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Previously proposed solutions to the U,(1) problem, or ninth axial-vector current problem, are reviewed and a
new solution proposed. We point out that in the presence of magnetic gauge charges the anomalous term
Fp*Fgg is not a total divergence. This implies that the U,(1) symmetry is explicitly broken.

The Lagrangian for a gauge theory of strong
interactions is

L= £m+iavq+ £SB .

Here £yy is the action density for an SU,(3) octet of
Yang-Mills colored gauge fields, ¢ is a Fermi
field transforming like 3 under SU_(3) and like
(3,1)+(1,3) under the SU(3)xSU(3) of the strong
interactions, D, is the SU,(3) covariant derivative,
£4p is an SU(3) X SU(3)-symmetry breaking term,
given by fermion mass terms. We will refer to
this theory and its variants as “quantum chromo-
dynamics” (QCD). The symmetry of £ if £55 =0 is
SU,(3)xSU(3)xSU(3)x U,(1)x U(1) with SU,(3) an
exact local gauge symmetry. Here U(1l) corre-
sponds to baryon number conservation and U ,(1)—
which is the topic of this paper—to the conserva-
tion of the “ninth axial-vector current,” an SU.(3)
singlet transforming like y, ¥s2°. The assumptions
governing this model of strong interactions are (i)
only SU_(3) singlets are in the spectrum of physi-
cal states (confinement); (ii) if £55 =0 the SU(3)
xSU(3) symmetry is realized in a Nambu-Gold-
stone manner with an SU(3) octet of Goldstone
pseudoscalar mesons and SU(3) multiplets of
states; (iii) if £¢5=0 the U,(1) symmetry is ab-
sent; (iv) if £55 =0 the formal scale invariance of
£ is absent. This would seem to be a minimal set
of requirements if £ is to describe the real world
of strong interactions. The manifest advantages
of this model of strong interactions have been de-
scribed by Fritzsch, Gell-Mann, and Leutwyler!
and by Weinberg.'

Our discussion focuses on assumption (iii) above.
A logical possibility is that the charge associated
with U 4(1) vanishes in the physical sector.? This
leads to problems in the saturation of equal-time
commutators as pointed out by Fritzsch and Gell-
Mann?; so we assume the charge is nontrivial. If
(iii) is not true and the U4(1) is in fact present if
£¢3=0 then either there are nine Goldstone bosons
or parity doubling of all hadron states. As this
latter option is evidently not approximated by had-
ron states we consider only the first, an extra
Goldstone boson. In this instance, as emphasized
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by Weinberg,® if one considers explicit symmetry
breaking then there is a state satisfying m,* <3m,?,
which is not seen. Further, even if one adds a
Al'=1 mass term to £g; one finds the n- 37 rate
too small since the matrix element is related to
the divergence of the ninth axial-vector current.*

This state of affairs has provoked various at-
tempts to eliminate the extra U,(1) symmetry. The
ninth axial-vector current is well known to have an
Adler-Bell-Jackiw anomaly® so that if Ay=qy,v.q
then

BMAP=CAEIGV *Fﬁu ) (1)

with C, a dimensionless nontrivial constant and
Fl,=98,A5 - 8,A}+ g A} A% is the Yang-Mills
SU,(3) field tensor. The presence of the anomaly
does not itself render a solution to the U,(1) prob-
lem since Fj, *F§, is a divergence of a local
operator,

Fﬁv *I?ﬁu =9, ep: @)

3Ep= €uasA) A%+ ‘;gfabceuvkaA:A&A% ,
with Af the SU_(3) gauge field. The usual Goldstone
theorem requiring a massless pseudoscalar state
is unaltered even with the anomalous term. This
is because in the Ward identity one uses to prove
the Goldstone theorem,® although it has an anom-
alous term, the anomaly vanishes at zero momen-
tum transfer because Fy,*Fj , is a total divergence
and this is what is required for the usual conclu-
sion.

Langacker and I (see Ref. 7) suggested that be-
cause the scale invariance of the theory is broken
(even if £, = 0) the divergence of the current is
actually given by

0,A,=C, Fi *F§, +mqiyyq 3)
with m some scale mass. This Baker-Johnson®
type anomaly, although it cannot occur in pertur-
bation theory, is a possible solution to the homo-
geneous Bethe-Salpeter equation for the irreducible
vertex for 8,4,. This phase transition to the mode
in which axial-vector current conservation is vio-
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lated is how QED avoids a Goldstone state.” For
QCD it is not known if this explicit breaking mech-
anism occurs.

Kogut and Susskind® have described an alternate
approach which was further developed by Wein-
berg.'® They consider the axial-vector current

A=Ay = Culy (4)

so that 8,A/=0. The time rate of change of the
associated axial charge @ = f Ald®x is then

o= [ouaparns [9-Kra

= f A as. (5)

Since A} is an SU,(3) gauge-dependent quantity
[although the integral (5) is gauge-invariant] one
can suppose there is a gauge-variant long-range
field that produces a nontrivial integral. Then
@ +0, the desired result. This evidently occurs in
two-dimensional QED.°

An explicit realization of this is the dipole ghost
mechanism.®*'° Consider a matrix element
(a|F§,*F§,|B) with g= g, — gg. This can be made
nonvanishing as g¢- 0, in spite of the fact that
Fj, *F4, is a total divergence, if there is a zero-
mass pseudoscalar that couples to Fy, *Fy, [see
Fig. 1(a)]. While this accomplished the desired
effect of explicitly breaking U,(1) conservation it
implies that this zero-mass state couples to other
hadrons [ Fig. 1(b)]. This undesired pole is to be
canceled by a ghost state with negative norm and
zero mass, Fig. 1(c), a prescription which does
not violate unitarity since the only effect of the
ghost is to cancel the zero-mass state in all S-ma-
trix elements. If one supposes that because &, is
gauge-variant the ghost does not couple to matrix
elements of £, (and therefore Fj,*F{,) one has
solved the problem. Like the previous proposal it
is not known if this actually happens for QCD.

There is an alternate to these proposals. Our

observation is that if theve ave coloved SU,(3) mag-
a

netic chavges then F §,*F}, is not a total divergence

and the U,(1) symmelry is explicitly brvoken. By
the presence of colored magnetic charges we mean
that

Dy *Fipy =*J 5 (6)

does not vanish everywhere. Then the formal ma-
nipulations one uses to prove Fy,*F iy, = 8,§, are
invalid, a consequence of (nonphysical) string sin-
gularities in A§, and the matrix elements of
F§,*F,do not vanish for zero momentum trans-

fer. The U,(1) symmetry is explicitly broken.
Because there is no anomaly in the SU(3) octet of
axial-vector currents these are conserved.

Many people!! have suggested that magnetic
charges have a role in the confinement problem.
Most such proposals are based on classical chro-
modynamics (CCD) usually supplemented with
scalar fields with a judicious representation con-
tent.'> Magnetic charges are presumably confined
along with all SU,(3) nonsinglets.'®* The main point
is that if magnetic confinement with magnetic
charges is a solution to QCD and (6) is nonvanish-
ing then it also will solve the U,(1) problem. This,
like the previous proposals, must remain specula-
tion until more is known about QCD. The novel
feature of our proposal is that there may be a di-
rect connection between magnetic confinement
mechanisms and the solution to the U 4(1) problem.

The simplest illustration of this idea is for the
classical electrodynamics of the Dirac monopole. '
Then with Fy, =9,4,- 8,4,

Fuv*Fuuz‘ap(Au*Fuu)"Au*Ju (7)

is not a total divergence if the magnetic current
*J,=8, *F,, is nonvanishing. This is possible if the
electromagnetic potential A, is singular along a
string so that (8,9, - 8,8,)Ax#0. As Dirac pointed
out such a singularity has no observable conse-
quences if the quantization condition eg=n/2 for
electric and magnetic charge is obeyed. In a pos-
sible generalization of Dirac’s treatment to clas-
sical chromodynamics with colored magnetic
charges one finds that F§,*F§, is not a total di-
vergence.'®

Schwinger and others'® have developed a quantum
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FIG. 1. The dipole ghost mechanism.



theory of real magnetic monopoles. In Schwinger’s
version one can verify that the operator Fy,*F,
=E -H is not a total divergence if both electric and
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magnetic charges are present. How much of this
is actually valid for QCD with confined charges is
a matter of speculation.
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