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We study the structure of soliton-monopole systems when Fermi fields are present. We show that the
existence of a nondegenerate, isolated, zero-energy, c-number solution of the Dirac equation implies that the
soliton is a degenerate doublet with Fermi number ~ 1/2. We find such solutions in the theory of Yang-Mills
monopoles and dyons.

I. INTRODUCTION

A strategy for extracting information about solu-
tions of a quantum field theory has been recently
suggested: Operator Euler -Lagrange equations
are treated as c-number field equations and are
solved by methods of classical mathematical phy-
sics. Quantum mechanics is regained either by
expanding the quantum theory around the classical
solution in a power series of a small parameter-
typically a coupling constant —or by quantizing the
classical solution in a semiclassical or WEB ap-
proximation. '

The examples considered in the literature thus
far involve Euler-Lagrange equations with Bose
operators. The classical solution, large for weak
coupling, in the quantum theory is the dominant
approximation to an expectation value of the quan-
tum field, whose operator commutation relations
guide higher-order calculations. ' A.n analogous
development for Fermi operators with anticom-
rngtation relations has heretofore been lacking, '
and is presented in this paper. In the literature
there exist some solutions to Dirac-type equations,
arising in various field theories with Fermi fields
4, where 4 is treated as an ordinary c number. 4

We add to this list a fermionic c-number solution
to the Yang-Mills theory of spontaneously broken
isospin symmetry with isovector mesons and iso-
spinor or isovector fermions —a gauge theory
which is known to possess monopole and dyon solu-
tions in the absence of fermions. "Moreover,
we describe the role of the fermion solution in
the quantum theory, and we find curious results.

In the models which we consider, Fermi fields
couple to Bose fields with gauge-invariant bilinear
interactions of strength g, a weak-coupling constant
characterizing in a uniform way the boson self-
couplings. In the absence of the fermions, the
classical Bose solutions are O(g '), and are as-
sociated with soliton states. The Dirac equa-
tions, encountered in our approximation scheme
for the quantum theory, are c-number equa-
tions in the external potential given by the

4'= a(, + g (b~P~, +d~g~ ).

Here b~ and d~ are annihilation and creation oper-
ators associated with positive-energy solutions
P~+, and with fermion-number conjugates of
negative-energy solutions P~-, while P, is the fer-
mion-number self -conjugate zero -energy solution.
Since there is only one such solution, we associate
only one operator with it: a. The anticommuta-
tion relations of 4 fix those of a and a~:

(a, a) = (at, at) = 0,

{a',a)=1.
(1.2)

But there is no requirement that a and a be parti-

classical boson field. The equations are linear in
4, the interactions with the bosons are O(g'), and
the solutions for 4 are also O(g'). Thus they are
higher-order, quantum corrections to the O(g ')
classical solution. We solve these Dirac equations,
and find that they possess a normalizable, static
(time-independent) solution. This is a zero-ener-
gy state, which goes into itself under fermion-num-
ber conjugation. A zero-energy mode signals de-
generacy in the quantum theory, and we argue
that a nondegenerate c-number zero-energy solu-
tion implies that each of the soliton states is in
fact a degenerate doublet, carrying fermion num-
ber +—,. It must be stressed that we do not take
the viewpoint that the soliton exists independently
of the fermions, which then bind to it with zero
energy. Rather we say that the soliton state is
doubly degenerate —a feature which becomes ex-
posed only when the calculation is taken to a higher
order. The differing interpretations lead to a dif-
ferent numbers of soliton states. In our inter-
pretation there are two; in the other there would
be four: the original soliton, soliton plus fermion,
soliton plus antifermion and soliton plus fermion
and antifer mion.

We are led to our interpretation by considering
the expansion of the Fermi quantum field in terms
of eigenfunctions of our Dirac equation:
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cle annihilation and creation operators. The only
statement one must make is that the states provide
a representation of the algebra (1.2). This is
achieved by allowing the lowest (soliton) state to
be a degenerate doublet. Consistency of our inter-
pretation is demonstrated in the remainder of this
article.

In Sec. II we discuss simple models in one spa-
tial dimension which accurately exemplify all the
features of realistic three-dimensional theories;
one of these, the SU(2) Yang-Mills theory, is
treated in Sec. III. Concluding remarks comprise
Sec. IV. Detailed analysis of various relevant
Dirac equations is relegated to an Appendix.

iy' (O' -G V(gp, )(0 = 0,

$,(x)=%exp -G dx'V(g&f&, ) s',
0

(2.6)

N = finite normalization constant.

We have taken the representation of the Dirac ma-
trices to be y'= io', y'= 0', while s+ is the spinor
('); in the following s will denote (0). Since a
time-dependent spinor which solves (2.5) may be
written as

always has a unique, static, normalizable solution:

II. MODELS IN ONE SPATIAL DIMENSION

A. e-number solution

tjI(x, t) = e "'p, (x),

ir |j', ' Gv(—a4,)4. '= ~'Y 4. ,
(2 'i)

We consider theories involving a scalar field 4
and a spinor field 4, with a Lagrangian density
of the form

8=-,'s„C s"C U(gC) +i@'y"s,4 -GC V(gC)4.

(2.1)

G is a positive constant with mass dimensionality.
We further suppose that, in the absence of fer-
mions, the static field equation for C possesses
a classically stable, finite-energy solution Q, ,

(2.2)

we see that (2.6) is a nondegenerate, zero-energy
eigensolution. The fermion-number conjugation
matrix is o', and $0 is self-conjugate:

(2.8)

In general, there may be other normalizable
solutions with zW 0. Also there will be a contin-
uum spectrum with

~

e
~

~ (P'+ m')'~' and orthonor-
mal eigenfunctions tj~~, where the + label signifies
positive or negative energy. For simplicity we
shall ignore the possibility of bound states, other
than the zero-energy one, (2.6). Thus the contin-
uum solutions satisfy

where Q, (+~) also solve U'(gg)=0. The Yukawa
interaction is assumed to have the following anti-
symmetric property:

It*(x)tj' (S)+g-(x)tj' -(XH
dp

= 6(x -7) —4.*(x)4.(3) (2.9)

1im G V(gg, ) = —lim G V(gg, ) =—m & 0. (2.8) B. Quantum interpretation

A convenient example is

U(y) = —,'~'(1 g)',

v(@)= y, (2.4)

1
P, (x) = —tanhXx.

i&'s„y -G V(g y, )q = 0 (2.5)

X is a constant with mass dimensionality. We shall
frequently refer to this explicit example, though
our considerations are general. '

Observe that the Dirae equation

The quantum theory described by the Lagrangian
(2.1) possesses in the ordinary (vacuum) sector a
meson with mass p =lim„„[U"(gp, )]'~' and a fer
mion-antifermion doublet with mass
m= lim Gv(gg, ). The occurrence of the static
solution Q, (x) suggests that there is also a soli-
ton sector. To expose its structure we work for
definiteness with the specific theory (2.4) and post-
ulate the existence of one-soliton states ~P +),
with momentum P and mass M which is O(g '). The
additional label, a, describes a twofold degeneracy
which, as we shall demonstrate below, is required
by the zero-energy fermion solution: The + state
is called "soliton" and the —state is called "anti-
soliton. " We emphasize that this bifurcation has
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no relation to the kink-antikink dualism; rather
it is a consequence of the fermions.

First we consider the quantum theory in the ap-
proximation that dominates for small g. As in
previous investigations, ' we postulate that
(P'+

I @IP+ & is O(g '), and that all other connected
matrix elements of 4 and 4 relevant to the one-
soliton sector either vanish or are of an order in

g higher than g '. In the one-soliton matrix ele-
ment of the Heisenberg equation for 4,

([E(P') -E(PH'-(P' -P)')&P'~ Ic'IP+&

f"= U'(gf)—

() "
l

e~l ~*)= f«' ""'*((.)
(2.11)

The Bose-field form factor f coincides with P „
in lowest order. The soliton or antisoliton energy
E(P), which in lowest order is just the mass M,
can be computed from an expectation value of the
Hamiltonian. The Fermi fields contribute only
an order of g higher than the Bose terms. Hence
the leading expression for M is the classical ener-
gy«(p, :

1
f(f =E(y, ) = dx —,'(y, ')'+ V(Zy, )—

(P'+ —
I
U'(gc)) IP+&+gG(P' s I(j(NIPS&,

g

(2.10)

we sum over intermediate states and keep only
dominant terms for small g. The last term is
O(g), and hence is negligible in lowest order.
Thus the classical static Bose equation is regained
in a familiar fashion'.

&P( IHIP+&=& + Ie'IP'

=
~l

dxe'&'- )",(x),

(P '+
I

O'
I
P s; p + &

= (P+;p +
I
)1(t

I

P' s &*

(2.13a)

dx e'~' ~)"u~(x), (2.13b)
~

~

(P'+ IC~IP+;p -&=(P+;pI@IP'~&*

dx e""'-~'"v,* x, 2.13c

&P'+ fc IP+;k&=&P~;kIeIP'+&*

dx ei(p' p)x fk(x)
[2(d(k)j"' '

(2.13d)

To O(go) the energy difference may be dropped,
while the right-hand side is

Gg&P'- Ic+IP+&

=Gg, &P'-
I
cIP" &&P" IHIP+&--

We shall show that these are O(g'); all other multi-
particle, connected matrix elements in the soliton
sector either vanish identically or are of higher
order in g. Note that the Fermi field can effect a
transition between the soliton and the antisoliton.
The equations satisfied by the wave functions can
be derived from matrix elements of the Heisen-
berg equations for the operators.

First we consider (2.13a):

b' [E(P) -E(P')] y'(P-P'))&P'-I~IP )

= Gg &P' -
I
C ~IP+&. (2.14a)

= I«(( ')'.
= o(1fa'). (2.12)

fO

=G ' dxe"~' ~)"gf(x)u, (x). (2.14b)

Thus we find that u, (x) satisfies the static Dirac
equation:

Contact with the fermions is made when the cal-
culation is taken to the next order. We list the
states that are relevant. They are the soliton or
antisoliton plus one-meson states, IP +; k&, the
soliton or antisoliton plus one-fermion states,

I
P a; p+), and the soliton or antisoliton plus one-

antifermion states,
I
P +;p -); P is the total mo-

mentum, 0 is the asymptotic meson momentum,
and P is the asymptotic fermion momentum. (An
additional "in" or "out" specification will be ig-
nored. ) The energy of the meson states is in first
approximation E(P) + &d(k), &u(k) = (k' + p, ')' '; that
of the fermions is E(P) +e(P), e(P) =(P'+m )' '.
The following matrix elements will be needed:

11( u() —Ggg, ~uo = 0 ~ (2.15)

Gg &P'+
I
eeIP+; p+&

G~ )l
dP"

(P +I c IP-+&&P-+
I
HIP+; p+&

=G
ll

dxe"~' ~)"gf(x)u~(x) (2.16a)

[The same result emerges if the operators in
(2.14b) are taken in opposite order. ]

In a completely analogous calculation for
(P' +I%'IP +;p+), the interaction term may be writ-
ten as
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iy'u, ' —Ggy, u, = —~(p)y'u, .

Similarly, for v~

(2.18)

iy'v~~' —Gg p,v~ = e(p)y'v~~,

iy '(0'v,*)' Gg y—,(0'v,*)= -~(p)y'(c'v;).
(2.19)

We have therefore shown that the wave functions
uo, u~, and a v~ satisfy the Dirac equations (2.6)
and (2.7). Before one identifies them with the nor-
malized solutions, g, and (~~, the norm of the
wave functions, which is arbitrary in (2.15),
(2.18), and (2.19), must be determined from the
field equal-time anticommutator:

(P"I(+'(x), q(y))IP ~&= 6(x-~)(2v)6(P'-P).

(2.20)

Two terms are to be evaluated: (P' +I%'~(x)4(y)IP +&
and (P' ~

I
4 (y)4't(x) IP +&. In the inter mediate

states, which saturate the product of the two op-
erators, we retain only the no-fermion and one-
fermion states. The no-fermion states contribute
to the first term only for the + sign (soliton ex-
ternal state, antisoliton intermediate states),
while to the second term the no-fermion states
are present only for the —sign (antisoliton exter-
nal state, soliton intermediate states). In either
case, the one-soliton intermediate states contrib-
ute to the sum of the two terms

dg e "~' ~' u,*(x+z)u, (y+ z). (2.21a)

The one-antifermion intermediate states contrib-
ute to the first term

dz e" ' "
2 v~ (x+ z)v~(y+ e), (2.21b)

or

Gg(P'+
I
44IP+; p+&

" dP" dp' "
+i p+&

'(P" ~.p'+IcIP~. p+&. (2.16b)

The two are equivalent since the C matrix element
in (2.16b) is dominated by its disconnected part:

(P+;p'+IHIP +;p+) = (2 )6(p' —p)(P" +IcIP +&.

(2.17)

Thus the O(g') equation for u~(x) is derived:

while in the second term an analogous expression
arises from the one-fermion intermediate states:

ei (P'-P)Z ug(x+ e)u~(y+ z). (2.21c)dp

Adding the three, we see from (2.9) that if u, is
identified with the normalized, zero-energy solu-
tion $0 of (2.6), u~ with the positive-energy solu-
tions p~+ of (2.7), and v~ with the fermion-number
conjugate of the negative-energy solution (~ of
(2.7), then the commutator is correctly repro-
duced. Thus we establish that our Ansatze lead
to a complete, normalized set of states. (The an-
ticommutator (4', 4) vanishes trivially since there
are no intermediate states that can contribute. )
The wave functions u~ and v~ describe the scatter-
ing of fermions off solitons. (Bound solutions of
the Dirac equation, other than the one with zero
energy, describe soliton-fermion bound states. )

Next we consider the meson wave function
(2.13d). The equation is of the form (2.10); the
interaction with the fermions can be neglected
since its is of O(g). Therefore f,(x) satisfies the
same equation as in the absence of fermions':

-f,"+U"(gy, )f,=(o'(k)f, (2.22)

The zero-frequency mode P,' is associated with
translations of the soliton, while the other modes
describe meson-soliton bound and scattering
states. Since the norm off is fixed by the Bose
field commutator to be unity, ' it is established
that all the one-particle wave functions are indeed
of O(g').

Finally, we calculate the fermion number of our
soliton. The conserved Fermi-number current is
Cy ~%; the charge must be properly ordered so
that it transforms correctly under fermion-number
conjugation. The ordering is determined in the
vacuum sector to be

j'=-,'(@t4 -4'4 ) (2.23)

and the fermion number is given by

n, = 2(P+ I%~4 -4—@tlP+& . (2.24)

The calculation of this matrix element is analogous
to the one performed for the anticommutator, ex-
cept that the two terms enter with opposite sign.
Hence we find

n, =2 + dzuoz uoz + dz v~ z v~z -u~z u~z2v

pl (2.2 5)
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The soliton has fermion number +—,'; the antisoli-
ton has ——,'.

These Kerman-Klein calculations can be ex-
tended to higher orders; alternatively they may be
summarized by introducing collective coordinates
through a canonical transformation. ' The field
transformation is

=6:6'
~l dxq'(x) 8:6:

l Z+&

dx j x P-

c (x) =i (x -x) + y.(x -x),
e(x) =i(x -x) +ay, (x -x),

with subsidiary conditions

dxP, '4 =0,

dx,*C =0.

(2.26a)

(2.26b)

=-n lI+&. (2.32b)

C. Discussion

We see therefore that the occurence of solitons
with half-integer fermion number is intimately
related to the fermion-number conjugation sym-
metry.

X is the collective position oyerator; a is an op-
erator associated with the degenerate soliton and
antisoliton states. Its anticommutation relations
(1.2) are realized by

(2.27)

f4&' =-iy Q~,

FC F '=C
(2.28)

[compare (2.8)] and discrete chirality 8 =8 ' = (Bt,

e(p =i y'e,
s@'s = —C'

p

r.= r.', (r, )-'=-1.
(2.29)

The latter is spontaneously broken; the former is
not. The soliton states transform into each other
under p.

We do not give further details, since they are a
straightforward generalization of previous re;
search 8

The quantum theory possesses two discrete sym-
metries: fermion conjugation p =$ '=$~,

We have shown that c-number solutions of the Dirac
equation in a soliton potential can be successfully in-
corporated in a quantum field theory. Furthermore,
the existence of a bound zero-energy solution leads
us to the surprising result that soliton states are
doubly degererate and carry fermion number ~ —,'.
In order to make this interpretation conclusive,
we should study a two-soliton system. For ex-
ample, we might calculate the bound states of solitons
and antisolitons and demonstrate that there are four
of them: two with fermion number 0, and one each
with fermion number +1. We do not know at pres-
ent how to carry through this analysis exactly, but
we can exhibit an ayproximate calculation which
suyports our viewpoint.

Consider a widely separated kink-antikink pair,

1 1 1
p, (x) = —tanhX(x -L) ——tanhX(x +L) + —,

(2.33)

which for sufficiently large L solves the classical
Bose equation. Next consider the Dirac equation
in this potential,

(o'P+Gg Q, P) g ='&g,
(2.34)

fag =a~,
(2.30)

o' =r'r', P =r'.

i dxj x, Q (2.32a)

it follows that pg+=~ +1; also pg =-yz, since

while the fermion charge density (2.23) goes into
its negative,

(2.31)

One can demonstrate quite generally that z, = +—,'.
Upon taking one-soliton matrix elements of

It is easy to show that for large L there are two
bound states g, with energy E = +Ge 2o~. In the
corresponding quantum theory it is natural to as-
sign a zero-fermion-number state to (2.33). The
positive- (negative-) energy solution of (2.34) cor-
responds to a state with fermion number +1 (-1).
Finally, in the quantum theory we should also al-
low a fermion-antifermion state with zero fermion
number. As L tends to infinity, these four states
become degenerate, and it is strongly suggested
that they correspond to two widely separated soli-
tons, each with fermion number +—,'.
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III. THREE-DIMENSIONAL MODEL

A. Preliminaries

A three-dimensional model which is known to
possess static monopole (soliton) solutions with
finite energy is the Yang-Mills theory of sponta-
neously broken isospin symmetry with a triplet
of spinless mesons. ' We add fermions to this
model; they interact gauge invariantly both with
the gauge field and with the mesons. We find so-
lutions of the c-number Dirae equation in two
cases: isospinor and isovector fermions. In both
instances there exist isolated zero-energy solu-
tions. In the former the solution is nondegenerate;
in the latter it is doubly degenerate. We comment
briefly that the same hapyens when the external
potential is taken to be a dyon solution. '

The quantum expansion around the monopole, in
the absence of fermions, has been given recently. '
We do not reyeat this lengthy analysis for the fer-
mion case, beyond noting that by analogy with the
one-dimensional discussion the monopole, in the
presence of isosyinor fermions, becomes a de-
generate doublet, with fermion number +—,'. The
isovector fermions lead to four soliton states, the
properties of which we discuss at the end of this
section.

B. c-number solutions

The theory with which we concern ourselves is
governed by the following Lagrangian density7:

In the absence of fermions, the Euler-Lagrange
equations have the fol.lowing monopole solution':

A0, =0,

e.=r. y(r)/g,

A,' = e"' r~A (r) /g.

(3.3)

Our representation for Dirac matrices is

0 I
(3.5)

0 —I 0

When g„ is decomposed into upper and lower
components,

(x.
'

(
x. i

E(l. (3.4) becomes

(3.6a)

[o'p6„„+AT'„(oxr)'aiGQT'„r", ]X' =Eg„".

(3.6b)

This equation is analyzed in the Appendix. Here
we record the zero-energy solutions. In the iso-
spinor case T'= &7; n, m =1, 2. The lower com-
ponent vanishes and the upper is

Both Q and A vanish at r =0; for larger r,
tends to its vacuum value p,, andA. behaves as
—1/r. The approach to asymptotic forms is ex-
ponential.

The Dirac equation in the external potential
(3.3) is

[n p5.„+AT'„„(c(.xr), + GQT'„„r,p] p„=Eg„,
(3.4)1~

p= —, V.
2

+ i (C(„y"(D~ g)„GgQ„T„'-0 C, ,

r,""
= e "a." —a'a" +g~

(D"C). =e"e. +g~„,A„"C, , (3.1)

X'„„=N exp—

x sos~ —s„s„+

7
c '[!cc(r(-x(r )(I}

(3.7)

g2p2 1 2
U'(C) =

2
1-,C, C,

P

(D" l)„=s"e„-ig T„'„A."y. ,

a=1, 2, 3

G is ayositive, dimensionless parameter; X and p,

carry dimensionality of mass. We have added a
multiylet of fermions which transform under iso-
spin rotations according to

where v refers to the Dirae indices and takes
values 1 and 2; N is a normalization constant.

In the isovector example, T'„=i&„, ; n, nz =1,
2, 3. The lower component again vanishes; the
upper is

y„'=N[f, (r)r "o'r+ f2(r)(o" r "o r)]-g", (3.8)

with X an arbitrary spinor. In other words, we
obtain two linearly independent solutions: g = s,
y =s . The functions f, , are constructed as fol-
lows. Take that solution of

(3.2) —u" + (5 + F' + 2p2) u = 0 (3.9a)
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p(r) =A(r)+ —,1
(3.9b)

and

which is regular at the origin. Here p is the
exponentially decreasing, nonasymptotic part of
A,

that zero-energy solutions continue to exist, for
both isospinor and isovector fermions. Their
forms are as in (3.7) and (3.8), except that now

the lower components are nonzero. In the expanded
system of equations, fermion-number conjugation
remains effected by the matrices (3.11), and the
zero-energy solutions are self-conjugate.

(3.9c)
C. Quantum interpretation

E tends to a positive constant for large r, and
vanishes at r = 0; hence u vanishes as r near
the origin. The functions f, 2 are given in terms
of u:

~r

f, (r) = 2u(r) exp — dr'F(~'),
40

f2(&) =
2 2 ~(~'f~(~)}.

1 d
(3.10)

02 0
isospinor g =

0 —o2
(3.11a)

v' 0
isovector g = (3.11b)

One easily checks that the above transformation,
when applied to (3.6b), changes the sign of the
energy. Consequently our solutions are fermion-
number self-conjugate.

Finally, we consider the classical dyon solu-
tions. ' The Bose fields are again as in (3.3) ex-
cept thatA', no longer vanishes:

2,' = —i"0(r),1

Q(0) =0, 'U(~) ='U t 0.
(3.12)

The Dirac equation (3.4) now acquires on the
right-hand side the additional term T„'„r'QQ
The complexity of the equations prevents us from
giving an explicit construction of the solutions.
However, in the Appendix we are able to show

Note that while f, decreases exponentially at
infinity, f, decreases much more slowly, as r '

The isospinor solution is nondegenerate, cor-
responding to zero spin. The twofold degeneracy
of the isovector solution indicates that the so-
lution has spin &. With the choice of Dirac ma-
trices (3.5), fermion-number conjugation is real-
ized by the following:

We have not carried out a dete, iled analysis of
the quantum theory associated with our solutions
(3.7) and (3.8}. But by combining the existing
knowledge of the monopole, quantized in the ab-
sence of fermions, ~ with the analysis of the one-
dimensional example, we can describe what one
expects in the quantum theory.

For the isospinor case, the monopole, as wel. l

as its charged recurrences, the dyons arising
from the quantization of the U(1) phase degeneracy
which remains after the SU(2) symmetry has been
spontaneously broken, becomes a degenerate
doublet with fermion number + &. Also, the soli-
tons are spinless, since no spin degree of free-
dom is found in the classical. solution.

In the isovector case these are two static so-
lutions, associated with different values of the
spin degree of freedom, and correspondingly we

expect to find two operators a, (s =+ —,) in the
expansion of the Dirac field. The basic feature
that the representation of the anticommunication
relation La, , a, )=1 requires two states

~ +) and

~
-) carrying fermion number n, = a & remains

true also in this case, but since we have now two
independent pairs of operators the soliton states
willbeproductvectors of the form ~f) ~i') (i, i'=a},
withfermionnumbers+1 (~+) (-)), -1 ((-) (-) ),
and 0 (~+) ~-) and ~-) (+) }. Thus, we expect
to have in our theory four soliton states, together
with their electrically charged recurrences as-
sociated with the dyon solutions. We conjecture
that the states with fermion number +1 have spin
0 and that those with fermion number 0 have spin

We make this hypothesis because of the spin
degree of freedom which is present in our so-
lution of the Dirac equation in the isovector case.
This spin degree of freedom does not l.ead to a
further multiplicity of states, unlike the phase
degree of freedom, whose quantization produces
rotation-type charge bands. ' There are no further
monopoles with spin 1, —„etc. The reason for
this difference is that the spin is not a collective
phenomenon; we do not need a collective coordin-
ate to describe it. Collective coordinates are
introduced only to account for the degeneracies
of the lowest O(g ') approximation. Any further
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degeneracies that are encountered in higher orders
of the perturbative expansion reflect true quan-
tum-mechanical degeneracy, and, in contrast to
the translation and charge-rotation degeneracies,
need not be dealt with by collective methods.

In the absence of fermions, one can expand
the quantum theory around a dyon solution (3.12),
and one finds that the physical content is the same
as in an expansion around the neutral monopole. '
The occurrence of zero-energy Fermi solutions
for the dyon external field indicates that one is
led to our interpretation of the nature of the sol.i-
tons, regardless of the expansion method.

Just as in the one-dimensional example, the
quantum theory possesses discrete symmetries
which ensure the correctness of our interpreta-
tion. These are conventional charge conjugation t'
(or equivalently 9 parity) and the discrete chiral
transformation S, (2.29). Invariance under fer-
mion-number con jugation , which does not affect
the boson fields, is then a consequence: 7 =i$9
[see (3.11)]. Spontaneous symmetry breaking
removes 9 as well as . However, 8 and S re-
main conserved, and it is the latter that forces
our interpr etation.

IV. CONCLUSION

The interesting results of this investigation
are threefold. First, we have shown how one
ean fit c-number solutions of a Dirae equation
into the quantum theory of a Fermi field. This
we did without introducing elements of a Grass-
mann algebra —anticommuting c numbers. How-
ever, we have dealt with linear Dirac equations.
If the Fermi fields occur nonlinearly, when Fermi
couplings are present, then the c-number solu-
tions are large for weak coupling, just as in the
Bose case, and cannot be treated by our methods. 3

Second, as an exercise in mathematical physics,
we have found solutions of the Dirac equation in
the presence of a Yang-Mills monopole. There
exist bound states in contrast to the Dirac mono-
pole. This, of course, is due to the additional
interaction with the scalar field.

Finally, our most provocative and puzzling
results apply whenever a Dirac equation posses-

sess

a nondegenerate, fermion-number s elf -con-
jugate, zero-energy bound state. In that case
the solitons are degenerate doublets with fermion
number + 2. We have not identified a fundamental.
reason for the occurrence of such solutions. The
existence of states with fermion number + z in

a theory where all fundamental fields have in-
tegral fermion number is truly remarkable, yet
the practical significance of this is in no way
obvious.
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APPENDIX: FERMI FIELDS IN THE POTENTIAL
OF YANG-MILLS MONOPOLES

The Dirac equation. satisfied by the Fermi fields
in the external potential provided by a monopole
is [see Eqs. (3.3) and (3.4}]

[a' ~ p &„+AT'„(a r), +i G&T„'r",]X„'=Ex„',

(A2)

where the representation of Dirac matrices is
(3.5).

The crucial observation for the study of this
equation is that the operator J =j +I, defined as
the sum of ordinary angular momentum j =T+s,
and isospin I, commutes with the left-hand side
of Eq. (A2}. This indicates that the analysis of
Eq. (A2) will simplify if we introduce expansions
for y„' in eigenstates of 8' and O', . Parity is also
a good quantum number, in the sense that the solu-
tions of Eq. (A2} will have upper and lower compo-
nents of definite, opposite parity.

A. Isospinor fermion fields

With isospinor fermion fields, T„' = —,'7'„, and
the Dirac equation may be written

= (a ~ p),.q X)„+—,
' A (a x r))q yq„(7' ")„„

+2iG4X'. (~' ')..r'
=EX], ~

Vpon defining 2x2 matrices %' by

2
Xin ~inl~mn

(A3)

(A4)

and using 7'v" =-v&', one obtains for 3R' the ma-
trix equation

a ~ p 31I' ——,'&(gxr)'51I'v' +—,'i GLISK'o'r' =ASK',

(A5)

where it is no longer necessary to distinguish be-
tween 0 and v.

[ a, p 5„+AT„'(axr), i .GpT„'r, p] g„=E(„.
(Al)

In terms of upper and lower components g„and y„
of the field P„, Eq. (Al) becomes
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We now expand%' in terms of two scalar and
two vector functions:

3R,'„(r)=g '(r)&,„.+g,'(r)v', (A6)

Equation (A5) is then equivalent to two equations
for g' and g,'.
(S, -Ar, ~ ,'G-pr .)"g'+ic,b, (eb + ,'G-(tprb) g,' =iEg.',

(S +Ar +bGyr )g =iEg

(A7a)

(A7b)

g
' (r) = Q G~ (r)1'~~ (0),

JJ3

g.'(r) =p(P,'(r)d"„(n)+B,'(r)(8;, (n)
JJ 3 3

3

+C~(r)8~~ (0)].

(A8a)

(A8b)

is the ordinary spherical harmonic, and the
3

vector spherical harmonics are defined by

A partial-wave analysis of these two equations is
performed quite easily by expanding g' and g,' in
terms of scalar and vector spherical harmonics:

K~ = p +2i Ar wqit"p& (A12b)

But the operators K; K; (no sum} are non-nega-
tive; it follows that any solution to (A12) must
satisfy

K' g' =0

which implies

(A13)

e,bp(eb +2G(t)rb}g,' =0. (A16a)

This means that g,' can be expressed in terms of
"potential" functions f'(r) as

g. (s.=+$Gkr. )f ', (A16b)

4 '(P) =c' exp f-dr'(A(r') eGP(r')]I. (A14)
0

Since g (r) increases exponentially for r-~,
c =0. Substituting (A14) into (All), we find

r
4'(r)=c'exp dr'[A(r') —-', GP(r')]I, (A15)

which, together with the definitions (A4) and (A6),
gives the solution quoted in the text, (3.7).

Notice that (A7) and (A15) imply for E =0

(A9a)

(A9b)

—(J'2 y J) (A9c)

Before displaying the final form of the equa-
tions, let us show how the existence of zero-energy
solutions can be investigated directly from (A7).
We take the scalar product of Eq. (A7a) with the
operator (s. + 2Gpr, ), and f-ind for E =0

which according to (A7b) satisfy

(s, +Ar, +-,'Gpr". )(s, ~ ,'Gpr, )f ' =0-
ol

K; K', f'=0,
with

r
f'(r) =exp ——,

' dr'A(r') f'(r).
0

(A17)

(A18)

(A19)

(]] v —'Gyr", )(s, Ar + 'Gpr ) g —=—0.
Upon defining

r
g '(r) =exp —,

' dr'A(r') g '(r)
0

(A10) takes the form

g' K'g =0

where K', is the operator

(A10)

(A11)

(A12a)

The only well-behaved solution to (A18) is f ' =0,
r I

f (r) =exp ——,'G dr' (t)(r')
0

(A20)

but Eq. (A16) then gives g, =0, so that the only
zero-energy solution to the Dirac equation is the
one exhibited in Sec. III.

For completeness we display the form that Eqs.
(A7) take after the expansion (A8):

(
" -A.—:Gy G, —~'""}]'"

C, ='EP, (.11 Z),

+ —+A+2G(t) P~- t~(~+1)]'
B~ =iEGz (all J),'r

(yr
— + —w —,'GP B' — P' = —iEC' (J& 1)

I~(~+1)]"
r J J

dx
+ —+2G(t) C'—[J(~+1)]'" G' = —i EB' (/& 1) .J J

(A21a)

(A21b)

(A21c)

(A21c)

The zero-energy solution found by us corresponds of course to
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r
G,'"exp d» [A'(r')-!ry(r')]I;

0

all other amplitudes are zero.
Equations (A21) are very suitable for a study of fermion solutions in the dyon field. When an electric

potential T„r,z( is present in the right-hand side of the Dirac equation (A1} [see (3.12)], the right-hand
sides of (A21) become replaced by

i EP~ —2i'QGq,

sEG~ ——,sgP~,
-i EC~+2iQB~,

-sEB~+,szC~.

(A22a)

(A22b)

(A22c)

(A22d)

For E =0 we expect to find a zero-energy solution that goes over into our previous solution in the limit
'0- 0. When E =0 but V 4 0, G~ couples only to G~, so that a zero-energy solution satisfies

dr( -A ——,'GQ G =-—,'i'UG+.
0 0

(A23)

This system of linear differential equations has two independent solutions, one of which is well-behaved at
infinity, whereas the other increases exponentially (G,'(r)=c', exp( —,&[(Gp}'—'U ']")
+c', exp(- —,'& [(Gg)' —'U„'p+}, where p, and 'U„are the constant asymptotic limits of Q(t') and 'U(t') for &-~}.
However, both solutions are well-behaved at the origin. [G (t0) co'-stna tnfor r 0.] -It follows that there
is one normalizable zero-energy solution for (Gg)'&'U„', which corresponds to a range of charges Q of the
dyon, around Q =0.

B. Isovector fermion fields

With isovector fermion fields, T„=is„, and the Dirac equation (A2) takes the form

(o' p 5„„Ak„c +A-o„P„+iGQ~„.J',)X'„=iEX'„.

It is convenient to expand the spinors X' as

X' (r) =P.6;,(r)+i(xp - f' r ' p)6;,(r)+ L.(5 ~ P)6;,(r)
+0 (a' ~ P)6; (r)+i(rp Ir p)(5—~ F)6~ (r)+L 6,' (r),

(A24)

(A25)

where the (isoscalar) spinors 6;,(r) are further expanded in eigenfunctions of J' and J, containing only
components with orbital angular momentum / =J—~.

(A2ea)

(A26b)

(A2Va)

6' (r) = QF;, (&)&,(Il).JJ3

is a spinor spherical harmonic:
3

J+J, '~' J—J
( } 2J' J 1/2 M 1/2( } cT 1/2 3f+1/2( )s ~

The advantage of our representation isthat J commutes with r, f(rp„—F„r p), L„, and a ~ 0, so that the
expansion (A26) is also an expansion of the spinors X„(r) into eigenfunctions of J and J,. The restriction
that the spinors Q«should have l =J—

& has been introduced to separate terms of opposite parity. The
3

operators ' P convert terms with / =J- & into terms with l =J+ &.
We insert the expansion (A25) and (A26) into (A24); it is then straigntforward but very tedious to obtain

the following equations for the amplitudes F;, ~(x), i =1,2, 3:

—+(J+-'.)- F,' (J+-,')pF; -(J--,')pF; =fEF,', (aU. J},

~d
(J+-,')

d
+(J+-,')- F; — —+ —v(J+ —,')Gp F; —pF; =i(J+ ,')EF'„(J'&&), - (A2n )
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(J- g) ——(J- g) —E; +
d

+ —a(J+ p)G@ E; —pE," =i(J+ , )E—FS~, (all J), (A2Vc)

1——(J- g) —E,",+(J —g)pEf, +(J+~)pE;, =iEE,' (all J), (A27d)

(J- —,') ——(J- —.') — E,', + —„+-+(J+-,')Gy E;,+ pE;, =i(J+-,')ZF,', "d, 1, td 1

1" ~d
(J+ —,') —+ (J+ ~) —E,', &—+ —v(J+ —,)GP F,', + pF,', =i(J+ ,')FF—; (J&—,').

(A2Ve)

(A27f)

W'e have omitted the common index J of the func-
tions E, and have taken p =1/x+2 as in (3.9b).

If we set F. =0 in the right-hand sides of (A27),
we see that for J&—,

' they separate into sets of
three equations involving only the functions E'„,
(s, s'=+, -) for definite choices of s and s'. The
asymptotic behaviors for x-~ of the solutions of
these equations are given by

c,'r~~++ c,'H&++ c,'r++,

where

(A29)

It is apparent that in general there will be no nor-
malizable zero-energy solution for J&-2'.

However, for J=&, the sets of coupled equations
reduce to sets of two linear differential equations
for the functions E,'„E,'„and E,', F,'. While it
is obvious that the equations for the lower com-
ponents lead to exponentially increasing behaviors
for x-~, so that we must set E,,=0 for a normal-
izable solution, the equations for the upper com-
ponents take the form

C1X + C2e + C3e

with n =J- 2 for the equations involving the func-
tions E;., and n = —(Z+ —,') for those involving the
functions F'. . The corresponding behaviors at the
origin are given by

i(J+ ,')(EF,",—'UE; -),

i(J+ —,')(EE,'„- 'UF', ),

i(J+ —.')(ZF,' —~F;,),
i(J+ —,')(EE, —'UF;,).

(ASla)

(ASlb)

(A31c)

(A31d)

In particular, the equations that determine a
zero-energy solution are

dE,''-= + 2 —E' —2pE'„= 0,
dy

(A32a)

—pF; + —E; +GQF~~ =-i'U~~ F. (A32b)

I

be normalizable at r =~. However, the asymptot-
ic behavior of the solutions of Egs. (ASOa) and
(ASOb) is of the form c,r '+ c,e ~", so that the
solution regular at the origin will lead to a normal-
izable zero-energy solution of the Dirac equation.

We see then that also in the isovector case the
Dirac equation has one normalizable zero-energy
solution, or (better) two independent solutions
corresponding to the two values, J3 = + —,', of the
spin variable in (A26). It is easy to check by set-
ting E; (x) =f,(x) and F; (x) =f,(x), with f, and f, as
given in (3.10), that (ASOa) and (ASOb) imply the
second-order differential equation (3.9a) for the
function M(v).

Finally, we notice that with the inclusion of a
nonvanishing electric potential term the right-hand
sides of (A27b), (A2Vc), (A27e), and (A2Vf) become
replaced by

dE1 1
+ 2 —E+, —2pE' =0,

dxdE2„1—pE; + E~ + GPF~ =—0,

dE,, 2pF, =0

-'++ pE;, + F;,+GPF;, =0. —

(ASOa)

(ASOb)

(ASOc)

(A30d)

This set of four linear coupled differential equa-
tions has two linearly independent solutions re-
gular at the origin, whereas the asymptotic be-
havior of a general solution for x-~ is of the
form

C K2+C er(Gif, -'U~ ) + e r&C y, -'U~ )2 2 2 1/2 2 2 2 1/2
1 2 3

(ASS)

At the origin the solutions of these equations
always consist of a linear combination of a regular
function and a singular, non-normalizable function.
For large values of ~, E,', and E;, behave asymp-
totically as c1+c2e ~", and we conclude that in
general the solution regular at the origin will not

We conclude that for 'U„&G p. there is always
one solution regular at the origin that behaves as

2 1/2
c,x '+c,e "' ~ " ' for x-~. The normalizable
zero-energy solution is thus present also in the
fieM of the dyon, as we expected on physical
grounds.



SOLITONS WITH FERMION NUMBER 3409

~Work supported in part through funds provided by ERDA
under Contract No. AT(11-1)-3069.

For reviews see R. Jackiw, in Theories and Experi-
ments in High-Energy Physics, edited by B.Kurgun-
oglu et al. (Plenum, New York, 1975), p. 371;R. Rajar-
aman, Phys. Rep. 21C, 227 (1975); R. Dashen and
R. Jackiw, in Gauge Theories and Modern Field
Theory, edited by R. Arnowitt, and P. Nath (MIT Press,
Cambridge, Mass. , 1976),pp. 377 and 403; R. Jackiw, Acta
Phys. Pol. B6, 919 (1975); L. Faddeev, IAS report (un-
published) .
J. GoMstone and R. Jackiw, Phys. Rev. D 11, 1486
{1975).

30ne model with Fermi fields has been analyzed by
R. Dashen, B.Hasslacher, and A. Neveu {Phys. Rev.
D 12, 2443 (1975)]. However, the Fermi fields are
eliminated at the outset, and play no further role in the
theory. This device is useful when Fermi fields inter-
act through Fermi self-couplings; we consider Fermi
fields with Yukawa interactions, and do not eliminate
them.

4C. K. Lee (unpublished); S.-J. Chang and J. Wright
(unpublished); R. Dashen, B. Hasslacher, and A. Neveu,
Phys. Rev. D 10, 4130 (1974);W. Bardeen, M. Chan-
owitz, S. Drell, M. Weinstein, and T.-M. Yan, ibid.

11, 1094 (1975);S.-J. Chang, S. D. Ellis, and B.W.
Lee, ibid. 11, 3572 (1975); C. R. Nohl, ibid. 12, 1840
{1975);S. Y. Lee, T. K. Kuo, and A. Gavrielides, ibid.
12, 2249 {1975).

5G. 't Hoofs, Nucl. Phys. B79, 276 (1974); A. M. Poly-
akov, ZhETF Pis. Red. 20, 430 (1974) {JETP Lett.
20, 194 (1974)].

6B. Julia and A. Zee, Phys. Rev. D 11, 2227 (1975).
VPseudoscalar interactions are equivalent to the scalar

ones which we use. This is a consequence of the fact
that the fermion bilinear g(cosn + sinny 5)g becomes
gg upon redefining the Fermi field by $ {cos(n/2)
—sin(o. /2)y5]g, while the kinetic term if'& B&g is un-
changed by this redefinition.
J.-L. Gervais and B.Sakita, Phys. Rev. D 11, 2943
(1975); E. Tomboulis, ibid. 12, 1678 {1975);¹ Christ
and T. D. Lee, ibid. 12, 1606 (1975); C. Callan and
D. Gross, Nucl. Phys. B93, 29 (1975).

9J. Goldstone and R. Jackiw (unpublished); R. Jackiw,
in Gauge Theories and Modern Field Theory, edited by
R. Arnowitt and P. Nath (MIT Press, Cambridge,
Mass. , 1976), p. 377; E. Tomboulis and G. Woo, Nucl.
Phys. B (to be published),
R. Rajaraman and E. Weinberg, Phys. Rev. D 11,
2950 (1975).


