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Infinite sequence of conserved currents in the sine-Gordon theory*

B. Yoon

(Received 20 October 1975)

We investigate the infinite sequence of conserved currents in the sine-Gordon theory. We find that they arise

from symmetries of the system, that they impose the soliton property on the classical solutions, and that the

equivalent theory, the massive Thirring model, reflects their existence.

I. INTRODUCTION

The sine-Gordon theory has several remarkable
features which reflect an underlying formal prop-
erty, the existence of infinitely many symmetries
of the system. Classically, the sine-Gordon theory
is characterized by an infinite sequence of con-
served currents' ' and by exact solutions which
describe the scattering of solitons. ' Quantum
mechanically, it is equivalent to the massive Thir-
ring model, "a theory of fermions.

Solitons are localized traveling waves which
scatter without change in momentum or shape. In
semiclassical treatments" the soliton is inter-
preted as a new particle. It is a coherent bound
state of the fundamental-boson field. It has been
conjectured that the quantum soliton of the sine-
Gordon theory is the fundamental fermion of the
massive Thirring model. '

Previously, the conserved currents were ob-
tained without reference to symmetry considera-
tions. We show in Sec. II that they are determined
by Noether's theorem from nonlinear field trans-
formations which leave the action invariant. In
Sec. III we show that the soliton property is a con-
sequence of these conserved currents (i.e. , that
current conservation requires the set of final mo-
menta in any scattering process to be identical to
the inital set). If the soliton-fermion identification
is valid, we would expect classical scattering am-
plitudes (the tree approximation) in the massive
Thirring model to exhibit the soliton property, We
verify this for the 3-3 amplitude.

In Appendix A we discuss a set of conserved cur-
rents which do not arise from symmetries of the
system. ' Appendix B contains the massive- Thir-
ring- model calculation.

=t+x=
X ~ X

t —x
x x+ p (2.1)

We use the following notation for derivatives of the
scalar field:

(2.2)

With these conventions, the sine-Gordon Lagran-
gian is given by

Z=p, p +—'(cospp —1), (2.3)

lg(x) P(y)j„.=,.= e(x -y ) (2.4)

is the fundamental Poisson bracket. Schwinger's
action principle determines the Euler-Lagrange
equation:

Ao=-2- sinpp. (2.5)

We consider now the infinite sequence of con-
served currents derived by Kruskal and Wiley
through the generating function2:

1
g = p+ —sin 'epg .

P
(2 6)

When P satisfies (2.5), g satisfies

8 2
— —8 —cosP —1 =0.

where n, has the dimensions of mass squared, and

p is a dimensionless parameter. The canonical
formalism is developed in the usual way, provid-
ed that

II. SYMMETRIES OF THE LAGRANGIAN

The conserved currents are conveniently ex-
pressed in light-cone coordinates, defined by

(2.7)

For & an infinitesimal parameter, (2.6) determines
P as a power series in terms of P. This result is
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substituted into (2.V) to yield the infinite sequence
of conserved currents as coefficients of even pow-
ers of &. A dual sequence is obtained by every-
where substituting 8. and 8 in Eqs. (2.6) and (2.7).
We label the two sequences by the following nota-
tion:

+ 2nb - 2nb

(2.8)

where the index, 2n, corresponds to the power of
e in the expansion of (2.V) and its dual. The low-
est-order expression is the energy-momentum
tensor:

J+ —g++ (P )2
O~a

JW—
8$

(2.15)

(2.16)

The induced change in the Lagrangian is indeed
a total divergence which has the following (non-
unique) form:

(2.17)

is conserved by virtue of (2.13) and (2.14).
Applying this procedure to the current J, „we

find, using Eq. (2.4), that Q, „generates the
transformation

Jo,=jo ~=8' =-—~(cospQ —1),

Jo ~=8 =(Q,) .
The next currents in the sequence are

4

J, ,=-—(4 )'cospp+-g sinpp

J~ ~=-2 (Q.) cospQ+ —Q, .sinpQ
Gg 2

J. , =- 2&A. ..+(e..)'+ 4
— (e.)' .

(2.9)

(2.10a)

(2.10b)

+4 4,(4)'

J&„=2 (@ ) cosPP

(2.18)

differs from the original expression in (2.10) by
total divergences and applications of the Euler-
Lagrange equation. It can be shown in a similar
way that the dual current

sinpp+ (Q )'cosp@
2

It is thus seen that (2.16) is a symmetry operation.
The conserved current determined by (2.15),

To establish the correspondence with symmet-
ries, ' it js sufficient to show that the constant of
the motion

J;,=
2 (Q.)' cosP Q,

(2.19)

q= jd.-Z. (2.11) J~, ,=(A.,)'- 4 (0,)'

generates an infinitesimal transformation of the
field

is generated by the symmetry operation

6y = -z(q, y(x)), (2.12)
2

(2.20)

which changes the Lagrangian (without application
of the Euler-Lagrange equation) by a total diver-
gence:

(2.13)

The action, I= f d'xZ, is then left invariant. The
conserved current is recovered in the following
way. Using the Euler-Lagrange equation, 5$ has
the alternate expression

The 0(&') currents

5 2

J:„=(e )'+, (0)'(e )'

5p2 p4

, (e)'e
8

(y)',

J =-
3 ((f&) ~ —

8 (~) c
5P' , 3nop' (2.21)

+ 2' (p )'p sinp@+—(Q )'cospQ,3@op g . : D(&

J', defined by

and the dual, J4, [obtained by everywhere inter-
changing the symbols + and —in (2.21)], are gen-
erated, respectively, by
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2 4

1'16 (4)',

(2.22a)

(2.22b)

The interaction term in the Lagrangian apparent-
ly allows an infinite sequence of highly nonlinear
symmetry operations. The interpretation of the
corresponding currents is given in the next sec-
tion.

III. REPRESENTATIONS OF THE CONSERVED QUANTITIES

To gain insight into the nature of the conserved
quantities, we present first a representation for
the case P-0. In this limit, the sine-Gordon
theory describes a free field which has the follow-
ing light- cone quantization:

C(x) =(4 „, ~ [e '""a'(k')+e'""a(k')] .4w' ', k'
(3.1)

(k')'"a'(k') a(k'),

(k )'"a'(k') a(k')

are also constants of the motion, they do not cor-
respond to the local current densities derived
from symmetries of the system. The conserva-
tion laws (3.4) impose an infinite number of inde-
pendent conditions on the momenta of the indivi-
dual particles undergoing scattering processes.
To satisfy them, quantum scattering amplitudes
must conserve the set of light-cone momenta. '
(Implicit in this constraint is conservation of part-
icle number and type. ) Of course, the constraint
is trivial for a free-field theory. " We shall show,
however, that it carries over to the soliton solu-
tions of the classical interaction theory.

The n-soliton solutions, P„(x), are parameter-
ized by n momenta, k,. =64o. ,/p~k;. , and n localiza-
tions, x&. They are defined up to a constant,
C„= 2'/P (where m is an integer), and are gen-
erated recursively from the vacuum solution,
Q,(x) =0, by the Backlund transformation':

(3.5a)

In the above expression, k =o.,/2k' and the crea-
tion and annihilation operators satisfy the commu-
tation relations

()k:, (.— .-) (3.5b)

[a(k'), a'(k")] = 5(k'- k"),
[a(k'), a(k")] = [at(k'), at(k")] = 0 .

(3.2)

From (3.1) and (3.2) we obtain for the constants
of the motion operators in normal-ordered form

Here, k„and 4„' can be either positive or negative.
By cross differentiation, both Q„and &f„, must
satisfy (2.5). There are two solutions for P„ the
solition, (f)~, and the antisoliton, P„,

y, =—t» 'exp'+ —[~k ~x'- ~k'~(x -& )]~,s
p ) 8 n

—
n

)), .=f dx:(k )':= dk'(k')a'(k')a(k'),
0

(3.3a)
(3.6)

dx=-)»'»k'- —,ilk. l*'- Ik:I(x -X )lI,

which are distinguished by the boundary condition))x, =f dx:(kk. ):= dk (k )ac(k )a(k ), ('3.3k)''
0

)), , = f d:(k )':= dk (k )'a (k')a(k'), (3'.3'c)
0

)), , = f dx:(k.k. . ):= dk (k )'ac(k )a(k'). ''
0

— 2r4,(x', + )-4,(x', — ) =-—,
— 2my.(x', +-) —e.(x', --)=+—.

q,„.= dk'(k')'" "a'(k')a(k ),
0

(3.4a)

(3.3d)

The normal-ordering process amounts to a sub-
traction of infinite constants which does not de-
stroy current conservation. It is clear that the
succeeding operators are given by

-2'P„(x',+~) —y„(x', -~) = (3.8)

where N is the number of solitons minus antisoli-
tons contained in (t)„.

Let us now consider the light-cone Hamiltonian
for this solution:

The general solutions, Q„, have the boundary con-
dition

tk),„,= dk'(k )'" "a'(k')a(k') .
0

We mention that although the quantities

(3.4b)

From (3.5) we obtain the recursive relation

(3.9)
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(('„)'=())„, )'+2" & cosp(" " ')

(3.10)

k„=k,(„+k,(, )
—k, (5), and the u, =u(k, ) are the

spinor solutions to the Dirac equation. We ex-
press the denominators in (3.14) as

Q, [(t)„]= Q k;.
i =1

In a similar way, we can show that

(3.11a)

By repeating this relation and using (3.7) with an

appropriate choice of constants, C, , we obtain for
Q, ,Je„l

=P, , -ii(S(k ))3 ),4' —rn'+ s& k' —m' (3.15)

where P(x) denotes the principal part of x. In
Appendix B we show that the principal parts of
(3.14) cancel. M3 3 is thus a sum over the 5 func-
tions which constrain the set of final momenta to
be identical to the set of initial momenta.

(3.11b) CONCLUSIONS

(3.11c)

(3.lid)

IV. THE MASSIVE THIRRING MODEL

To see whether this property holds in the mas-
sive Thirring model, it is necessary to consider
the n-point scattering amplitudes, where n is at
least six. For lower amplitudes, the energy-mo-
mentum conservation is sufficient to fix the final
momenta. The Lagrangian for this theory is

& = g(58 —))i)g- '3 g(gr"q)PV, (I)) . (3.12)

We compute the 3-3 scattering amplitude in the
tree approximation:

The generalization to higher-order currents (apart
from numerical factors) is obvious. We see then
that the constants of the motion for the classical
soliton solutions have the same representation as
in the free-field theory. In this case, the con-
straint imposed on Q„ is nontrivial; the infinite
sequence of conserved currents requires the soli-
ton property.

We have shown that an infinite sequence of non-
linear symmetry operations is a fundamental prop-
erty of the sine-Gordon theory. These symmetries
determine the conserved currents, which in turn
determine the soliton property of the classical
solutions. We have shown, furthermore, that the
interpretation of the fermion in the massive Thir-
ring model as a quantum soliton is consistent on
the classical level. Whether or not conservation
of the set of momenta persists quantum mechanic-
ally in the massive Thirring model can be seen by
looking at higher orders of perturbation theory
where ordering problems and anomalies can de-
stroy formal current conservation.

Note added. While writing this manuscript, I
learned that Berg, Karowski, and Thun have also
computed tree amplitudes in the massive Thirring
model. They give an elegant proof of our result
and show, in addition, that the 2-4 amplitude
vanishes. "
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S, , =-(2)()'g'5(k, +k, +k, —k5 —k, —k, )

6 1/2
x nz F-, I, ,

i "-1

(3.13)

APPENDIX A

In Ref. 1, a diffe:ent sequence of conserved cur-
rents is generated by a method similar to that de-

The invariant amplitude, M3 3, is determined by
the graph in Fig. 1:

8&s)

3 3 Q sgno sgll su5 (5}fgu()(3 )u5 (5 )f
(~)(6}

WL+
2 2+ ~ +a(2)+6 (4P @+a(1) &k —Bl +f6

(3.14)

where 0. and 5 are permutation indices, FIG. 1. Tree diagram for the 3 3 scattering process.



3444 B. YOON 13

scribed in Sec. II. The generating function, g, is
defined by half of the BA'.cklund transformation:

2'&o .
sinP (A1)

where k is considered an infinitesimal parameter.
g is determined in terms of g and substituted into
the conservation law

s,(g )'+ s ——,'(cospp-1) =0, (A2)

to yield an infinite sequence of conserved currents
as coefficients of (b )". As in Sec. II, the zeroth-
order expression is conservation of 8'". The high-
er-order laws can be put into a simple form by
using the identities obtained from (A1):

0
(p )' =(q )'+s,&'cosp (A3a)

25
g cospg =—

g cosptjh+ 8» 4 cosp
~

. (A3h)
P 2 )

Substituting (A3) into (A2) and subtracting con-
servation of 8'", we obtain

APPENDIX 8

We choose the following conventions:01, (01
&I 0] &-I 0

(81)
Ol 10 F00

fall

The positive-energy spinor solution to the Dirac
equation is

(15"( )- [4(l,g)y(2 (I+@')i
&I)

(82)

b, (3E,'+ 6Eg —1)
P(M, ~) =

[4(1 )],g, B~ 3.

We show that

where we have set no= l.
In computing the principal part of M3 3 we

choose the frame of reference R, =k, and the spec-
ial case k, =0. Under these conditions, we obtain

There is also a sequence of dual currents generat-
ed by the other half of the Backlund transforma-
tion:

cosP —~„~~cos

=0,

by choosing the notation

+& -&~ &.-Ei-&5
Energy-momentum conservation requires

We see explicitly that all higher-order currents
are trivially conserved, with vanishing constants
of the motion and, consequently, no correspond-
ing symmetries of the Lagrangian.

2 b,
~

3+ Q b) + Q (b, 'b~+b)b)) =0.

In the 6, notation

(85)

B~ ~= ~3 (—(b,2b,+)(b, b,+2)+[(b, b +23)+(b, -b, )b, +(b, +b, +2)(b, —b,)b, ]
5

~ lg

+ 2[b,(b, -b, ) —b, (b, + b~+ 2)][b,+b, + 2)(b, -b2)b3+ (b, + b, + 2)(b, -b, )b,]}. (86)

With a little algebra the expression in curly brackets in (86) reduces to the left-hand side of (85). We
have verified numerically that Bs 3 0 for k34 0.
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