 1843 (1975)], who observed the condi-

tion (E)~,=0. His assertions seem to be the
same as our statements given in footnotes 17 and
18 of the present paper.
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APPENDIX A: ONE-LOOP CALCULATION

The effective potential of the theory (2.19) up to O(k) is

V(Q) = —m'P'+ —&Q'+, It (d"k) 2ln(ev4I2 —k') —(v —1)in(e'P' —k') —ln m'+ —P' —k2 —ln(k'~ g k'+~ )2 4t 32m'g

where

+ I2 'I44—'+ 48'4'—e 2 m'+ —4') 4m&'+ nc~'j 2

2 4t 6 (A1)

6 /m =Z„Z, -1
= k(z'„"+Z", )+ O(n') = k6 -"'&/m'+ O(S ),

6X/A, = Zgz, —1

= e(Z,'+ 2z&'&)+ O(k ) -=M~&'&/~+ O(8'},

v/ = 0+ SMI ' + O(k'), C = 0+ RC ' + O(h') .

We use the formula

(A2)

d"k lnm'-k' =-ir'p, 'r

(p is an arbitrary unit of mass), and a, and a, are given by

a, = -(m'+ ,' X(f)'+ 2—e4I2v), a, = e'p'[n(m'+ —,
' Xy') + v'].

Counterterms in (Al) are determined such as to make the expression finite:

24mm»/m' =,I'(2 ——
)(

—» —2ee')+II/ (e, v, —,, », e),

24»&'/»= I' 2 —— +—I —4ee' +2/» e v —» e)y) I n 36e' 10 m'
-32i 2 A, 3 t p ~20 0 7

WmI' =,I' 2 —— 2ev+2/„e, v, —,, », e),
m'

nC~')= r 2-"- m'
32m' 2

(A3)

(A4)

(A5)

where the finite functions f„, fq, and f depend on the various renormalization conditions we choose; for
example, O'V/sp'

~ y2-p2 —m', O'V/sp'
~ y2-p2= X, or on-shell renormalization, etc. We need not specify

these functions for the present purpose. Similarly, wave-function renormalization is given as

IIZV'= I* 2 —— 2e (2 —e)+2/ e, v, —,, », e).n 2 m

Thus from (A2) and (A6),

(,) 8 n 4

O'Z = F 2- — 36—+ —X —12e +k(fq —2f ).(g) n e' 10
32~' 2 2

(A6)

(A7)
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The left-hand sides of (2.31) and (2.32) are evaluated as

n 8 o~
8 otCX~ Qty, 2 y

Bn Bv BA. Bag

4 d "k 4, ' —,F 2- — e' m' '+—

2 8 8 A, 8 A. m~
+ k—P' f—+ t Q'—fq—+ k m'+ —Q' Q

—ur~'~- kyq~'~ —P' —ky"„i'~—Q'+ O(S ), (A8)
2 Bn 4 t Bn

8 8 8
(1+y,"v) ——y&X ——y"m', V

32m4 k'+a, k'+a, k' —eve 2 sv " 4! sv ~ 6

(A9)

where use has been made of the fact that the y's start with O(5') terms which are denoted as hy"'. On the
other hand, the right-hand sides of (2.31) and (2.32) are evaluated with reference to Fig. 1:

.BV 1 BV e

=ky "' m'y'+ —y' +k m'y+ —y' u"'8

6 Bn1, X, (d"k) e
I

i 5[k'(ne Q —v) + v(k' —ne'Q') J
2n 6 (2n)' k' —eve& k'+a, k'+a,

„BV BV e
'8$ sg '* 0 au@)

I ')

gyes~
~ + 4 + @ pygmy + 3

Zg
~~ ~ + pygmy~ + 3 +

where the propagators

l k2 ne2 2
d'x e '~"(TC,(x)C,(0))~"= ik

J d'x e"*(T4,(x)A (0))~"= —I k (net —v)
k'+ a,k'+ a,

are used. With the help of the definitions of y 's,

(A11)

(A12)

(A13)

y„"'=5
8

„-2
8 ' @ @

Bn Bn ' @' 32m'
F 2-2 e'+

2 8
(A14)

and of the corresponding expressions of y"'s, com-
parison of (A8) [(A9)] and (A10) [(A11)J shows that
(2.31) [(2.32)] holds up to O(k). The check up to
O(S') proceeds similarly, though it is tedious.
In this case, the term —i@5 (0)lnZ, appears for
the first time to ensure gauge invariance.

APPENDIX B: A COMBINATORIAL PROOF OF (2.33)
AND (2.34)

In this appendix we prove (2.33), (2.34) up to
O(k ');

D„,vVI g- p
——o,

with

FIG. 1. Graphs that appear in (A10) and (A11).

Oty V 0!» Vy Ag V

&(n v) ' sv sx sm''

(B2)
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8V =0 (s3}
(&),(2)

~COUNT

An argument similar to the discussion on (2.18)
shows that we can first evaluate V at the stationary
point Q = g and then operate D„„.We expand V
and Q ink:

(I-LOOP)

v(y) = v, (y)+«, (y)+aov, (y)+ ~ ~ ~,

Q = Q o+ kQ 1+5 2
((12 +~ ~ ~ .

(84)

(88)
(I-LOOP)

~)

Note that Vo'(Qo) =0 and P, =-V, '(Po)/Vo'(po),
where V,', V, ', and V," are derivatives with re-
spect to Q evaluated at P = Qo. We get V at a
stationary point up to O(I'):

(2-LOOP)

+ )2 2 V2(po)

(86)+ o(ho),

-6m'
(87)

where the term Z2(')5'(0)k' has been explained in
(2.40). —Vo" ((Ilo) is the inverse of the bare 4,
propagator (multiplied by i) at zero momentum,
so we recognize that one-particle reducible vacu-
um graphs are recovered in (86), which ensures
gauge invariance.

Including counterterms we have

—~o(+o)

(~)I
~COUNT

(I-LOOP) I

FjQ. 2. Symbolic notations for y„,"„„'~~ V(
y(1-looP) y t2-looP ) y &g~ y-1 V(f)' and y(i-looP)

(j) & & 0 (~01 s count s

Symbols for V(i-loor) and V(2-looP) should be read as
they stand for all the one-particle irreducible graphs
of one loop and two loops.

2

Vo(lo)=
2

Ao'+ 4, 4o' (88)
diagrams. From (A2) we have

(89)

(810)

(y ) V(1) + V(1-loop)

V (~ ) V(2) V(1 looP) V(2 loop)
2 'VO count (» ~

Here V",,„„,and V,',„„,are first- and second-order
counterterms, which are explicitly given as

2(2)
Z(2) +Z(1)Z(1) + Z(2)

m2 m m 2 2

ex(" Z(1) + Z(1)
X 2

(813)

V(1) 1/~2(1) ~ 2+ gy(1) ~ 4+ g(»
count 2 ™V~O 4 )

'YO

V(2) gm2(»~ 2+ $P, (2) ~ 4+ g(2)
count 2 %0 4 t

%0

~ (()m2(1) + 1 6) (1)
y 2)y ~(1)

+ —2'(m'+ —2')(y,2)W")2 .

(811)

(812)

gg(2) =Z(') + 2Z(')Z(' +Z(1)2+ 2Z(')
X X. 2 2 2

We show (Bl) for the o( equation. (The v equation

Y=Yq+t( ~ +Q
V ' '" and V' "'" stand for one-loop and two-
loop diagrams without counterterms, and V(,'I "'P

represents one-loop diagrams containing the
first-order counterterms. If we use symbolic
notations for V( 1),(2) V( 1 loop ) V( 1- 1oop ) V(2 - loop )

count » (1)
the 41, propagator -Vo" (po) ', and the po deriva-
tives V,',„„'„V' "'P ', as in Fig. 2, Eq. (86) is
expressed diagramatically as in Fig. 3. Figure 3
manifests the presence of one-particle reducible

+'6 -= =+(1) (1)

2

(1) (2)

(1)

+ g2 0)

+ g(%)
FIG. 3. Diagrammatic representation of Eq. (B6) in

terms of symbolic notations in Fig. 2.
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n(1) X,m
8Z(1)

yk, m (B14)

can be shown similarly. ) The y 's are given per-
turbatively, y =Ay ' +8'y+' + ~ ~ ~ by

1 8Z2(1)
Y2 2 8

3 not involving counterterns are independent of
n, v in each order in ft. (This can be shown by
explicit calculations. ) Second, because we are
treating vacuum graphs, all the Z, dependences
cancel out. Now we can prove (Bl) perturbatively:

O(h'). This case is trivial, BV,/Ba. =0.
O(h'). The following equations are sufficient:

(2) Z(1) 8Z~ m 8Z~ m 1 8Z2 8Z(1) (2) (1) (1)
y'™ ~~~m 8Z 8e 2 8e "

8v

m2
8Q 8A. 8Q 8m

8 y(1)
count &(1)y + ct( l)m 2 Vee ~ aZ

+y 8m'

m 8Z 18Z'
2 Bn 2 Bn

(B15)

We here note two facts: First, the graphs in Fig. O(k'). We should consider the following terms:

~ Tr(2)
ct(l)+ " count &(1)y " count n(1)m2 "count ot(2)g ' O &(2) 2 ' o + y(1) t qp(l) I " count

8g y' 8Z 8m' ' 8g 8m' 2 8e """'-y" """' 8e
(B16)

8 8 8 1(1)~ + &(I) 2 y(j. -~o&P) + y(1- ~OOP) + y(l-~&»P) t y(1) I + g(l)54(0)8

eZ y 8m' +8 '" + -V" (B17)

By using (Bll), (B13), and (B14) it is straightfor-
ward (though tedious) to show that (B16) and (B17}
vanish separately.

APPENDIX C: CHOICE OF GAUGES IN NON-ABELIAN

GAUGETHEORY

We discuss the choice of a good gauge for non-
Abelian gauge theory, taking a few familiar ex-
amples.

(i) O(3) with vector representation The L.a-
grangian has vector fields A'„and scalar fields
e' (i = 1, 2, 3) and is invariant under following two
transformations:

(1) rotation s about the third axis e' '~',

(C ', e', A', A') - (-e', -e', -A', -A') (odd),

(O', A') - (O', A') (even);

(2) "G"-parity transformation Ce"~2 (C = -1 for
e, +1 for A),

(A', O', A')- (-A', -C', -A') (odd),

(O', A', e')- (O', A', e') (even).

After the condensation in the 4 direction these
quantum numbers are also conserved. Therefore,
the effective action 1 has the form

which is stationary at Q'= Q'=a'=a'=a'=0. The
most general (Lorentz-invariant) linear good
gauge is

with ghost (q} interaction of the form

e&. q*'8 g'A v'e g*'g'4~ v'e q*'g'4'

Ghost interactions are invariant under transfor-
mations (1) and (2) if we assign q' the same quan-
tum number as A~ (C =+1 for ghost interactions).
An example of a bad gauge involves (9 A' —ve'}',
which violates symmetry (2). We expect, there-
fore, that a'„= 0 does not give a stationary point
and we should consider I" involving a&. Indeed,
graphs given in Fig. 4 produce a nonvanishing lin-
ear term in a'„ for F.

(ii) SU(2) with complex spinor representation
We denote the relevant fields as" A.„', and

I~)
=(z+i~ e)

g2

/
a~ P3

ql
Ap

FIG. 4. Graphs that produce linear terms in as& for 1.

1
2e("(e A~-v&~~O2}2

(s .A2 v(»e~)2/ (e.A3)2
1 1

2e"' 2e("
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The covariant derivative is D„)= (8„—i g27. ~ X„)$
We have the following symmetries:

(1) rotation m about the third axis ei'~'i" 3,

(4', 4', A', A') (-4', -4', -A', -A') (odd),

(C,A. , Z) -(4,A', Z) (even) .
The most general good gauge in the case of Z
condensation is

2n' (8 A' -v'4 *)'1
(Cl)

with a ghost interaction of the form

YJ* 8 'g~A v Ei~gfl* 7/ 4 ) v 'g* ii Z (C2)

(8 A'-v'4')'+ (8 A'+a8 B-v„4')'
2~i 2&~

1
+ (8 B+I 8 A'-v 4')',

2(xB
B

q' should transform as A'„under symmetries (1)
and (2). Then I' is stationary at p'=a„'=0 because
I"has the form I'(s, (p')', (a')', a'p') (not summed
in i). If we choose the gauge involving (8 A'
-v4')', for example, which violates symmetry (2)
given above, diagrams given in Fig. 5 destroy the
stationarity of I' at g'=0.

(iii) SU(Z) 8 U(2) tvi th comjlex sPinor rePresenta-
tion. This case is similar to the case (ii). The
covariant derivative is now D„g = (8„ig 27—~ X&-
—ig'B„)$ . The B~ field transforms under sym-
metries (1) and (2) as B„-B„(even) and B„-B„-
(odd), respectively. We have for a general good
gauge

APPENDIX D: EQUIVALENCE OF TWO APPROACHES

USING THE EFFECTIVE POTENTIAL AND TADPOLES

This equivalence is almost trivial, but, for
completeness, here we show an interesting dia-
grammatical proof.

I et us denote the stationary point Q as (B5). The
tadpole approach' determines the quantities

p„p„p„.. . , such that no tadpoles appear in any
order of 5; that is,

In terms of symbolic notations similar to those in
Fig. 2, (D2) and (D3) are represented diagramatic-
ally in Fig. 6.

On the other hand, the expectation value p is
determined by the stationarity of V in the effective
potential approach:

8V/8y~ e &=0. (D4)

By the use of (B4) and (B5), (D4) is rewritten as

0=8V/8$~e @ +h(P "Q +P ')

+@2(y ey + &y
aptly

2+@ lip +y t)+O(@3)

(D5)

where V,", Vy Vp, etc. , are derivatives with
respect to P evaluated at g= g, . Equivalence at
O(R') is apparent literally, and at O()I') and O(h '),

O(@'): 8V,/8y~ e e =0, (Dl)

O(h '): -p, + (all the graphs of one-loop tadpole) = 0,
(D2)

O(h '): -p, + (all the graphs of two-loop tadpole) = 0.
(D3)

where abdal.
The above examples suggest that in order to

find a general good gauge, first we should look for
a minimal set of symmetries of a given Lagrangian
that guarantees the presupposed condensation.
Afterwards, the gauge should be chosen (with cor-
responding ghost interactions) to be consistent
with these symmetries. —f + —=

1

z 2

FIG. 5. Graphs that produce linear terms in Q3 for 1 .

FIG. 6. Diagramatic representations of Egs. (02) and

(D3) in terms of symbolic notations similar to those in
Fig. 2. Note especially that the straight line stands for the
4& propagator —Vo" ($0) ~ and that the crossing point of
the three straight lines represents the (bare) three-
vertex, d3VD/des~ e-e .
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from (D5),

y I
O(&p'): -y, + ', =0,

0
(D6)

0

+ „V,' = 0. (D7)
1

0

The comparison of (D2) [(D3)] and (D6) [(D7)]
obviously shows that they are the same equations
term by term .[Compare Fig. 6 and (D6) and (D7).]
Extension to higher orders is straightforward.
(Note that the above comparison should be done
between two approaches with the same gauge-
fixing condition, of course. )
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