
PH YSIC AL REV IE%' D VOLUME 13, NUMBER 2 15 JANUARY 1976

Comparison of approximate methods for multiple scattering in highwnergy co&»%iona. H*

A. M. Nolan, W. Tobocman, and M. F. Werby
Physics Department, Case Western Reserve University, Cleveland, Ohio 44106

(Received 27 May 1975)

The scattering in one dimension of a particle by a target of N like particles in a bound state has been studied.

The exact result for the transmission probability has been compared with the predictions of the Glauber

theory, the Watson optical potential model, and the adiabatic (or fixed scatterer) approximation. The
approximate methods work well only at energies well above the binding energy per target particle. The
adiabatic approximation works best and the Watson optical potential model is second best. The Watson

method is found to work better when the kinematics suggested by Foldy and Walecka are used rather than

that suggested by Watson, that is to say, when the two-body t matrix is calculated with the nucleon-target

reduced mass instead of the nucleon-nucleon reduced mass.

I. INTRODUCTION

The one-dimensional many-body system has been
used extensively to study various approximate
multiple scattering formalisms. In particular the
one-dimensional many-body system with zero-
range interactions is soluble in closed form and

thus various models may be compared with the ex-
act solution for such a system. A recent study by
Tobocman and Pauli' which employed the above
model for the three-body case yielded interesting
conclusions on both the adiabatic and Glauber
approximations. An extension of that study was
made by Bajaj and Nogami. ' It included third-
order terms in the Glauber model and considered
systems of up to five particles.

In addition to the Glauber and adiabatic models,
the Watson optical-potential model has received
considerable attention in the literature. There has
been some discussion concerning the relative
merits of the Glauber approximation and the Wat-
son optical-potential formalism. " In this work
we compare calculations employing the adiabatic,
Glauber, and Watson optical-potential models with

the exact solution for two-, three-, four-, and

ten-particle targets.
The three models tested may be described brief-

ly as follows: The adiabatic (or fixed-scatterer}
approximation results from the assumption that
the energy of the incident projectile is much great-
er than the excitation energies of any of the states
of the target that play a significant role in the
scattering process. This is equivalent to the as-
sumption that the relative motion of the target
particles is negligible over the interval of time re-
quired for the projectile to complete its interac-
tion with the target.

The Watson optical-potential (WOP} formalism
in contrast to the adiabatic approximation assumes
target excitation to be unimportant so that target

excitation is not permitted to result from the in-
teraction of the projectile with any target particle.
On the other hand, the dynamical development of
the target is allowed to proceed normally as the
projectile finds its way from one target particle to
the next.

The Glauber approximation' combines the eikonal
approximation with the adiabatic approximation.
It assumes that the target particles maintain fixed
relative positions while the projectile is interacting
with the target and that the projectile follows a
classical trajectory as it passes through the tar-
get. Thus the possibility of large-angle scatter-
ings is ignored and there results a suppression
of high-order multiple-scattering processes.

In the work of Tobocman and Pauli' it was found

that for one-dimensional nucleon-deuteron scat-
tering both the adiabatic and Glauber approxima-
tions worked very mell down to surprisingly low

energies. In this work we extend the comparison
to three-, four-, and ten-particle targets where
multiple-scattering effects will be much more
severe. The Watson formalism is included in the

comparison.
We do see that as the number of target particles

is increased the discrepancies become greater
between the approximate-method predictions and

the exact result. Surprisingly, the adiabatic ap-
proximation is the best and the Watson formalism
only second best. We expected the reverse result.
One must conclude that more harm is done in

neglecting target excitation than is done in neg-
lecting the dynamical development of the target as
the projectile moves from one target member to
another.

One of the attractive features of the original
Watson formalism' was the fact that the optical
potential was to be calculated from the projectile-
target-particle tmo-body t matrix, which is close-
ly related to experiment. Foldy and Walecka' have
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suggested using a projectile-target-particle two-
body t matrix calculated with the projectile-target
reduced mass instead of the projectile-target-
particle reduced mass. We have found that the
Foldy and Walecka modification does indeed im-
prove the Watson optical-potential approximation
mith respect to comparisons to exact results.

In Sec. II we formulate the adiabatic approxima-
tion, the Watson optical-potential formalism, and

the Glauber theory as they apply to the one-dimen-
sional (N+ 1)-body problem. Section III is devoted
to a description of how the calculations were per-
formed. The results of the calculation are de-
scribed in Sec. IV. In Sec. V we discuss the simil-
arities and differences between our one-dimen-
sional model and the physical nucleon-nucleus sys-
tem.

II. SCATTERING OF A PROJECTILE BY AN N-NUCLEON
TARGET IN ONE DIMENSION

The Schr5dinger equation for a projectile incident
upon an X-nucleon target in one dimension is

8'
s 2+ V(x-y, )+H„(y) E4(-x, y) =O,

j=1

("x E0)40(y) -=o. (2)

The function p, (y) will designate the ith excited
state of the system with energy E,. The scatter-
ing-state wave function for the projectile-plus-
target system will have the asymptotic form

where m is the reduced mass of the projectile and
target, x is the separation of the projectile and the
center of mass of the target, and y, is the dis-
placement of the j th target nucleon from the center
of mass of the target. H„ is the Hamiltonian for
the internal degrees of freedom of the target and
V(x —y, } is the interaction potential of the projectile
and the ith particle of the target.

Let P,(y) designate the ground state of the target
where

—"(I6,„+T„I'+ IR„I')=1.
n=

(4)

The transmission and reflection amplitudes T„
and R„are related to the transition operator T
by the following expressions:

00 OO

T„=5„,+ dx dx'exp(ik, x)T,„(x,x')
wOO 00

x exp(-ik„x'), (5a)

tk 2$
dx dx'exp ik, x T,„x,x' exp ik„x',

(5b)

2m
To.(» x') =

2 dyldya dyx5(y +y2+ +yx)

&& 4.(y)TA. (y)*

T=V+VG, T, V=+ V(x-y, ),
g2 Q2

G0=(E —H„—%+i&) ', K= —
22m ex'

(5c}

(5d)

(5e)

The WOP formalism will be presented in the
manner employed by Kerman, McManus, and

Thaler. ' Here the target nucleons are all physical-
ly identical, the target states f„are symmetric
under target-nucleon exchange, and the Hamiltonian
operator is symmetric under target-nucleon ex-
change. Projectile-target-nucleon exchange will
be ignored. Under these conditions E I. (5d) be-
comes

T=NV, (1+G0T),

v, = v(x-y, ),
Go=aG, ,

(6a}

(6b}

(6c)

where a is a projector onto symmetric states. We
introduce the operator

r, = V, (1+G0r, )

from which follows

V, =r, (1+G0v, )
'

= (1 + r,G,} 'r, .

@(x,y) = Q P„(y) exp(ik„x)T„, x&c
n=0

k„= ~(E —E),

(3b)

(3c)

But from Eg. (6) we have

V, =N 'T(1+G0T) '.
Combining Eqs. (8) and (6d} gives

T=Nr, +(N —1)r,G0T

N
N —1

(6d)

(Qa)

where c is the range of the projectile-target inter-
action. The transmission and reflection probabili-
ties are Il+T, I' and IR, I', respectively. Conser-
vation of flux requires that

T, =(N —1)7;+(N 1) G Tr, .0- (Sb)

Up to this point nothing beyond projectile-target-
nucleon exchange has been neglected. We now
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make the impulse approximation by replacing T, by
the two-body transition operator t, . This may be
effected by replacing G, by the operator

where

28
ax', + (u(x, y}+k,' )t&(x, y}=0, (16a)

a'
g =(E —E —K+ie) ' K=0 2 a."

so that

t& = p'i(I+gob} .

(10a)

(10b) 2m
(d(x, y) =—,V(x —y,}

(16b)

Here the struck nucleon maintains its position rel-
ative to the other members of the target and is
endowed with the mass of the entire target. In
addition to neglecting projectile-target-nucleon
exchange we are thus also neglecting target intern-
al motion while the projectile interacts with any
target particle. Next we approximate 6, in Eq.
(9b) by

lo =
I 4o)go(4o (10c)

so that we obtain

T, = (N —1)t,(1+goT, ) . (10d}

x 4,( )yt, y, ( )y. (11)

Thus, the approximation employed in Eq. (10)
yields the following formulation. The Schrodinger
equation

82 d2
, +U(x)+E, -E Ie(x)=0

2m dx' (12)

is solved subject to the conditions

4'(x) =exp(ik, x)+R,'exp(-ik, x), x&-c (13a}

This approximation suppresses any target excita-
tion that might result from the interaction of the

projectile with a, target particle. Equation (10d) is
in consequence an equation for the elastic scatter-
ing of the projectile from a potential well defined

by

U(x&=W —&) f dady; ~ dy 5, (y, +y, + ~ ~ ~ +y )~

=v 5x —
y& . (16c)

= T'"'exp(ikx), x&x„+c„. (17b)

An independent solution of the n-scatterer Schro-
dinger equation can be formed from a linear com-
bination of g'"'* and g'"'. We denote this solution
by ~(tf ) o

~&"& = S'"' exp(-ikx), x &x„—d„ (18a)

= exp(-ikx)+ P&"&exp(ikx), x &x„+c„(18b)

Equation (16) is the Schrbdinger equation for the
scattering of the (reduced mass) projectile by N
fixed scatterers. Here we employ zero-range
potentials which are nonoverlapping.

The soluton of Eq. (16) for nonoverlapping po-
tentials has been given by Kujawski. ' We employ
an alternative method proposed by Bajaj and Nog-
ami." This method is an iterative procedure that
enables one to calculate the transition amplitudes
for n+1 fixed scatterers from those of n fixed scat-
terers provided they are nonoverlapping. The
following is assumed: (1) The n scatterers are
located such that their potentials vanish outside the
region x„+c„&x&x„-d„, where x„ is the coordinate
of the nth target nucleon. (2) The action of the
(n+ 1}th scatterer is confined to the region x, + c,
&x &x, —c, . (3) The regions indicated in (1) and

(2) do not overlap. Now if the (n+ 1)th scatterer
were not present the wave function would be

(j
«' = exp(ikx)+R(") exp(-ikx), x &x„—d„(17a)

= T,' exp(ik, x), x & c . (13b) where

Then the transition and reflection probabilities
are taken to be

N
[N- I ' (14a)

(14b)

We now turn to the adiabatic approximation and

the Glauber formalism. The adiabatic approxima-
tion consists of setting

4'(x, y) = (t).(y)g(x, y),

S'"' = (1 —R'"'*R'"&) /T&"'*

P«) — R (n) *T(n) /T(n)

(18c)

(18d)

)t&'""' = exp(ikx) + R'""'exp(-ikx), x & x,—c,
+ &)(, xg+c~ &x &x„—d„

(19a)

If only the (n+1)th scatterer were present we
would have equations identical to Eqs. (17) and

(18) with superscripts n replaced by 1.
A solution of the (n+1)-scatterer problem will

now be constructed in terms of the functions |I}'",
X"', and g'"'. Suppose that x, +c, &x„-d„. Then
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P'""'= T'"'"exp(ikx), x &x„+c„

= PP~"), x~+c~ &x &x„-d„-
(19b)

The above yields the linear combination of func-

tions that fulfills the asymptotic boundary condi-

tions and is a solution of the Schrodinger equa-

tion. The coefficients a and P are determined by

the requirement that the above two equations are
in agreement in the region x, + cg ~x &x„-d„.
These coefficients in turn determine the trans-
mission and reflection amplitudes:

T«' & = T( &T(»/(1+D("' ')
7 (20a)

R'"'" = (R' '+R'"'T"'T"' ')/(1+D'"'"), (20b)

with

T~ = dy, dy, ' dyN5 i+y2+'''+yN

III. DETAILS OF CALCULATION

In order to calculate the adiabatic transmission
amplitude we approximate Eq. (21a) by the ex-
pression

T)(n PP T(&&(&( 1) P P (23)

where the subscript j identifies a set of X ran-
dom numbers between zero and one, namely a';"
where 1 & i ~ N. We set

(y)2T(1)(y )T(1)g ) T(1)(y ) (22a)

RGL 0 (22b)

D «+ &) —R «)R «) +R &&)R &&) + - & (20c) yII'-—c(2a((J& -1), 1 ~ i- f&i -1
Equation (20) provides a straightforward step-by-
step method for calculating the transmission and
reflection amplitudes, T'N'(y) and R'"'(y), for the
scattering of the projectile from the N target nu-
cleons fixed at positions y„y„.. . ,y„. The pro-
jectile has reduced mass I and relative motion
kinetic energy 82k,2/2m. These amplitudes must
then be averaged over the ground-state density
distribution to yield the adiabatic approximation

N-x

y(J) Q y(J)
i~I

(24)

n(i)(y ( }2 (26)

where c is a number chosen so that the target-
density distribution p(x) is negligible when x &c.
The coefficient p,. is set equal to one if the condi-
tion

To = dygdy2' ' 'dyN5 g+y2+ ' ' '+yN

x(t&(&(y)'T'" (y},

R" = dy dy '''dy 5 +y + '''+y

x y, (y)2R("&(y).

(21a}

(21b)

is met, and set equal to zero otherwise. For a
sufficiently large number n of sets of R random
numbers Eq. (23) is a good approximation to Eq.
(21a) for the target ground-state density (t&o(y)2.

In order to calculate the Glauber approximation
transmission amplitude Eq. (22a) is approximated
by

The Qlauber approximation in this context con-
sists of neglecting backward scattering within the
adiabatic approximation so that

TGI'= g p T(&)( (J))'''T(&)( (j)) p p . (26)

For the Watson optical potential we write

(&-1)1 dy, dy2" dy~6(y, +y2+ "'+yx) 4.(y)'f(x-y. )

f dy dy, "'dyN6(y+y +'" +~y}"4)(y}

The form chosen for the projectile-target-nu-
cleon interaction is zero-range:

2m
v(x —y, )=, V(x-y() = —v6(x —y, ) .1 g2 (26)

Therefore, the assumption that no overlap exists
for the various projectile-nucleon interactions is
rigorously met. By substituting the above poten-
tial into Eq. (10b) and solving for f we obtain

= exp[i k, (x) -x&)]/2ik„ (29b)

where the g 's are any complete set. Thus we
have that

where

S2
g, (x, » )=, Pg X. ( ) (X.l(E-E.-f~ i.) 'I X,)

1Ã
g

x x2 (x')

f( )
k' v 5(x-y, )
2m 1+v g, (y~, y,.)

k'2 v 0(x-y~)
2m 1 —i v/2k,

(29c)

A2
f (»-y,.),

(29a) The optical potential of Eq. (27) is then given by
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k ' v(N-1) y(x)
2m (1 —i v/2k, ) "dxy(x) '

m OC)

(30a)

This result is then used in conjunction with Eqs.
(12), (13), and (14) to calculate the transmission
probability.

In order to obtain the adiabatic approximation it
is necessary to obtain the single-scatterer reflec-
tion and transmission amplitudes

T")(y&) = 1+ dx exp(ikox) t(x-y&)
2kp ~en

x exp(-ik~)
= 1-i v/(2k, -iv), (3 la)

2ko
dx exp(ik, x) t(x-y~) exp(ik, x)

= -i vexp(2ik~z)/(2ko-iv). (Slb)

The above two expressions are employed in Eq.
(20) to obtain T'"'(y„y„. . . , yv). This in turn is
used in Eq. (23) to calculate the adiabatic approxi-
mation of the transmission amplitude. In order to
obtain the transmission amplitude from the Glau-
ber theory one substitutes Eg. (Sla) into Eg. (26)
and arrives at the appropriate expression.

IV. RESULTS OF CALCULATION

The exact transmission and reflection ampli-
tudes for a particle incident on an A'-body system
in which the particles interact via a zero-range
potential 2m V(x) = -5'v6(x) is given by McGuire":

4iko —v(N-1)
4iko i v(N + 1) '

&.X~t = o

(32a)

(32b)

where kp is the wave number of the projectile in
the center-of-mass system and m is the reduced
mass of the projectile with respect to the 1V-par-
ticle system. In Figs. 1 we compare calculations
done for the transmission probability using the
WOP, adiabatic, and Glauber formalisms with

2

r(*) u=r, ur, dr„"y. *,-*-gr„r„r„..„r,)3

(Sob)

The multiple integral is then approximated by a
sum over n sets of N-2 random numbers y,'~',

3 ~s ~E, between -c and c:
N N 2

y(x) g P x x P y(9) yt j)
y(

)Iy( j)
j=I 3

(30c)

the exact calculation for two-, three-, four-, and
ten-particle targets. The density distribution
functions employed in these four figures were ob-
tained from the exact-solution ground-state wave
function,

y, (y)=ce~ —', g(ly, y, l),
where C is a normalization constant, c=mv/5,
and y, is the coordinate of the ith nucleon. In all
cases calculations were done from 0 to 100-MeV
lab energies.

Comparison of the approximate results for the
transmission probability with the exact result re-
veals that the adiabatic approximation works bet-
ter than the WOP formalism while the WOP for-
malism works better than the Glauber theory. All
the approximate methods do poorly for the reflec-
tion probability unless the incident energy is very
high.

The approximate methods give better results as
the incident energy is increased and the number
of particles in the target is decreased. This is to
be expected in consequence of the adiabaticity
assumptions. This trend is emphasized in our
model because there is no saturation in binding.

The binding energy of the target resulting from
the zero-range interactions increases as N(N'-1)
with the number N of target nucleons. " The inter-
action strength was chosen so that the two-body
binding energy would be 2.2 MeV with particle
masses taken equal to the nucleon mass. Thus
the binding energy of the three-nucleon system
is 8.8 MeV, that of the four-nucleon system is
22.0 MeV, and that of the ten-nucleon system is
363 MeV. We see that the adiabatic approxima-
tion works well if the incident energy is greater
than about three times the binding energy per
nucleon.

The lack in saturation of binding leads to an
absence of saturation of density. As the number
of target nucleons is increased there is a sharp
increase in target nucleon density. It is not ob-
vious what effect this change in density might
have on the predictions of the adiabatic approxi-
mation and the WOP formalisms. The Glauber
predictions are independent of density. To study
the effect of target density we did a series of cal-
culations using a target-particle density of the
form

(34a)

(34b)
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in place of Eq. (33).
For the two-, three-, and four-target-particle

cases the WOP formalism is almost completely
insensitive to the change in the target density
while the adiabatic approximation is affected only
rather weakly. For the ten-particle case where
the difference in density is very large both for-
malisms show a much reduced tranansmission prob-
ability for the smaller-density case.

The Watson theoheory two-body transition operator

f shown in Eq. (29) is not the simple nucleon-nu-
cleon transition operator because the projectile-
target reduced mass m =PM/(N+ 1)

'

stead of the nucleon-nucleon reduced mass of
M/2. We tried a series of WOP calculations com-
paring the consequences of using various differ-
ent es of kinematics in the approximate Gree 'reen s
unction. Using the kinematics suggested by Wat-

son, the Green's function operator t"0 appearing
in Eq. (7) would be approximated by

g E O' M ee'~ (35)

instead of the Foldy and Walecka choice shown in
Eq. (10a). Then in place of Eq. (29c) we would
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get

O'
J v6(x-y, .)

2m ) 1-(iv/2ko)[(N+1)/2N]'~2 j

(36)

to implement in realistic cases. When the eikonal
assumption is added to the adiabatic one giving
the Glauber formalism we find that the combina-
tion works less well than the Watson formalism.

This is the true nucleon-nucleon t matrix for our
model. For comparison we also tried

g2 )2 ~l

go- E-Eo+
2M 2 + (37)

which gives

k' v 6(x-yq)
2m 1-(iv/2ko)[(N+1)/N]'~'

(38)

Equation (29c) is the result of using a reduced
mass of m =1VM /(N+ 1), Eq. (36) is the result of
using a reduced mass of M/2, and Eq. (38) is the
result of using a reduced mass of M in the two-
body propagator g, . The reduced mass m =NM/
(N+ 1), suggested by Foldy and Walecka, gave
the best result. This is shown in Fig. 2.

An interesting aspect of our results is the fact
that the approximate transmission probabilities
all vanish in the zero-energy limit while the ex-
act transmission probability approaches a finite
value. The behavior of the exact result is a con-
sequence of the extreme symmetry of the model.
The masses of all particles are the same and the
mutual interactions are all identical.

A similar effect was found by Dodd, "who used
the Faddeev formalism to study the one-dimen-
sional three-body system. The exact zero-energy
transmission probability became zero when the
mutual interactions between different pairs of
particles were no longer the same.

Our model is particularly unfavorable for the
Glauber theory since backward scatterings play
a much more important role in this model than
they would in a three-dimensional system with
finite-range interactions. In the one-dimensional
system the projectile collides head-on with every
member of the target at least once. In a three-
dimensional system the projectile will miss many
members of the target and many of the collisions
it does make will be just glancing ones. Thus in
practical applications the Glauber theory may
give results comparable in quality to the WQP
formalism.

We find that the adiabatic approximation of
neglecting dynamical development of the target
over the duration of the scattering process is a
less severe restriction that the Watson approxi-
mation of neglecting excitation of the target. The
adiabatic approximation is generally too difficult

V. RELEVANCE OF THE MODEL NUCLEON-NUCLEUS
SCATTERING

Our calculations have been done for the sym-
metrical, one-dimensional, N-body system with
zero-range interactions. Of course, this model
differs in many important respects from physical
nucleon-nucleus scattering; otherwise it would
not be soluble. On the other hand, this model is
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FIG. 2. Transmission probability for a particle im-
pinging on a bound state of N (= 4, 10) particles in one
dimension. The parameters are the same as for Fig. 1.
The exact result is compared with that given by the Wat-
son optical potential theory using a two-body t matrix
calculated with a reduced mass of NM/(N+1), M/2, and
M.
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a true many-body system which manifests multi-
ple-scattering processes. Let us survey the sig-
nificant differences between our model and the
nucleon-nucleus system.

Our model lacks the bound excited states of a
physical nucleus. Thus one might suppose that it
cannot manifest inelastic scattering processes.
However, the model does have unbound excited
states. These excited states are coupled to the
ground state by the perturbation produced by the
projectile. Moreover, these excited states are
not degenerate with the ground state. If this were
not the case the adiabatic approximation would

agree with exact calculation at all energies.
It is true that these unbound excited states, the

breakup channels, receive no flux, which is not
realistic. This fact cannot be regarded as the
reason for the success of the adiabatic approxi-
mation for our model. The breakup channels
are dynamically coupled to the incident channel.
The fact that they receive no flux is the conse-
quence of a delicate destructive interference
phenomenon. If the strength of the interaction of
the projectile with each of the target particles
were not exactly equal to each other, then this
interference would not occur and there would be
nonvanishing breakup flux.

A second difference between our model and the
nucleon-nucleus system is the fact that the model
predicts that the target becomes more transpar-
ent to the projectile as the energy is increased.
However, the fact that nuclei become more
opaque to nucleons with increasing energy is due
to meson production rather than to any multiple-
scattering effect. We could have made the model
exhibit this sort of effect by making the two-body
interaction potential complex and energy-depend-
ent, but this phenomenon is extraneous to the

multiple-scattering effects which we wanted to
study.

Quasielastic knockout is an important effect in
nucleon-nucleus scattering which is absent in our
model. However, our model does show elastic
knockout which is very similar to quasielastic
knockout. This process drains flux out of the
elastic channel just as quasielastic knockout does.
That is the main effect as far as the elastic scat-
tering is concerned.

Finally, there is the question of the binding
energy. Admittedly, the model binding energies
get very large when there are more than just a
few particles in the target. The two-, three-,
and four-particle targets do not have outrageous
binding. The ten-particle target does have a very
large binding. The main consequence of this is
that the approximate methods we tested required
greater incident energy in order to be valid.

As we have said, there are differences and
similarities between the symmetric one-dimen-
sional N-body system with zero-range interac-
tions and the nucleon-nucleus system. Are the
differences crucial? We cannot say with certain-
ty. We have found that the adiabatic approxima-
tion works very well for the one-dimensional
model and that the Watson optical potential works
better with the Foldy-Walecka kinematics than
with the Watson kinematics. We can see no ob-
vious reason why these conclusions should be valid
for the model and fail to be valid for the nucleon-
nucleus system.
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