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Infrared singularities in non-Abelian gauge (Yang-Mills) theories are studied in the lead-
ing-logarithm approximation. In addition to the usual infrared limit in which the infrared
cutoff p approaches zero for fixed on-shell momenta, we consider high-energy wide-angle
scattering and form factors at large momentum transfer t in which infrared-induced powers
of g ln t (g=coupling constant) typical of vector field theories appear in perturbation expan-
sions. Our techniques include asymptotic estimates of Feynman integrals (to sixth order)
and a nonperturbative approach based on a conjectured formula for soft-meson emission.
Remarkably, the logarithms sum up into exponential factors much as in QED. Unlike QED,
cross sections for production of nonsinglet particles, even including an indefinite number of
soft gauge quanta, vanish as p 0, a phenomenon we interpret as evidence of particle con-
finement. We discuss exclusive hadronic processes in the context of the non-Abelian quark-
gluon theory based on color SU(3). We find justification for the scaling laws at large momen-
tum transfers ("quark counting rules" ) in that the infrared logarithms cancel in the scaling
pieces of hadronic amplitudes while providing a fast damping of the "pinch" contributions
associated with Landshoff graphs.

I. INTRODUCTION

Non-Abelian (Yang-Mills') gauge theories, as the
only renormalizable field theories which are as-
ymptotically free, ' seem uniquely qualified to ex-
plain approximate Bjorken scaling. ' An attractive
Yang-Mills model of the hadronic world is the
quark-gluon model' with an SU(3) of "color" as the
gauge group. Since quarks do not, apparently,
exist as real free particles, one supposes that the
color symmetry is exact and that all non-color-
singlet particles are somehow dynamically sup-
pressed so that one has a theory of quarks without
either real guarks or real gluons.

Another aspect of Yang-Mills theories with un-
broken symmetry is that their direct physical in-
terpretation is clouded by severe infrared diver-
gences in matrix elements of what are ordinarily
presumed to be physical observables. Does this
infrared "instability" provide the dynamical mech-
anism which miraculously suppresses all colored
quanta? This question motivated much of the work
in this paper. We report evidence of an affirmative
answer and a specific mechanism for "particle
confinement. "

The hadronie constituent picture has been recent-
ly invoked for exclusive high-energy wide-angle
hadron scattering where scaling laws' of the form
dv/dt-s' "have provided a good fit to existing data,
N being the total number of quarks in the partici-
pating hadrons (quark counting rule). In nonvector
renormalizable field theories, amplitudes for
scattering of e1ementary quanta obey the same re-
normalization-group equations (RGE) as in the
Euclidean regime', much less is known, however,

about the scattering of composite particles. ' More-
over, in vector field theories (such as the non-
Abelian gluon model) the proof of RGE for on- or
near-mass-shell amplitudes fails in general be-
cause of the presence, in perturbation theory, of
powers of In'(i/p, '), where t is a typical large mo-
mentum transfer and p. is the vector mass (or an
infrared cutoff). In this paper we study the fixed-
angle limit in perturbation theory for non-Abelian
gauge theories. We find that, remarkably, when
leading logarithms are summed to all orders they
provide damping exponential factors' —one for each
nonsinglet near-mass- shell particle. This sup-
pression of "colored" amplitudes at large momem-
tum transfers indeed helps us understand the origin
of the scaling laws.

The following outline of the framework and scope
of our work is intended as a preliminary orienta-
tion for this long paper.

Our perturbative calculations are based on the
Yang- Mills Lagrangian density

'F' F'~ '+ q(i f ——M —i'' t~) q

which couples a set of vector gauge fields 8„'
("gluon fields" ) to a multiplet of fermion fields q
("quark fields" ). The matrices t ' are the group
generators in quark-field space and I'„ is the
gauge-covariant curl of the gauge field:

The matrices t' are normalized according to
[&', &'] =ic,,~t", where c,,~ are the structure con-
stants of the group. The gauge group is assumed
to be semisimple, the physically interesting case
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being SU(3) of color. The Lagrangian can accom-
modate several quark multiplets corresponding to
the basis states of ordinary SU(3) or SU(4):
u, d, s, c, ... quarks.

Just as in an Abelian gauge theory such as quan-
tum electrodynamics (QED), infrared singularities
appear in perturbation expansions of on-shell am-
plitudes as powers of the logarithm of an infrared-
cutoff mass p, . Our work is primarily based on
extracting the leading such power of lnp. in each
order of perturbation theory (Sec. II). When these
leading logarithms are summed to all orders, we
find formulas displaying an unexpectedly simple
pattern of infrared behavior not unlike that of the
Abelian theory9 in many respects (exponentiation
and factorization). The simplicity of these results
is difficult to understand in the context of perturba-
tion theory where remarkable cancellations take
place between graphs of different topology. There
is, however, a way to derive these results from a
low-energy theorem which summarizes all our
perturbative estimates in a simple differential
equation (Sec. III).

%'e find it convenient to work in the Feynman
gauge. As an infrared cutoff we introduce a mass
term "by hand" in the vector propagator: 5"
&g s(k' —p2) '. Violations of unitarity, etc. ,
thereby introduced" are of order p. and do not con-
tribute to leading powers of lnp. .

An alternative, "legitimate, " way to introduce an
infrared cutoff into the theory is to give a common
mass p. to the gauge mesons via the Higgs-Kibble
mechanism" by adding appropriate multiplets of
scalar fields. (In that case, however, the p, =0
theory cannot be asymptotically free2. )

Still another way to have an effective infrared
cutoff is to leave the gauge mesons massless but
keep the external momenta off their mass-shell
values by an amount proportional to p, , say.

We use mostly the first method (i.e., "by hand"
inclusion of a vector mass) because it expedites
the differential formulation of Sec. III. However,
we obtained qualitatively similar results by the
off-shell method —at least in leading-logarithm ap-
proximations. Actually, the off-shell method
seems potentially more versatile since it would al-
low one to probe the infrared behavior even when
various momenta approach their respective mass-
shell values at different rates.

Our work deals primarily with three distinct as-
ymptotic regimes:

(I) The infrared regime. We shall take the quark
masses (as defined in terms of the quark propaga-
tor singularities in perturbation theory) to be non-
zero. By "infrared regime" we shall mean the p.
-0 limit of S-matrix elements and form factors
under the following conditions:

(a) All external three-momenta are fixed.
(b) External gauge vector quanta (gluons) are

given a mass p. and are transversely polarized.
(c) No momentum transfer vanishes.

Thus, all invariant squared energies and momen-
tum transfers s, t, ... as well as M' &0 (M being a
typical quark mass) are much larger than p~ in the
infrared regime. Whenever condition (c) does not
hold, we shall speak of the near-forward regime
(see below). As the most important feature of the
infrared regime we find that cross sections of non
foneaxd processes involving non neutr-al (i.e., non-
group singlet) particles, whether ox not an inde
finite number of soft gauge mesons axe included,
vanish in the limit p, -0 (see Sec. III). Of course
this is quite unlike the Abelian case, where the
emission of soft real (bremsstrahlung) photons
prevents the vanishing of the cross section' ("can-
cellation between soft real and virtual photons").
The difference stems from the fact that all gauge
mesons in a Yang-Mills theory with a semisimple
gauge group are non-neutral, while photons are
neutral: Namely, they do not carry the charge to
which they couple.

On the other hand, Processes involving only neu-
8"al (i.e., color singlet) par-ticles have nonvanish-
ing cross sections as p -0 (the Abelian analog is
light-by-light scattering in QED). As neutral par-
ticles one may envisage singlet bound states or
couple group-singlet fields in the Lagrangian; for
example, one may couple the (color-singlet) elec-
tromagnetic field to the quarks. In any case, the
differential formulation of Sec. III does not dis-
tinguish between bound states and fundamental
field quanta and on that basis the above statements
follow quite generally, with the possible exception
of forward processes (more specifically, pro-
cesses in which one or several nonsinglet particles
retain their momentum). But even this exception
does not interfere with the main conclusion: In a
collision between color singlet partic-les (hadhons)
the probability fox producing any colored particle
or colored bound state vanishes as p. -0. The
reader w'ill hardly need prompting to recognize the
significance of these results as evidence for par-
ticle confinement, if only the sum of leading loga-
rithms reflects move or less correctly the infrared
behavior of the theory.

(2) The fixed-angle regime. All invariant squared
energies and momentum transfers (s, t, . ..) are
much larger than both p2 and M' while ratios s/t,
etc. are of order I (for example, for the quark-
quark scattering amplitude this limit corresponds
to high-energy wide-angle scattering). In this re-
gime the leading-logarithmic approximation es-
sentially consists of powers of g'ln't, where t is a
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typical momentum transfer —obviously no distinc-
tion need be made between s, t, ... at this level.
Summation of these leading logarithms results in a
remarkably simple situation: Asymptotic form fac-
tors are found by exponentiating the one-loop ap-
proximation, just as in the Abelian case"; fixed-
angle scattering amplitudes are found by multiply-
ing the tree approximation by IIF, '~'(t), where F,
is the asymptotic form factor for the ith external
on-shell particle coupled to a group-singlet cur-
rent." Accordingly, these amplitudes vanish faster
than any power as t-~, as determined by the expo-
nential factor

(1.2)

where m is an arbitrary mass scale. To simplify
the discussion, we will always set M =0 in the
fixed-angle regime, in which case m = p. In (1.2)
c,. is the eigenvalue of the quadratic Casimir oper-
ator for the group representation to which the jth
particle belongs; for example, for a fundamental
fermion we have t't'= c~I. The summation in Eq.
(1.2) runs over all external on-shell particles.
Thus if all on-shell particles are "neutral" (i.e.,
c,.=0) the exponential is absent; in other words,
such amplitudes have no leading logarithms of the
type g'In'(t/p'). In fact, such amplitudes" most
probably obey RGE in this asymptotic limit just as
in nonvector theories. ' The Abelian analog is light-
by-light scattering which lacks infrared-type loga-
rithms in the fixed-angle regime.

An interesting variation of this situation occurs
if we consider "composite" particle scattering:
Suppose that, for a given process, the external
particles are divided into several clusters and
define the fixed-angle limit by letting all invariants

p,.p, , where particles i and j belong to different
clusters, approach infinity at the same rate, all
other invariants being kept fixed. In this case we
find that the behavior of connected amplitudes is
given by Eq. (1.2) where now Zc, stands for the
sum of Casimir values of the cENstezs, i.e., only
the coherent sum of the "group charges" of each
cluster enters and not that of the individual con-
stituents —just as an infrared photon responds co-
herently to the total charge of a spatially bound

system. Note again that the leading logarithmic
powers of g'ln~t are absent from connected ampli-
tudes when all clusters are group singlets.

Hadron amplitudes are constructed by convoluting
irreducible cluster amplitudes with appropriate
bound-state wave functions. In Sec. V we discuss
the implications of our work for high-energy fixed-
angle hadron scattering in the framework of the
non-Abelian gluon model. In particular, we argue

that the accumulation of "infrared" logarithms of
the type g'In'(t/p') is responsible for suppressing
the contribution of the disconnected Landshoff
graphs.

(3} The near fon-vaxd tegi'me. Whenever one or
more momentum transfers vanish (or are of order
p, }the singularity structure is more severe and
must be examined separately. This is the regime
in which eikonal-type approximations are appro-
priate in the Abelian case (in the p, -0 limit). The
corresponding formulas for the non-Abelian case
are briefly discussed in Sec. III8.

In Sec. III we propose a simple differential equa-
tion for the dependence on p. of a general on-shell
amplitude T„(x standing for the collection of par-
ticle group indices). This equation summarizes,
in compact form, all our leading-logarithm results:
it has the form

(1.3)

The quantities I'„",—one for each particle i—are
essentially given by one-loop integrals. In the fix-
ed-angle regime Q,. I'„',"-g'( pc,) 5„,In(t/p, ') and
Eq. (1.2) follows.

Equation (1.3) bears an intriguing resemblance to
a renormalization-group equation; in Sec. IV we
pursue this connection. The I'" are momentum-
dependent quantities which generalize the notion of
anomalous dimensions to the infrared-singular
domain of vector theories; to O(g'} they behave
like a single power of In(t/p. '). We argue that they
are closely related to the large-K behavior of the
conventional anomalous dimensions y„of the oper-
ators in the Wilson expansion of the product of two
group-singlet currents. To O(g') y„behaves like
1nN when N -~; we show how to recover the fixed-
angle I' from y~ and vice versa. For theories
without vector mesons there are no dominant in-
frared singularities' and y„vanishes as N -~."

We speculate further in Sec. IV that nonleading
infrared singularities as well as ultraviolet singu-
larities may be incorporated in Eq. (1.3) by adding
a P(&T/&g) term to the left-hand side and by includ-
ing in I"'" effects other than leading infrared sin-
gularities. The consequences for asymptotically
free theories are indicated.

In Sec. V we discuss various aspects of the phys-
ical interpretation of our results: particle con-
finement, constituent models of wide-angle hadron
scattering, hadron binding, etc.

This is a long paper and the reader may wish to
skip, on first reading, the material on perturba-
tion theory in Sec. II, the Appendixes A and 8 giv-
ing a detailed treatment, in fourth-order, of the
low-energy formula in the fixed-angle regime fro~
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which the basic equation (1.3) follows and Appendix
C containing a heuristic proof of the "external-line
rule" which characterizes the leading graphs of all
orders in the infrared limit.

II. PERTURBATION THEORY

In this section we briefly outline the findings of
graphical "experiments" carried out to sixth order
for the quark group-singlet form factor and for the
elastic quark-quark amplitude in both the infrared
and the fixed-angle regime. We also discuss in
some generality one-loop corrections to various
lowest-order processes, since we argue in Sec. III
that these one-loop quantities essentially deter-
mine the leading logarithms to all orders.

Most technical details will be omitted; they will
be the subject of a separate paper. However, some
points of methodology should be mentioned here.
Our calculations are made with a vector propagator
—ig (0' —p, ') '. We express the contribution of
each graph in Feynman-parameter form, using
well-known topological rules" as extended to cases
with spin- and momentum-dependent numerators. "
The asymptotic behavior of the Feynman-paramet-
ric integral is extracted according to standard
scaling techniques. "

In the fixed-angle regime of scattering processes
or form factors at large momentum transfer t
(t »M', p, ') the leading logarithms are of the form
g'"Ln'"(f/L), ') for an N-Loop graph just as in the
Abelian case,"and these leading contributions al-
ways come from regions of integration where the
gauge meson momenta are sma, ll compared to v f .
The coefficients of the leading logarithms have no
ultraviolet divergences.

In the infrared regime, for processes with only
(massive) quarks on-shell the leading logarithms
appear as powers of g'Ln(p, ') (one for each loop) as
in the Abelian case.' However, for amplitudes in-
volving on-shell gauge mesons as well, the leading
logarithms are powers of g'Ln'(p, ')—the infrared
singularities are stronger because the non-Abelian
gauge mesons are both massless arsd charged, un-
like the photon in QED.

In general, we find that in both the infrared and
the fixed-angle regimes leading asymptotic terms
come from "end-point" contributions of the Feyn-
man-parametric integrals, i.e., regions of inte-
gration where some set of Feynman parameters
are vanishingly small. The so-called "pinch" con-
tributions are asymptotically smaller than the lead-
ing ones by some power of p. or the momentum
transfer, depending on the regime. Pinch contri-
butions are associated with regions of integration
where the internal momenta of certain reduced
graphs take approximately the values of an actual

nontrivial space-time process, the vertices of the
graph representing local collision-production
events. Pinch effects are discussed in Sec. V in
connection with bound-state scattering (i.e., had-
ronic scattering).

Finally, there are certain classes of graphs giv-
ing no leading contributions, in the fixed-angle re-
gime. These are graphs with closed loops of or-
dinary scalars, Higgs scalars, ghosts, and quarks.
Also four-vector Yang-Mills couplings are unim-
portant in higher-order corrections.

A. Fixed-angle regime: Form factors and scattering amplitudes

to sixth order

The simplest and most general results are
achieved in this regime, which we therefore study
first. Two processes have been completely calcu-
lated through sixth order: the group-singlet fer-
mion form factor and the elastic fermion-fermion
amplitude. Other processes which have been cal-
culated to fourth order only will be discussed in
Sec. IIB.

There are two asymptotic regions of interest:
the mass-shell region, where all fermions are on-
shell and the vector is given a mass p, (in the Feyn-
man gauge), and the Sudakov" region, for the form
factor, in which the fermions are off-shell so that
I;»P', p" 4M'. In this region it is not necessary
to give the vector a mass. The form factor expo-
nentiates in both regions, the exponent being the
one-loop term of Fig. 1(a), aside from a Dirac
matrix y~, 1,y5, . . . depending on the spin and par-
ity of the group-singlet current. For brevity we
restrict ourselves to the form factor for a group-
singlet scalar current (carrying momentum p- p'),
although exponentiation of the one-loop graph of
Fig. 1(a) also happens for the Yang-Mills current
form factor (the one-loop graph with two vectors
coupled to the Yang-Mills current is nonleading).
In a way familiar from Abelian calculations"' we
drop k in the numerator of Fig. 1(a), and we find
for the one-loop graph [f= (p —p')', M' =0]

2

E"=czB{f)=—cz {rP(—,) {mass shell)

= cz8(t) = —cz Ln —Ln (Sudakov).g
p2 p»

(2.1)

We use the notation B(t) to emphasize that B is the
Large-f limit of a function B(t) which enters in the
infrared regime [see Eq. (2.15)]. In (2.1), c~ is
the eigenvalue of the quadratic Casimir operator of
the quark representation. For the Yang-Mills cur-
rent form factor, replace c~ by c~ ——,

' c„, where
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FIG. 1. Second- and fourth-order fermion form-factor
graphs.

()„c„=Bc„,c„,, and the c„,are structure constants.
c„ is the Casimir operator for the vector particles.

Write the fourth-order contributions of Fig. 1 as

F "=—'8'(t)X"' (mass shell)

=—'8'(t) Y'" (Sudakov),

2 x z CFC&(CF- & Cz) ( ( ) 2x z Cxcx (Cx- z Cz)((/2) 2x z Cx Cx( I/8)

j= b, c,d, e. Then, for the group-singlet form fac-
tor,

3', X =3 cg(cy 2 cg)i X 3cpcg(ff)

1 (4)Y' ' =2 cy,', Y"=2 cy.(cz —2 c„))
Y' ' = 4 c~c„,

4CA'CF I/O a F I/4 2x+c c

X(e) y(e) 0

(2.2)

When (2.2) is added to (2.1) and the Born term, ex-
ponentiation occurs to fourth order.

The sixth-order graphs and their values (for the
group-singlet form factor) are given in Fig. 2 for
the Sudakov and mass-shell regions. These values
agree with the Sudakov-region values of Ref. 20 ex-
cept for the last graph and the graph with three
Yang-Mills vertices. Evidently exponentiation
still holds; through sixth order,

——~C xC
( 3/2)

FIG. 2. Sixth-order fermion form-factor graphs.
Graphs not shown are nonleading. To find the value of
any graph (plus its mirror image if it is asymmetric) in
the mass-shel. l. region, multiply the weight given by the
upper number by 9+OB~. To find the value in the Sudakov
region, use the lower number and mul. tiply by&&S .
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F(t) =exp[c~B(t)] (mass shell)

= exp[c~S(t)] (Sudakov} . (2.3)

leading (as already mentioned in connection with
the form factors). Figures 3(b), 3(c), and 3(e) add
up to

We have calculated numerous other form factors
to fourth order, and they all exponentiate. Exam-
ples are: quark-quark-vector with one quark off-
shell, vector-vector-vector with one vector off-
shell, vector-vector- group- singlet. This last is
the vector analog of (2.3). Denote it by G'~; then

G"~(t) = Gs ~exp[c„B(t)] (2.4)

I

(a)

(b) (c)

(e)

in the mass-shell region (analogously in the Suda-
kov region), where Gs ~ is the Born approximation.

Fixed-angle scattering amplitudes are expressi-
ble in terms of the group-singlet form factors (2.3)
and (2.4} and the Born approximation Ts. For fer-
mion-fermion elastic scattering the second- and
fourth-order graphs are shown in Fig. 3, while the
sixth-order graphs are shown in Fig. 4. It is not
difficult to see that the leading terms in these
graphs come when the large momentum transfer is
routed through only one vector line, while all the
other vector lines are soft (i.e., vector momenta k
can be neglected compared to fermion momenta). "
Removing the vector line carrying large momentum
"pinches" the graph into form-factor-like expres-
sions which are evaluated using the techniques al-
ready discussed for the form factor. A truly
miraculous cancellation of complicated group-theo-
retic coefficients, in which the Jacobi identity plays
a crucial role in sixth order, allows the graphs to
be grouped into terms with the simple group prop-
erties of the Born term [Fig. 3(a)]. As with the
form factor, graphs involving ghosts, closed loops
of scalars and fermions, four-vector couplings,
etc. , are nonleading, but so are some graphs which
have none of these features. Thus Fig. 3(d) is non-

T = Ts(l+2Bcz+282c~2)-TsF2
Iixed
angl e

(2.6)

in terms of the fermion form factor F of (2.3). It
is already tempting to speculate that, in the fixed-
angle regime, on-shell processes are described by
multiplying the Born approximation by I'~' for
every fermion line and by G' ' for every vector
line. Below, we show that this is true for one-loop
corrections to any tree graph, and in Sec. III we
offer arguments that it is true in general.

B. Fixed-angle regime: General one-loop processes

Consider the S-matrix element, in the A ee ap-
proximation, for an arbitrary on-shell process:

T.a = (a. m
I
Pout)

=(X '''X iX~ ' 'X ), (2.7)

where particles of momentum P,' and group index
X,. are involved; it is unnecessary to specify the
spin of the particles. The fixed-angle regime for
such a process has p,.' =m,

~ p, p I ~

» m' for i ej,
and the ratios of all invariants p, p, are O(l). We
further specify that all internal propagators are
far off-shell: the momentum q of any internal line
is such that q'=O(p, p&). (If for some internal
line q'= m', the graph describes the compounding
of two S-matrix elements, each of which can be
treated separately. )

The leading one-loop singularities are generated
by adding one vector propagator of momentum k in
all possible ways, and saving only the most singu-
lar terms for small k. Because all internal lines
are far off-shell, it is readily seen that the vector
need only be attached to extenxal lines, and that on
each such line one may use a simple convective
vertex (i.e., spin zero) no matter what the spin of
the external particle is. The vector propagator is
described by the emission and reabsorption of a
vector momentum k. According to the above dis-
cussion the emission process leads to a modified
S-matrix element

y(b e) 2T (2 5)

We need not specify whether the argument of 8 is
s, t, or u, since, e.g., B(s) —B(t) is nonleading in
the fixed-angle regime. The weights for the sixth-
order graphs (apart from a common factor of Ts)
are shown in Fig. 4. Adding everything up, we have

FIG. 3. Second- and fourth-order fermion-fermion
elastic scattering amplitudes.

N

~N N1 N
i

(2.S)
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2(C- —C) B
2~2

2x I

(a) (C) (e)

= —C BI 2 2
A

"(
(rn) (n)

l ' C~B2
r 6 A

+ " = NONLEADING

(q)

FIG. 4. Sixth-order fermion-. fermion elastic scattering amplitudes. In the fixed-angle regime multiply the weights
shown by the Born approximation.

where the emitted vector has momentum k and
group index c, and the t,„',"are generators of the
group representation for the various external par-
ticles. (Use the transpose of f' for outgoing par-
ticles. ) It is important to note that the k line need
never be associated with a four-vector vertex;
these are nonleading. In (2.8), q, =+1 for an ingo-
ing particle, q,'= —1 for an outgoing particle; the
notation ( ~

)' means that X, is replaced by X, and
a sum over the possible values of X,, is performed.

Observe that if the factors p'/P' k were replaced
by 1 in (2.8), the resulting sum vanishes identical-
ly, or, in other words, k„ times (2.8) gives zero.
This represents the conservation of the Yang-Mills
charges Q'= fd'x Jo, which is manifestly true in
the tree approximation. Depending on whether Q'
is considered to act to the right or to the left in
(2.9), two equivalent expressions are generated for

scribed by another application of (2.8),
p' p'

& ~ ~2 6 t c(s) t c(/)
Pg. I Pj. y

~0~

x (zx ' ' ' ~n
I ~~+| ' ' ' &a~ riA (2 Jo)

in an obvious extension of the notation in (2.8). The
one-loop description is completed by multiplying
(2.10) by the vector propagator and integrating
over k. Observe that those terms in (2.10) for
which i =j are nonleading; they correspond to emis-
sion and reabsorption of the vector on the same ex-
ternal line. These nonleading effects are to be
absorbed into renormalization constants. Also note
that22

zg', d'aP'P'
(2w)~ (k )P' kP' k

and that we need not distinguish the various argu-
ments of the B . Then we find

& ~, "~„~Q'~ ~„., "~„)=g f .,*'., T'
jul

T(1-loop) = —~ Ji g f""f""T~ri.ri (2.12)

N

g
c(i) yI
X)Xp

which establishes the vanishing of (2.8) when

P'/p' k-1.
The reabsorption of the vector meson is de-

(2.9)
If the terms with i =j were included in (2.12), the
sum would be zero, by virtue of (2.9). ~e thus find
(setting i =j)

T(1-loop) =-.' Il P (&')», ' T'

(2.13)
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where C,. is the eigenvalue of the quadratic Casimir
operator (t ')~ for the ith particle. Adding this to
the tree approximation,

T= 1+—,'B C,. T tree

[exp(—,
'

C,.B)]T(tree) . (2.14)

We conjecture (and try to establish more generally
in Sec. III) that the fixed angle-limit of any process
is found by multiplying the Born approximation by

II'F,'~'(t), avhere F,(t) = exp(C, B) is the asymptotic
form factor for the ith particle.

So far our results refer only to processes involv-
ing elementary quanta, . We expect (and we present
evidence in Sec. III C) that in a non-Abelian color
gluon theory no colored particle will appear in as-
ymptotic states. The question then remains: What
happens to composite color singlets (i.e., hadrons)
in the fixed-angle regime? We can only give a
partial answer now, because we do not yet know
how to handle the dynamics of binding of elemen-
tary constituents into hadronic singlets. In the
spirit of various parton-model calculations of such
processes we think of the constituents as essential-
ly free in the fixed-angle regime and ignore the ef-
fects of binding. Thus we are led to a "composite"
hadron state as introduced in Sec. I: a group-sing-
let cluster of particles whose momenta are not far
off-shell. A typical connected Born term for the
scattering of such composites is shown in Fig. 5.
In the fixed-angle limit all invariants P,. P, , where
p, and p, belong to different clusters, approach in-
finity at the same rate; all other invariants are
kept fixed. Note that here three "hard" vector-
meson lines must be present rather than one [as
for the elementary-particle process of Fig. 3(a)].
The leading one-loop corrections to the Born term
come only from the exchange of a soft virtual gauge
meson between external lines belonging to different
composites.

Repeating the steps which lead from Eq. (2.8) to

Eq. (2.13) we easily find that Eq. (2.13) continues
to hold except that C,. is the quadratic Casimir op-
erator eigenvalue for the group representation to
which the ith cluster belongs as a whole and not the
individual constituents. In the Abelian case, this
will be recognized as the statement that a long-
wavelength photon probes only the total charge of
a bound state, not the individual constituent charges.
We refer to this as coherent addition of group
charges in the non-Abelian case.

The rule given above for fixed-angle processes in
leading-logarithm approximation in terms of a
product of form factors and the Born term continues
to hold. Its most important consequence is: For
connected scattering amplitudes and form factors
of group-singlet composites there are no leading
logarithmic powers of the type g'ln'(t) in the fixed-
angle regime. The implications of this fact for
hadron scattering are discussed in Sec. V in con-
nection with the "quark- counting" rule.

C. Infrared regime

We consider first amplitudes having only massive
quanta (i.e., fermions) on the mass shell. For such
amplitudes it turns out that the infrared regime (as
defined in Sec. I) is, in a sense, simpler than the
fixed-angle regime, at least when only leading log-
arithms are considered, because a rather limited
class of graphs is leading; in fact, if we ignore
vertex and self-energy insertions it is possible to
extract and sum up the leading logarithmic terms
to all orders of perturbation theory. The result is
not always simple exponentiation as in the fixed-
angle case (since we cannot ignore the distinction
between various invariants p, p~, the group-alge-
braic details are more complicated) but they can
still be simply stated in terms of an equation in-
volving a derivative with respect to the infrared
cutoff p, (see Sec. III).

Let us begin by considering once more the group-
singlet quark form factor. In the regime p.'«t
= (p' —p)' the one-loop contribution of Fig. 1(a) is
correctly given by the integral (M =quark mass)

P) P5

P6

F"'(t)=c~B(t M' p')

g' "'
d

2M' —t
16m M —P(1 —P)t

(2.15)

Pp P7
M'+ y,

' —P(1 —P)t
p,

Py Ps

FIG. 5. An example of a connected Born term with
three hard gauge mesons for the scattering of "composite"
states.

The asymptotic limit of this integral for t
»M', p,

' yields the fixed-angle result (2.1) (which,
as mentioned above, is equivalent to setting M =0).
Being now interested in the infrared limit p, -0 at
fixed t, M'40, we have
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where

M'-P(l-P)f '

(2.16)

(2.1V)

i.e., if we limit ourselves to skeleton graphs, it
turns out that, according to an argument presented
in Appendix C, only the straight ladder graphs give
leading contributions to the form factor. For the
ladder graph of order 2n the generalization of
(2.18) reads

ln2 p (2.18)

Accordingly, to get the leading behavior of Fig.
1(b} simply drop k, in the upper fermion lines and
divide. by two. The resu1t then is obviously half the
square of the one-loop contribution:

2 82 H~2 lnp, (2.19)

The "crossed ladder" graph l(c) is nonleading
and behaves only like g'1n(p, 2) because its infrared
divergence comes from a region of integration
where k, and k, become small together. More
precisely, after performing the k, integration one
obtains the integral

4

~ i~ I k
d4k, 1

k2 ~2p, k f( 1)i
1 1

where, for small k„ the function f behaves like
1/k, . This contrasts with the analogous function
for graph l(b) which behaves like (ink, )/k, .

If we now ignore for the moment the vertex cor-
rection graphs 1(d) and 1(e) as well as the self-
energy insertions to propagators (not shown), we
find that the second- and fourth-order results ex-
ponentiate according to

(2.20)

If we ignore vertex and self-energy insertions,

The fourth-order graphs, except for self-energy
insertions to the fermion and gluon propagators,
are shown in Fig. 1 [the mirror graphs of 1(d) and

1(e) must also be included]. A detailed calculation
(which we shall report in a subsequent publication)
shows that the contributions from graphs 1(b), 1(d),
1(e) and the self-energy corrections to 1(a) all be
have like [g21n(p2)]2 whereas l(c) behaves like
g'ln(p2}, i.e., it is nonleading [this is far different
from the fixed-angle regime where the leading
graphs are 1(b), 1(c), and l(d)]. The following
heuristic argument shows why: Let k, and k, be
the virtual meson momenta as shown in Fig. 1 and
observe that in all graphs but l(c) there is a loga-
rithmic divergence in the k, integration (for small
k, ) no matter what the value of k, is. The situation
is well illustrated by the simplified integral

f dk, dk dk„
k1+ P ( k1+k2+ P 0k1+k2+' ' '+k„+ P

(2.21)

which completes the exponential in (2.20). Note
that the leading behavior of the integral in (2.21) is
unaffected when the domain of integration is re-
stricted by

k)1'"&const, i =0, 1,2, ... , n, ko= p. ,

i.e., there is a hierarchy of size for the virtual-
gluon momenta, the lowest one being associated
with the outermost rung of the ladder.

How is this result modified when vertex and self-
energy insertions are included'? Going back to
fourth order we find that the vertex correction
graphs Fig. 1(d) and l(e) as well as the self-energy
insertions to Fig. 1(a) all behave like [g'lnp. ']',
i.e., they are leading contributions. This reflects
the infrared structure of the fermion-fermion-glu-
on vertex I",(P,P+ k) (where p and p+ k are the
fermion momenta with P2 =M'), the fermion propa-
gator S~(p+ k) (p2 =M'), and the gluon propagator
D~ „(k) for k-0 (k» p). For all three of these
quantities the leading singularities come as powers
of g'ink (one for each loop) which give rise to pow-
ers of g'lnp. when inserted as corrections to skele-
ton graphs. Thus the leading singularities for the
form factor come from the straight ladder graphs
plus their vertex and self-energy corrections. Ac-
cordingly, Eq. (2.20) is modified —the exponent is
not just the one-loop triangle graph, but all its
vertex and propagator corrections must be included.

We have not completed the study of I"„, S~, and

D~,„ in a general gauge, so in this paper we limit
ourselves to skeleton graphs in our discussion of
the infrared limit of amplitudes with only massive
quanta on the mass shell. In QED the validity of
naive Ward identities ensures that the infrared log-
arithms cancel exactly between I', and S~; also
Dz „is nonsingula, r in @ED. Thus in the Abelian
case exponentiation of the one-loop result [Eq.
(2.20) with e'.replacing c~g2] is the exact answer.
In the non-Abelian theory this cancellation does not
occur in general, as the one-loop calculation for
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I"„, S~, and D„„shows. It is worth noting that in
the ghost-free gauges (such as the light-cone or
axial gauge) Z, =Z„a consequence of which is that
the fermion vertex and self-energy singularities
cancel. However, there remains a correction to
the gluon propagator, which amounts to an effective
modification of the I/r' character of the long-
range force between "colored" quanta. This should
be intimately related to the confinement problem
(confinement folklore holds that the long-range
"potential" between a quark and an antiquark grows
linearly with the distance between them).

The generalization to arbitrary amplitudes (with
only massive quanta on the mass shell) is given by
the following "external-line rule" (see Appendix
C): To obtain the entire set of leading N loop sh-el

eton graphs, connect by a virtual gluon line a pair
of external mass shell f-ermions of each N-loop
skeleton graph in all possible svays.

We illustrate this rule for quark-quark scattering
in Fig. 4 where graphs 4(a), 4(d), and 4(g)-4(1) are
leading, 4(b), 4(c), 4(e), 4(f), and 4(m)-4(p) are
leading but not skeleton graphs, and 4(q) is a skel-
eton graph but not leading.

It is obvious that no three-vector or four-vector
coupling vertices appear in the leading skeleton
graphs so that topologically they are the same set
of graphs as in the Abelian theory. To avoid possi-
ble misunderstanding we emphasize again at least
two important features which are not true in the
Abelian case: (i) vertex and propagator corrections
(which will be ignored in this paper) may modify
crucially the long-range behavior of the theory,
(ii) even for the skeleton graphs the group matrix
structure of the bare fermion-fermion-vector
vertices prevents an immediate summation of the
leading logarithms. This second difficulty is re-
solved in Sec. IG by noting that the sum of leading
terms satisfies a linear differential equation. A
similar differential equation may also provide an
extension of these results to the near-forward re-
gime (see Sec. III 8).

We turn now to the infrared behavior of ampli-
tudes with one or more gluons on the mass shell.
As specified in Sec. I, these gluons are given a
mass equal to the infrared cutoff p. , they are trans-
versely polarized, and their three-momenta (as
well as the three-momenta of the mass-shell fer-
mions) are held fixed at nonzero values as p, -0.
Two- and three-loop calculations show that the
leading infrared singularities involve two powers
of lnp. for each loop. Furthermore, the leading
graphs are not just the ones given by the "external-
line rule" described above for quark amplitudes;
rather, the situation here resembles the fixed-an-
gle regime where there is a great topological var-
iety of leading graphs. Graphical calculations (up

to three-loop graphs) show again that the leading
logarithms sum up to exponential factors —one for
each mass-shell gluon. The results are summar-
ized in Sec. GI.

Finally, we should emphasize an important fact
which is obvious from perturbation theory: An am-
plitude with only neut al (i.e., color-singlet) par-
ticles on the mass shell is nonsingular in the infra-
red regime (this is analogous to the absence of in-
frared singularities in light-by-light scattering in
QED). Such neutral particles may, of course, be
introduced as the quanta of appropriate color-sin-
glet fields coupled to the quarks. More important. -
ly, in the colored quark-gluon model, hadronic am-
plitudes should have no infrared singularities since
hadrons are color-singlet bound states —just as the
amplitude for the scattering of hydrogen atoms has
no infrared singularities.

As will be discussed in the next section, our re-
sults indicate that the analogy with QED breaks
down when we look at the production of charged
particles from a collision of neutral bound states
(or neutral particles in general): In QED, as p, -0
the cross sections for production of a given num-
ber of charged particles and photons ("exclusive"
cross sections) vanish; however, cross sections
for production of a given number of charged par-
ticles and an indefinite number of photons ("inclu-
sive" cross sections) do not vanish as p, -0. In
Yang-Mills theories, as p, -0 both exclusive and
inclusive cross sections for non-neutral particles
vanish —only neutral particles, i.e., hadrons, can
be produced.

III. SUMMING PERTURBATION THEORY

A. Differential equation

Guided by the simplicity of the results found in
the graphical experiments of Sec. II, we look for
principles which allow us to generalize these re-
sults to all orders of perturbation theory. In this
section we introduce a differential equation which
summarizes all the leading-logarithm calculations
reported in Sec. II in both the fixed-angle and the
infrared regime. Our hope is that this equation
actually incorporates all powers of lnp. and not just
the leading ones; this is certainly true in the
Abelian theory, ' for which all the remarks we make
in this section can be fully justified —in fact, our
differential relation seems to constitute a direct
and comprehensive approach to the infrared sin-
gularities in QED.

The differential equation is based on a certain
formula for the emission of soft gluons. It can be
proven to all orders in QED using conventional
eikonal techniques, as we indicate below. This
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soft-meson formula has only been verified to fourth
order in the fixed-angle limit for non-Abelian gauge
theories (see Appendix A), but in the infrared re-
gime it correctly reproduces the leading singular-
ities of all skeleton graphs since at that level it is
equivalent to the external line rule (see Sec. III C
and Appendix C). At present, the soft-meson for-
mula should be treated as a conjecture, which in
fact will have to be modified in the infrared re-
gime (in a straightforward way) when nonskeleton
graphs are considered. But this conjecture is
much more far-reaching than the simple-minded
conjecture that form factors exponentiate, based
on the sixth-order results. We emphasize our be-
lief that the soft-meson formula (and its general-
ization) is the key to further progress in under-
standing the infrared singularities of gauge theor-
ies ~

Consider first the fermion form factor F(P,P')
for a scalar group-singlet current Z(x). It is con-
structed in the Feynman gauge with vector propa-
gator -g ~(k' —p') '. The derivative of F with re-
spect to In p. (reminiscent of a mass-insertion term
in the Callan-Symanzik equation) can be expressed
as an integral over an amplitude T"~(p,p', k, q) with
two extra gauge-meson lines:

(3 1)

where repeated group indices (a} and Lorentz in-
dices (n) are summed over. The amplitude T is
given (aside from kinematical factors) by

d4~d4y egy~gqy pI yJa g Jb y J 0 P

(3.2)

The full (covariant) amplitude is gotten by adding
to T graphs where the currents J' and J~ meet at
the same point and it obeys a Ward identity. These
additional graphs do not contribute in Eq. (3.1)
since they are always antisymmetric in the group
labels a, b or else they involve nonleading four-
meson seagull vertices. Also nonleading are all
ghost-line contributions, which otherwise would
have to be included in Eq. (3.1) if the mass p, is
generated by a Higgs mechanism since the ghost
lines have mass p. in the Feynman gauge. Again,
these complications in the Ward identities" may
be neglected since we shall see that in Eq. (3.1) the
momenta k, q = —k are essentially on-shell and for
on-shell gauge mesons the Ward identities express
current conservation. Thus we have the Ward
identities:

(3.3)

valid when the components of k and q are of order
p. .

The point of singling out one internal gauge line
in the form factor F(P,P') by differentiating it as
in Eq. (3.1) is that the leading contributions to the
k integral in this formula come from values of the
components of k of order p. , as would be readily
apparent if the integral were Euclidean [note that
T is O(k ') for small k as inferred from the tree
approximation]. This argument may not be made
for the momenta of the undifferentiated lines, since
I' is homogeneous of degree zero in the momenta
of these lines.

If all we required was the behavior of T for k, q
«p. , the obvious pole graphs" would supply the
answer: Attach the soft gauge mesons to the ex-
texrsa/ lines of I" in all possible ways. This yields

Tab(P PP. y ~) g2 n 0.'faF(p ~I)
P k+ie -P' k+ie

(
«b ~' + ~' (3 4)

P q+ z c —P ' q+'EE'

Note that the kinematical structure of Eq. (3.4) is
of order I/kq and obeys the Ward identities of Eq.
(3 .3).

We now propose that Eq. (3.4) is a valid approxi-
mation not only when k, q «p, but also in the regime
where k and q are of the same order of magnitude
as p, and p is small compared to p and p'. In QED,
this soft meson formula can be proved, using
familiar eikonal techniques, to all order of per-
turbation theory, the remainder being smaller than
the leading term [i.e., the right-hand side of Eq.
(3.4)] by a whole power of p, and not just a power of
lnp, (see the discussion in Appendix A). Unfortun-
ately, these eikonal techniques do not work so sim-
ply in the non-Abelian case because of the noncom-
mutative group structure of the vertices. Appendix
A gives an explicit demonstration of Eq. (3.4) in the
fixed-angle limit, to fourth order, for the non-
Abelian theory, where a kind of eikonal structure
is seen to emerge for three-vector vertices. Pos-
sibly, the proof could be extended to all orders by
means of combinatorial methods analogous to those
used by 't Hooft" for proving Ward identities. Note
that in the infrared limit using Eq. (3.4) in Eq. (3.1)
is equivalent to the "external-line" rule discussed
in Sec. II C and Appendix C.

Inserting T"~ from Eq. (3.4} into Eq. (3.1) yields

P, F(P,P') = c„F(P,P') P, s [B(P,P') —B(P,P )],

(3.5)

where
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ig2 & d 4pp' ~ p
(p p)-(2,) „(k ~)(k p)(k. p)

(")
The general solution to Eq. (3.5) is

F(p, p') =F,(p, p') exp', [B(p,p') —B(p,p}]],
(3.7)

where F, is a p.-independent amplitude. Note that
the integral for B(P,p ) in Eq. (3.6) is initially de-
fined in terms of an appropriate ultraviolet cutoff
which, of course, does not appear in B(p,p')
—B(p,p}. We thus identify the t( dependence of the
vertex renormalization constant Z, as Z,
=Z, exp[c~B(p, p)], where Z, is independent of p. .
Evidently, Eq. (3.7) yields the correct fixed angle
limit (t-~) [Eq. (2.3)] and infrared limit [Eq.
(2.20)] of F since

2

B(p,p') - In(t('), H(t) (p, p' fixed, t( -0)

(t)&~2 p~)
16m 2

p,
2

The generalization to other processes is straight-
forward in viem of the one-loop discussion of Sec.
II [see, in particular, Eq. (2.10)]. Consider an
amplitude T(. . . ; p;, X,-;.. .) involving a number of
particles with (on-shell) momenta p, and internal
group indices X, , as well as an unspecified set of
off-shell external lines. The differential relation
reads

8S(p'lt 1tBp.

ip2 d40

(2 )4 (k2 Q)2 (g(g(P17 1t f 1 } I

(3.6)

where T''z(P„X,;... ; k, q) is the amplitude with
two extra gauge-vector lines of momenta k, q,
Lorentz indices n, P, and group indices a, b. The
soft-meson formula for T"z reads

T'~~(p„, A.„... ; k, q)

(i)+ ( j)& / . r.11' T(' ~ lP( ~ i ~ ~ ~ ip& ~ji ~ ~ ~ )
i

(3.9)

where D""is the ath group generator matrix for
the ith particle or its transpose and q, =+1 or -1
depending on whether the ith particle is incoming
or outgoing. This form of the soft-meson formula
is adequate for nonfonoard amplitudes, i.e., am-
plitudes with no vanishing momentum transfer. In
the case of one or several vanishing momentum

transfers, neglecting the dependence of T on k and

q on the right-hand side of Eq. (3.9) is not justified.
We comment on this case later in this section.

From Eqs. (3.8) and (3.9) we obtain

u —T(P

where

x T( ~ y' X' ~ ~ )i

(3.10)

-tg' d'k n(ng(p( P()
(2v)' k' —p,

' (q;p, k —ie)( qtp-, ~ k-. i&)

(3.11)

t i(a)t j(a)j

g g 11 11 t ((~)t S(~) T
v jul„.

(3.13)

which, in view of the group-charge conservation
equation 211;t "'T=0, becomes

Note that B;,depends . on the invariant (q,.p,.
+quip&}'=t„and the squared masses p,.'= ,'t, , , p——&'

1 g=4Cjjg
On the basis of Eqs. (3.10) and (3.11) we proceed

to discuss the fixed-angle and infrared regimes
separately.

Fixed-angle limit. We consider the general sit-
uation in which the particles of a given connected
amplitude T are divided into several clusters
l„l„... (a cluster may consist of just one particle)
such that

t, j=fixed if i,j belong to the same cluster,

t;;= tp;;, p;j fixed to, t-~ otherwise . (3.12)

Consider, first, the case where all the momenta
are strictly on-shell and a "vector mass" cutoff p,

is used. We are encouraged to use the p. (S/St()
trick in this case because we know from our exper-
ience with graphs that the leading logarithmic
terms never depend on the fixed t,j invariants, so
that we may replace p, (S/St() by -2t(S/St) in Eq.
(3.10). As t-~ those B,, 's for which i and j belong
to different clusters dominate in Eq. (3.10) having
the same leading asymptotic term

ln —+0 lnt .g2 2 t
16m2 p2

Retaining only the leading In'(t/t12) terms in Eq.
(3.10) we have

9 ]. 8 gt —T =—t— ln'—
]6g2 p2
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9 g2
t T—= ——g c T t — ln2 — (3.14)V Qt ]6g2

V

where

cv=

T ~ exp —, c„ ln' —, (3.15}

In other words, c„is the value of the quadratic
Casimir operator for the group representation to
which the cluster l„belongs (in the Abelian theory
cv is the total charge of the cluster squared in units
of the fundamental fermion charge).

Equation (3.14) leads to the exponential form 2

T cc exp — Q c . In
V

(3.15')

herent set of all off-shell particles" ).
We would also like to discuss, in the fixed-angle-

limit, the scattering of "composites" as introduced
in Sec. I; in other words, to relax the strict mass-
shell requirement for the momenta while, of
course, retaining the cluster conditions of Eq.
(3.12). In constructing such off-shell amplitudes
no vector-mass cutoff is needed and the p(8/Bp}
equation is not applicable. Nevertheless, our per-
turbation calculations suggest that the answer for
t -~ is obtained by exponentiating the one-loop re-
sult:

T exp —
32 cv —c ln

V

(3.16)

Here c stands for the value of quadratic Casimir
operator for the coherent set of all on-shell par-
ticles (which equals, of course, that of the co-

in agreement with our findings in perturbation the-
ory (Sec. II).

Equation (3.15) is easily generalized to the case
where a set of external momenta are fax off shell, -
i.e., their components grow like v t. The sums
over i and j in Eqs. (3.10) and (3.13) do not sum
over off-she11 particles, and instead of Eq. (3.15)
we find

Here m' is a typical fixed invariant. A special
case of Eq. (3.11) verified to sixth order in g is the
off-shell quark form factor in the Sudakov limit
(see Sec. II).

Infrared limit. Recall that the infrared limit (p,
-0, momenta fixed) is distinct from the (high-en-
ergy) fixed-angle limit in a theory with massive
fundamental fermions or quarks —the mass of a
quark being defined in terms of the singularity of
the fermion propagator. Of course, even in a the-
ory of massless quarks the infrared limit is di-
stinct from the fixed-angle limit for processes in-
volving massive bound states.

Looking at Eqs. (3.10) and (3.11) we note that as
p, -0 with the external momenta held fixed we have

2

, In'(p~)+O(lnp, ') if i,j are both massless

2

, In'(p, ')+O(In', ') if i o~ j is massless [see Eq. (2.25)]
327r 2

=0(ln(p, ')) if i,j are both massive.

This if the amplitude in question has at least
one massless external pm ticle which, is nonsinglet
(e.g. , gauge meson), the leading behavior comes
from the g'In'(p, ') terms and if we only retain those
leading terms, we obtain

x I c;c—,c„——,'c ——,
'

c) T, (3 16')
Af.=o

are on-shell c~ cp c 0 and we conclude that
nonforward on-shell amplitudes involving at least
one massless nonsinglet particle vanish in the in-
frared limit faster than any power of the infrared
cutoff p, .

We now come to processes involving no massless
nonsinglet particles; for example, quark-quark
scattering in a theory with massive quarks. For
such amplitudes none of the B,&'s in Eq. (3.10) has
a In'(p, ') leading behavior. Instead, we have

2

where the c,. refer to on-shell particles of zero
mass and c~, c„care the coherent Casimir eigen-
values of the set of massive particles, the set of
massless particles, and the set of off-shell lines,
respectively. Note that when all external particles

M -2+M . —t])
Pill. (1 —~)M. —tl(1 —~)

(3.1'l)
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Since the B,, 's are not, in general, asymptotical-
ly equal, the right-hand side of Eq. (3.10) does not
become a simple multiple of 7.' asymptotically;
rather, we obtain a system of homogeneous differ-
ential equations with constant (i.e., p, independent)
coefficients. In compact notation

8
Tr =~rs ~s ~

p
(3.18)

where, in writing T„ the index z stands for the
collection of group indices of the external particles.
The general solution of Eq. (3.18) is given in terms
of the eigenvalues A,

'" and eigenvectors 0"' of the
matrix k (p=1, 2, . ..):

g (P) eXp&&( P )
r ~ r (3.19)

where h"' and h"' are Hermitic matrices. It
suffices to show that k"' is positive definite. Note
that as p, -0 we have

We now show that Rek, &0 for all nonforward am-
plitudes, i.e., nonforward amplitudes vanish in the
infrared limit like some positive power of p, .

From Eq. (3.10) we see that if we write B;;
=ReB,.&+iImS;, , h„, is decomposed accordingly as

" (»)'4 (k'+V')'" p*'kp k
(3.20)

It follows that, for any eigenvector 0 of h, we
may write

8 k 8 — ~,q, $ -g8+(1) ~ ag ~a~a a )0
k+p, k q (k 2+ii 2)1 /2

(3.21)

(3.22)

Recall that, since k, (' =0 by charge conservation,
the insertion of the klk~ term in Eq. (3.21) is justi-
fied.

In Eq. (3.21) the equality sign occurs only if e
= 0 for all lightlike k and all transverse polariza-
tion vectors e(k). It is not difficult to show that
this happens only if the nonsinglet external parti-
cles are divided into group-singlet clusters, the
particles of each cluster being relatively at rest
(i.e., having parallel four-momenta). Although such
kinematical configurations generally correspond
to zero volume in phase space, the particular case
of fonna' amPlitudes deserves special attention
because their singularity structure as p, -0 is
more severe than the nonforward amplitudes and
could compensate for the vanishing of the phase
space.

A brief comment on the implications of infrared
behavior for off-shell Green's functions is appro-
priate here. When all momenta are off-shell there
are, of course, no infrared singularities in per-
turbation theory. A Green's function, however,
becomes infrared singular if two or more momenta
belonging to nonsinglet particles are on-shell. It
is interesting to note that in certain cases of such
partially on-shell amplitudes the infrared loga-

rithms add up to an expzod&sg exponential; an ex-
ample is the quark-antiquark amplitude in the
octet channel with, say, only the incoming two
momenta on-shell. Can this be reconciled with a
dispersion relation expressing the finite fully off-
shell qq -qq amplitude in terms of its discontinuity
which involves the s&sgulax half-off-shell ampli-
tudes? Note that another indication of failure of
dispersion relations for these off-shell quantities
is the essential singularities appearing at two-par-
ticle thresholds since B,,=i [t,, —(m,.+m, )'j ' '
nea. r t0 = (m, + m,.)'.

B. Near-forward regime

In implementing the basic differential equation
(3.8) in the near-forward regime, where some in-
variant momentum transfer squared t vanishes or
is of order p.', it becomes necessary to use a
modified version of the soft-meson formula (3.9)
in which k is not dropped as small compared
to the relevant momentum transfer a (b,'=f),
but is dropped —according to the argument of Ap-
pendix A—as compared to the external momenta.

It is instructive to see how this works for near-
forward fermion-fermion scattering in QED. Let
p] p] and pg p2 be the inc oming and outgoing mo-
menta for fermion 1 and fermion 2, respectively.
The modified p, (&/&p) equation for the amplitude
T (&, s = (p, +p, )') reads
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(3.23)

where T~ is the Born approximation. The two
factors in parentheses correspond to attach-
ing the two photons of the soft-meson formula to
different fermions. The remaining terms where the
two photons are attached to the same fermion (eith-
er both photons to the same external line or one
photon to the ingoing and the other photon to the
outgoing line of the fermion) cancel between them-
selves for t«M . Also, in the near-formard re-
gime, setting P,'. =P,. reduces the factors in paren-
theses to

so that, in the center-of-mass frame, we have an
integral over just the transverse components of k:

(3.24)
This equation can be easily solved by first taking

a two-dimensional Fourier transform with respect
to & which turns it into an ordinary linear differ-
ential equation. The solution is the eikonal formula

T= (a(y, )M(Sy' )Mf d e'*')t(e'+*)—1), (3.2i)

where

(3.26)

Our purpose in recording here one more deriva-
tion of the well-known eikonal formula" is, firstly,
to suggest that this formula may be profitably
looked at as expressing an infrared rather than a
high-energy limit, and, secondly, to make plausi-
ble the obvious generalization to the non-Abelian
theory. In the non-Abelian theory the p(S/&p) e(lua-
tion has a matrix form but the k integral is still a
convolution; thus by Fourier transformation one
obtains a set of ordinary linear differential equa-
tions with constant (i.e., p, -independent) coeffi-
cients. It mould be interesting to test the results
obtained this way with explicit calculations in per-
turbation theory. Also, a comparison with the
high-energy, fixed-t calculations of Yao and Nieh"
and, more recently, McCoy and Wu" should be in-
structive.

C. Cross sections in the infrared limit

We have found that cross sections for nonforward
processes involving only massive particles (ele-
mentary or composite), some of which are not
group-singlets, vanish like a positive power of p,

in the infrared limit p. -0. This is qualitatively
not different from what happens in the Abelian
case. The striking difference shows up when we
look at processes involving on-shell gauge mesons
as mell.

Let T denote the amplitude for a process in
which a fundamental fermion (or, more generally,
any massive nonsinglet particle) of four-momentum
P appears among the particles in the final state.
Consider the amplitude for emitting, in addition, a
gauge meson of momentum q. The lowest-order
graph of Fig. 6(a) has a pole at (p+ q)' —M' = 2P ~ q
=0 and, of course, there is one such pole term for
each nonsinglet external particle. Thus the cross
section for emission of a, (transverse) gauge me-
son with a three-momentum q smaller in magni-
tude than a given cutoff Q has, in lowest order, a
logarithmic enhancement of the form

(3.2V)

In the Abelian theory this logarithmic divergence
is not altered by higher-order corrections —the
Abelian full vertex I' depicted in Fig. 6(b) is finite
for JJ, «2p q/M. Similarly, N-fold pole terms
make the N-photon emission cross section diverge
like (N! )

' [@~in(Q/p)j ~~ T ~'. When summed over
N, these partial cross sections exponentiate to ex-
actly cancel the vanishing infrared factor in

~

T ~'

(i.e., the p, dependence due to the soft virtual pho-
tons). Thus in the Abelian theory the cross section
with emission of an indefinite number of soft pho-
tons approaches a finite, nonzero value as p. -0.

In contrast, in the non-Abelian theory our lead-
ing-logarithm calculations indicate that higher-
order corrections, due to exchanges of soft virtual
gauge mesons between the on-shell meson of mo-
mentum q and all other nonneutral particles in the
process, provide the exponential factor

(3.28)
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FIG. 6. Graphs for the emission of a soft real. gauge
meson form a fermion line in the infrared regime.

as long as p. «(P, q)/M for all momenta p,. of the
non-neutral particles. This follows immediately
from the basic equations (3.10) and (3.11) and the
fact that

for pM « p,. q. The exponential (3.28}, included as
a factor in the integrand of Eq. (3.2V), provides an
effective cutoff at Q = O(p, ) so that no logarithmic
enhancement of the cross section is possible. To
see this, note that

= finite .
(3.29)

Observe also that the p, =0 value of the integral in
Eq. (3.29) behaves as 1/g for small g which means
that it is impossible to recover the perturbation
expansion afte~ p, is set equal to zero.

For the emission of several gauge mesons with
momenta q„q„.. . such that q,. p1» t1M, q,. ~ q J» p,

' we similarly obtain the exponential factor

exp ——
2 c~ Q ln Iq, l

32K P,

which provides an effective cutoff for all gauge-
meson three-momenta at ~q;~=Q, =O(p, ), thus
eliminating the possibility of logarithmic enhance-
ments from multiple particle poles. Note that con-
figurations in which q,. q&

——O(p, '}or, more general-
ly, in which clusters consisting of two or more
gauge mesons have total invariant mass of order p. ,
are appropriately suppressed by phase space.

If the above leading-logarithm calculations re-
flect more or less correctly the behavior of vec-
tor-emission cross sections we must conclude that
in non-Abelian theories the N-vector-emission
cross section o„ is a finite multi tepof the no-vec-
tor-emission cross section o, in the infrared lim-

it, i.e., oN=c„oo. Thus, assuming that the sum
over N does not introduce a new kind of divergence,
the cross section with emission of an indefinite
number of soft gauge mesons vanishes as p, -0
just like the no-meson-emission cross section.
The suppression of gluons with momenta {q;Jsatis-
fying q, p1» tDf, q ~ q1» p,

' occurs only after
summation to all orders of perturbation theory for
each o~ and therefore there is no violation of the
Kinoshita-Lee-Nauenberg (KLN) theorem" which
states that there are no "mass singularities" in
the inclusive cross section arden-by-order in per-
turbation theory. There are other theories in
which the KLN theorem could be misleading. For
example, in (2+1)-dimensional QED, the static
Coulomb potential between charged fermions is
proportional to the logarithm of the distance which
suggests that the charged fermions are confined.
The KLN theorem nonetheless predicts the com-
plete cancellation of all photon mass singularities,
order by order.

The most interesting aspect of this situation,
from the physical point of view, emerges if we as-
sume that there are group-singlet bound states in
the theory representing ordinary hadrons. Our dis-
cussion then indicates that in a collision of hadrons
no particles carrying the group charge (i.e.,
quarks, gluons or colored bound states) will ever
be produced —only hadrons will appear in the final
state. The analytic structure of hadronie ampli-
tudes and color-singlet (e.g. , electromagnetic)
hadronic form factors cannot contain any trace of
the elementary constituents in its poles and branch
cuts. As a result, no long-range forces, analogous
to the van der Waals forces between neutral atoms,
exist between hadrons. In a worM of such hadrons,
quarks and gluons are permanently confined and
"color" is a hidden degree of freedom.

Pf. RELATION TO THE RENORMALIZATION GROUP

The techniques c.'eveloped in See. III, although
developed for reasons having nothing to do with
the renormalization group (RG), yield results
which call for interpretation in the language of the
HG. This is especially clear in the fixed-angle
regime where simple exponentiation and factori-
zation occur. %hile there is certainly no bar in
principle to extending this interpretation to the
infrared regime (where simple exponentiation
breaks down), we restrict ourselves for the pres-
ent to the fixed-angle regime.

The properties of exponentiation and factoriza-
tion developed in Sec. III suggest an RG interpre-
tation with infrared singular anomalous dimensions
(ISAD's). ISAD's differ from conventional (short-
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distance or ultraviolet-singular) anomalous dimen-
sions in two respects: First, they are momentum
dependent, and second, they add coherently for
"composite" states. This property of coherency
is to be expected in view of the long- range nature
of the infrared. singularities.

%Phile we use the language of the BG in this sec-
tion, in fact ISAD's come, in part, from mass-
insertion terms in the inhomogeneous Callan-
Symanzik" equations. These mass- insertion
terms are the leading singularities near the mass
shell for fixed-angle processes, dominating the
ultraviolet singularities which give rise to only
one logarithm for every power of g'. (However,
in the infrared regime long-distance singularities
associated with massive particles yield one loga-
rithm for every power of g'. ) The ultraviolet
singularities are associated solely with coupling
constant and wave-function renormalization (if the
ultraviolet mass-insertion terms are nonleading,
as we assume) and give rise to the Callan-Syman-
zik function P(g) as well as the conventional (mo-
mentum- independent) anomalous dimensions y, .
For the moment we ignore all such renormaliza-
tion effects, but we consider their inclusion at the
end of this section.

The prototype fixed-angle equation developed in
Sec. III,

event, the distinction will become significant only
when nonleading effects are considered; then one
will have to renormalize p, if it is treated as a
mass.

There is an intimate connection between the
ISAD's of (4.2) and the conventional anomalous
dimensions y„occurring in the Wilson expansion"
of J'(x)J(0), where J(x) is the group-singlet scalar
current whose form factor has been studied in
Secs. II and III. For large N, the y„behave in

leading order like lnN in vector theories, "and
vanish for other theories. " We show that this
lnN behavior comes from the same infrared sin-
gularities which produce the logarithmic momen-
tum dependence of the ISAD's. In higher orders,
there appears to be a mixture of infrared and
ultraviolet effects which we defer to later work.

First, we recapitulate the well-known tech-
niques "' for finding the y~. The Wilson expan-
sion is

T(J'(x)J(0))~ g c„(x'- ie)0", ... (0)x ~. ~ x )()

~p

(4.3)

The forward matrix element of this reads

&t I
T(J(x)J(0))lt» = g "(x'- i~)(x p)"A

(4 4)

8 g
p,

—S g=gc,.—,ln —
g S q,ep,

(4.1) (plo".,...- (0)Ip&=p-, " p A.+g aterms,

(4.5)
looks very much like an BG equation with an ISAD,

gl, (t) =c, g, ln ~Sm
(4 2)

assigned to each on-shell particle or to each
"composite" state, with c, the quadratic Casimir
eigenvalue for the particle or for the "composite"
state. A question arises which we cannot com-
pletely answer yet: Is p to be considered as a
vector-meson mass (as in Sec. III), so that (4.1) is
in the spirit of the Callan-Symanzik equations,
with the right-hand side considered as a mass in-
sertion, or should p enter as an off-shell renor-
malization parameter& In the latter case, we
would focus our attention not on mass-shell am-
plitudes with massive vector mesons but on am-
plitudes with external momenta obeying p, '
=M,.'- ILL', and set the mass M~ of the vector me-
sons equal to zero. Then a simple calculation of
the one-loop graph shows that the F,(t) in (4.2)
should be multiplied by two (in effect, we enter
the Sudakov regime). Until a better understanding
of the confinement process is reached, it is not
possible to draw a definite conclusion as to which
is more convenient since the concept of the mass
of a confined particle is rather elusive. In any

where lP& is a one-quark state. Although we have
not explicitly indicated it in (4.3)-(4.5), for each
N there may be several operators, which leads to
the problem of operator mixing in calculating the
anomalous dimensions of the 0„." But, accord-
ing to the lowest-order calculations at least, in
the limit of large N the off-diagonal mixing terms
in the anomalous dimension matrix are nonleading.
Furthermore, there should be no problems of
mixing with ghost operators since these are not
dominant in the infrared (large-N) region.

The short-distance behavior of the c„ in (4.4) is
probed by expanding the Deser- Gilbert-Sudarshan
(DGS) representation' for (4.4) in powers of P x:

(4.6)

e„(x')—f dX'd () ()"le(a())x,(x), , (4.7)

where 4~(x) is the free-field Feynman propagator
for mass A. , and o=X'- P'-p'. Note that h is an
even function of P, so only even values of N are
relevant. In (4.7), irrelevant x-independent fac-
tors are dropped. In practice, the Fourier trans-
form of (4.7),

1

ir(x, p)= fdX di)e'ee *)e('a, ())x,(x), '
i.
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c„(q') = f qxe"*c„(x') 1
T(i)(q P) =(p )zF'(P P+q), (4.17)

q —X' (4 8)

is approximated by finding the coefficient of co~

((() = —2p q/q') in the expansion of the Fourier
transform T(q, P) of T for fixed q. This coefficient
is also found as the N+ 1 moment of the imaginary
part of iT (denoted by W below):

where F(P,P+ q) is the fermion form factor with
one leg off- shell. The infrared- singular part of
F is given by the exponential of the one-loop graph;
in leading order,

2 2

F(p, p+q) = exp, c~v ln ., lnF 1 —(a)

(4.18)
qph(cp)( q,'q )"

(q )

D„(q') = d&o (d-"-'W((d, q'),
1

(4.9)

(4.10)

(4.11)

For arbitrary v there is only one lnq' in the ex-
ponent, but as ~ -1 the leg p+ q goes on-shell and
the exponent becomes the Sudakov exponent. In-
cidentally, (4.18) is found whether p is treated as
the vector meson or as a renormalization point.

Directly from (4.17) and (4.18) we derive the
equation

(q(tc, q') = f dcd()q(c, p)()(q'(( —j)x) —c).
(4.12)

9 - g 2 —QP

p, T(a) =,cs{d ln
Qp, 2K —CO

(4.19)

q'cs(q') - (-q'/m') "N", (4.13)

but in the case of asymptotic freedom (P = —bg')

q'cs(q') —[ln(-q'/m')] "& "". (4.14)

Only the first case is relevant for us at the mo-
ment. The mass scale m is arbitrary, and in the
limit of large N, and to lowest order in g,

For large q' at fixed N, D„-e„;however, when
N is also large, ~q'~ must grow at least as fast
as N for this to be true.

The asymptotic behavior of the c~ is expressed
in terms of the anomalous dimensions y~ of the
operators 0~. If the effective coupling constant is
fixed (i.e. , P—= 0), then

In the region {d =1 the same equation holds in
leading order for the imaginary part of 7&», de-
noted W&», since lm ln(1 —&u) is nonleading. Then
for the large Nmome-nta, where e —1=O(N"'),
(4.11) shows that

2

p, Ds(q') =,c~lnN Ds(q'),
ep, 27K

(4.20)

which is the same as (4.15) and (4.16), when P —= 0
and c~ is identified with D~. The large-N behav-
ior of the y„[to O(g') at least] is identified u)ith

infrared singular co-ntributions to the form factor.
Another way of seeing this connection is to use

the Mellin convolution formula to express W(a), q')
in terms of W at some fixed q,'» p,

' (Ref. 33):

ys-, crlnN+ O(1) .E 2~2 E {4.15)

Corresponding to (4.13) and (4.14) is the RG equa-
tion (choosing m = p, )

(q(tc q')= .f, (q(—,, q )

(4.21)

(
8 8

+P——y))( c()(=0. (4.16)

We now show that a specific set of infrared-
singular graphs yields the lnN terms in y~. Evi-
dently from (4.11) the large Nmomenta re-ceive
contributions only from the neighborhood of v = 1,
or, more precisely, (q) —1=0{N '). Only one-
particle reducible states ought to be important for
(d =1; e.g. , W((d, q') for the bare Born term is
proportional to 5(1—~~ ~). Let us consider the
contribution of the one-particle reducible graphs,
specifically excluding all propagator corrections
and setting the fermion mass to zero:

Assume that the threshold behavior of 8' for q'
Q ~

=qo ls

~ =1' W{&u q ')- (co 1)~"0" (4.22)

where P is a q-dependent power and factors in-
dependent of + are not written. This behavior is
what follows from (4.17) and (4.18). A few simple
integrations in (4.21) [using the specific expres-
sion (4.15) for y„] show that the threshold behav-
ior (4.22) with qo' replaced by q' is reproduced if
and only if
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V. PHYSICAL INTERPRETATION

A. Confinement vs dynamical symmetry breakdown

2 cpn 2 + const )4m' p,
' (4.23)

precisely as in (4.17) and (4.18). Similar manipu-
lations have been used" with an ad hoc choice of
P(q, '), and with asymptotic freedom (P e0) in-
cluded, in applications to hadhonic matrix ele-
ments. We specifically exclude such an applica-
tion, since the Casimir operators c„=O for a
hadron.

Nonetheless, it is interesting to inquire into the
mathematical structure of the HG equation and its
solution when nonleading effects are taken into
account, such as P and the usual anomalous di-
mensions I', . Presumably the BG equation simply
becomes (aside from gauge terms)

(4.24)

for S-matrix elements in the fixed-angle regime.
The 1', are given by (4.2) (or twice that value, de-
pending on the interpretation of p) plus nonleading
terms, including certain gauge- invariant pieces
of the y, , and for

~
t j» p' we need only save leading

powers in g' of these coefficients. The general
solution to (4.24) is expressed in terms of the ef-
fective coupling constant g(z), where z
=-,' ln(- t/p. '),

times an arbitrary function of ratios of invariants
(e.g. , t/s). [ln(4. 25), g(z) is normalized to g at z
= O. j No useful physical information can be gotten
from (4.25) until the I'& and g(z) are known for all
values of z. However, to indicate the nature of
the corrections induced by including P(g), consider
the asymptotically free case P= —bg', b &0, and
the I', as given in (4.2) are assumed to hold for all

The form factor for large positive z has a
term like

We have described an infrared mechanism by
which the presence of non-Abelian massless gauge
quanta suppresses the degrees of freedom associ-
ated with the group charges to which they couple-
an infrared confinement mechanism. In this con-
text, what we call the quark mass and the (vanish
ing) gluon mass are operationally defined in terms
of the singularities in the full propagators of the
quark and gluon fields in perturbation theory; in
fact, our calculations in the infrared regime are
based on assuming a particular pole structure for
the bare propagators, "and it is an important
question whether and under what conditions such
assumptions are internally consistent. For exam-
ple, the alternative possibility exists of a dynam-
ical symmetry breakdown" (DSB) in which some
or all of the gauge mesons become massive; in
that case, of course, the associated charges are
no longer suppressed.

To the extent that short-distance effects are im-
portant an interesting constraint" on DSB is this:
If the gauge group G (or any of its subgroups) is
the group SU(m), and the only fermion represen-
tations are N, N, or 1, then there can be no short-
distance DSB of this SV(N). Also, if G (or a sub-
group) is purely chiral (all left-handed or all
right-handed fermions are group singlets) there
is no short-distance DSB of G (or its subgroup).

In a physical model we should clearly require
the color group SU(3), (a subgroup of G) to remain
unbroken, or else the resulting massive vectors
will not yield the infrared confinement mechanism
we have discussed here. This means, in turn,
that only the fermion representations 3, 3, and 1
of SU(3), may occur (which is, of course, the
usual assumption). On the other hand, if G is
SU(N), then there must be something more that
N, N, and 1. A mathematical example is Georgi
and Glashow's" SU(5) which has the fermions in
both the 5- and 10-dimensional representations of
SU(5) but only in the 3, 3, and 1 of SU(3),.

E,.(t) - exp[-(c,./8w'b)lnt lnlnt], (4.26) B. Relation to other confinement ideas

where one power of lnt is replaced by lnlnt, and
the explicit dependence on g' is gone. Such terms
in the form factor have been deduced earlier" by
considering the Mellin transform (4.21) with the
asymptotically free behavior (4.14) of the cs(q')
used, rather than the P =—0 values (4.13).

It is expected that in the region t «p, ', or
-z»1, g(z) becomes very large. Then, presum-
ably, (4.26) is entirely wrong and the I', cannot be
computed from lowest- order processes.

In discussing the infrared regime we introduced
a cutoff mass p, and confinement takes place as
p-0. It is conceivable that p,

' can be interpreted
as the characteristic size of the confinement re-
gion in analogy with the existing "bag" models of
hadrons. ' However, we see no relation of these
models to our work since, 3t this stage, no con-
crete space-time picture of a hadron has emerged
from our calculations.

Confinement in strongly coupled gauge theories
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has been discussed by Wilson" who uses a space
lattice and techniques from many-body theory.
Any relation to our work is clouded by the fact
that the non-Abelian nature of the gauge does not
seem crucial in Wilson's work.

A soluble field-theoretic model in which con-
finement takes place is Schwinger's" massless
QED in two-dimensional space-time. Is there a
hint of a two-dimensional structure emerging in
our work~ Our calculations indicate that the non-
forward (t WO) quark-quark amplitude vanishes as

0, but we have had little to say about the near-
forward regime (t =0) where a singularity like
5(t), for example, would effectively reduce quark
scattering to one space dimension.

In any case, there are one or two other features
of two-dimensional gauge theories worth noting.
First, in two dimensions it is always possible to
eliminate three- and four-vector Yang-Mills cou-
plings by using a gauge such qQ =0 for some
fixed vector g„. Note that, as mentioned in Sec.
II C such a gauge" may be particularly useful for
exploring how self- energy insertions to the gluon
propagator modify the long- range force between
quarks. Second, the properties of exponentiation
and factorization (in the fixed-angle regime) have
a decidedly eikonal flavor, even though in four
dimensions there are complicated cancellations
(see Appendix A) before this virtually Abelian
structure emerges. Even in an Abelian theory the
eikonal structure is an approximation, with one
known exception: massless two- dimensional QED,
where it is exact. The question thus arises wheth-
er confinement in four dimensions occurs by an
effective reduction to a two-dimensional theory. "

C. Large-momentum-transfer processes

number of hadron constituents. It is interesting to
note incidentally, that, even without relating the
exponents to the quark content, the power behavior
of the exclusive cross section as given in Eq. (5.1)
is the same as that of a product of hadron form
factors. "

The amplitude for the exclusive process is, by
definition, the convolution of appropriately irre-
ducible N-quark amplitudes with the hadronic
Bethe-Salpeter wave functions. Figure 7 shows a
meson-meson amplitude given as the sum of con-
tributions from connected [7(a)], partially con-
nected [7(b), 7(c), 7(d)], and completely discon-
nected [7(e), 7(f), 7(g)] irreducible quark graphs.

In order to understand the scaling laws in the
context of field theory we assume, following
Brodsky and Farrar, ' that the Bethe-Salpeter
wave functions vanish at large constituent mo-
menta at least as fast as indicated by the lowest-
order interaction kernel. Then an analysis in
perturbation theory analogous to that of Sec. II
indicates that "end-point" asymptotic contribu-
tions of individual graphs do contain infrared-type
logarithms of the type g'ln't at large momentum
transfer t, which, however, cancel in the sum of
all graphs —essentially because hadrons are color-
singlets. An important case is illustrated by the
class of Fig. 7(a): with the hadron constituents
near the mass shell, we have here what we called
a singlet-cluster quark amplitude in the fixed-
angle limit.

The infrared-type logarithms do not cancel in
"pinch" contributions, which arise in nonylanar
graphs representing multiple independent scatter-
ings of quarks from different hadrons. For me-
son-meson scattering they are depicted in Fig.
7(d). As pointed out by Landshoff" this class of

Quite independently of the details of hadron
binding and confinement, our results in the fixed-
angle regime may have a bearing on large-mo-
mentum-transfer hadronic processes. It has been
noted that the experimental measurements of ex-
clusive high-energy wide-angle hadronic scatter-
ing are compactly summarized by scaling laws'
of the form

—- s' "f(t/s), s -~, s/t fixed (5.1) (b) (c)

where s and t denote the squared c.m. energy and
momentum transfer, respectively and N is the
total number of elementary constituents (quarks)
of the hadrons according to the quark-model as-
signments (meson-qq, baryon-qqq) in the initial
and final state. Also, the (spin-averaged) elec-
tromagnetic form factor of a hadron behaves like
t' " for large momentum transfer t, where n is the

(e) (g)

FIG. 7. The meson-meson scattering amplitude ex-
pressed in terms of irreducible quark Green's functions
as classified according to their connectivity.
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graphs gives a pinch contribution to the hadronic
amplitude which behaves like s ' ' times the prod-
uct of the two quark-quark scattering amplitudes
(shown as blobs in the figure) evaluated near the
mass shell. Since the behavior necessary for the
hadronic scaling law is s ', one concludes that
large-angle high-energy scattering of near-mass-
shell quarks is somehow damped in energy. '
This is readily explained in a gauge theory": The
"infrared" powers of g'ln't accumulate into ex-
ponential damping factors for each quark-quark
blob separately. We emplasize that the topology
of 7(d) is essential for the pinch: the addition, for
example, of a virtual gluon exchanged between two
quarks belonging to different mesons and colliding
at different blobs would eliminate the s ' ' pinch
contribution of individual graphs of that type —the
resulting graphs would be classified under 7(a).
A similar analysis is easily carried out for meson-
baryon and baryon-baryon processes. '

D. Hadron binding and spectroscopy

The salient features of quark binding inside a
hadron may eventually require a new description
which our approach, inspired by perturbation the-
ory, cannot express properly at this stage. Nev-
ertheless, it seems worthwhile to push our meth-
ods to their limits by looking, for example, at
Bethe- Salpeter amplitudes.

The Bethe-Salpeter quark-antiquark wave func-
tion of a meson state lb) with a mass M, &2M is
infrared singular as the momenta of the quark and
antiquark approach their mass- shell values. In
fact, the leading-logarithm calculation is essen-
tially the same as that of the group-singlet quark
form factor [see Eq. (2.20)]. This singularity is
reflected in the behavior of the wave function at
large spacelike separation x„between the constit-
uents: It falls off faster than 1/(x')' ', eventhough
Mb & 2M, evidently another manifestation of infra-
red confinement. Actually, the pure fermion- anti-
fermion amplitude (l T(g(x)P( )0)l )b(for an energy-
momentum eigenstate lb) of mass M, &2M) falls
off faster than 1/(x')'t' even in QED: however, in
QED the appropriate gauge-invariant admixture of
multiphoton amplitudes restores the 1/(x')'t' be-
havior at large spacelike x„:

T x 0 exp ie dr~A z b =0
0 ] x

This does not happen in the non-Abelian theory.
We shall present the details of this analysis in a
separate publication. It is interesting to note,
however, that the infrared behavior is spin inde-
pendent as well as, neglecting quark-mass differ-
ences, unitary spin independent. Thus if an "in-

frared barrier" is mainly responsible for quark
binding, it could account for the SU(6)-like struc-
ture of the low-lying hadronic states.

Infrared effects may be important also in con-
nection with Zweig's rule. " It has been suggested
that this empirical rule has a dynamical origin:
Large momenta must flow through gluon lines in
graphs for decays violating the rule and one argues
that in an asymptotically free theory the effective
quark-gluon coupling constant is small at large
momenta" (e.g. , &1 GeV). This asymptotic-free-
dom- at- short- distance argument may be supple-
mented by an infrared- suppression- at-long- dis-
tance mechanism; Indeed, our work indicates that
connected irreducible near-mass-shell quark am-
plitudes are infrared suppressed.

We hope that these and other important aspects
of hadron physics will emerge from a further
study of non-Abelian gauge dynamics.

APPENDIX A: THE SOFT-MESON FORMULA

The formula states: To O(p, '), the amplitude
for emission of a soft gauge vector (with momen-
tum k of order p) from any on-shell process is
given by

gg, .
k T~,~, , (Xi 'ANILE+i' ' 'Xv) q~ (Al)

where ((X)ilk)) is the on-shell T matrix, evaluated
at k = 0 (notation is explained in Sec. II B). We
emphasize the difference between (Al) and the
usual Low theorem, "which is an expansion in
powers of k at fixed p. Thus the function

(p k) 'ln(1+ p. kg ') is O(k ) for small k at fixed p, ,

but O(p, 'ln p,) when k = p, and P» k. Such loga. rith-
mic terms appear in each graph (containing loops)
which contributes to the on-shell T matrix, but
they cancel in the sum of graphs. Thus the result
reduces to the conventional Low theorem.

The proof can be carried through to all orders
in the Abelian case, using the eikonal approxima-
tion, and we sketch here a proof of a related re-
sult to fourth order for the non-Abelian case. Fig-
ures 8(a)-8(c) show the ways of adding one soft
vector to the one-loop graph in QED (the same
graphs with the extra photon on the p' line are to
be added). Figure 8(c) is nonleading" and will be
dropped. For 8(a) and 8(b) we use the eikonal ap-
proximation: All photon momenta (k, q) are ne-
glected in the numerator, and a propagator de-
nominator such as (p+k+q)' —M' is replaced by
2p (k+ q), thus dropping quadratic terms in the
photon momenta. This approximation leaves the
leading infrared singularities unchanged (Appen-
dix B).

Let I (p„p,) as defined in Appendix B be the one-
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(a)

(c)
P

{b)

(e)

P

P

tion for the set of graphs in Fig. 8, assuming that
t = (p —p')'» M' and taking the scalar current with
momentum p- p'+k to be a group singlet. Of
course, 8(e) is nonleading for large t= (p —p')'
[the other graphs, except 8(c), go like In'f], but
we save it in order to cancel a piece of 8(d), and
because when the vector k is absorbed on the q
line, yielding Fig. 1(d), the resulting graph is
leading [in contrast to the analogous operation on
Fig. 8(c), which yields a nonleading graph].

First note that (AS) no longer holds for Figs.
8(a) and 8(b). In fact, one finds, adding mirror
graphs as before,

F(a)+(b) tcc Pn Pn I (p p~)~ p k p'k

+pt cg I p+k p —I p p

—,'~[r((,r a) —r(p, (')I—I,
(A4)

where c is the group index of the vector k, c~
the fermion Casimir operator (t')', and c„the vec-
tor Casimir operator. That Fig. 8(b) can be ex-
pressed in terms of I' follows from the eikonal
identity (really an eikonalized version of an ele-
mentary Ward identity)

FIG, 8. Emission of one soft gauge meson from the
second-order fermion form-factor graphs. The addition
of mirror graphs is understood [except for 7(d)] .

1 1 1 1 1

P (k+e)P e P.k P e P (k+e) (A5)

loop graph for two fermions coupled to a (scalar)
current of momentum P, —P,. Then Fig. 8(a) in-
volves an off-skef/ vertex I'(p+ k, p'). But this
off-shell behavior is exactly cancelled by Fig.
8(b), as we see by adding before integrating:

1 . 1 1 1 1
P (k+e) P k P e P k P.~' (A2)

This is the simplest version of the well-known
eikonal identity" for summing over permutations
of eikonalized graphs. It follows from (A2) that
the sum of Figs. 8(a) and 8(b), plus their mirror
graphs, is

I
F(a)+(b) + Pn Pn

p k p'k (AS)

yielding (Al). A slight familiarity with eikonal
techniques will make it obvious that this proof can
be extended to all orders and to all processes in
QED; we do not dwell on details.

The non-Abelian case has complications, which
can be resolved by an extension of the eikonal
techniques. What follows is a proof that (Al) is
correct at least as a leading-logarithm approxima-

where

V ()a
= V ())(

—(fag 8- (k+ q)()l' a,

V g)„=(2q+ k)ngs), +2kgg a —2kag s.

(A6)

(A8)

The decomposition (A7) and (A8) of the Yang-Mills
three-vector vertex reveals two terms [the last
two in (A7)] which act as pure divergences and
which generate the ghostlike lines called A lines
by 't Hooft. " The term V ~„obeys the naive Ward
identity

k Vn@= [(k+(f) —(f )g()a (A9)

of the type: divergence of vertex=difference of

The one-loop graph is now c~l (p, p') instead of
just I'(p, p'), and so if (Al) is to hold, the c~ term
in (AS) must be cancelled out by Figs. 8(d) and

8(e), to which we now turn.
Figure 8(d) has the value

(d) Zg Cgt
2(2)()

pj's px egA,

[(k+e)'- V'](e'- V')P'(fp (k+e) '
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inverse propagators. Figure 8(e) has an expres-
sion similar to (A6) which we do not record, but
only note that V ~~ is multiplied by P~P)'„. Since
p&P~t/ ~ is nonleading, only the divergence terms
in V ~ contribute. It is readily verified that the
(k+ q)~ terms in 8(a) and in 8(b) cancel each other
while the q~ terms are nonleading. This cancella-
tion is exactly of the type which yields the Ward
identities of Yang-Mills theories.

Now Fig. 8(e) has been completely disposed of
and in Fig. 8(d) we need only use the vertex V,a„
which obeys the naive Ward identity. Furthermore,
k may be neglected compared to q everywhere in
the numerator, since after integration q is re-
placed by a linear combination of p, p' whose com-
ponents are much greater than k- p, .

The q integration can be done conventionally,
but a slightly different approach is instructive.
In the propagator denominator (k+q)' —p' we may
ignore k' (and, for that matter, ij,') compared to
q k for essentially the same reasons as given in
the paragraph above. Then applying the eikonal
identity

Observe that (All) obeys the Ward identity which
follows from (A9). There is a simple rule for in-
tegrating such a form with q (q. k) ', when k = 0
(Ref. 43):

dq I' q — ' =- dqI' q—

Then (All) is
(A12)

1 1
(q'+2q k —p, ') (q' —p')

1 1 1
q +2q

(A10)
(A6) becomes, with k'=0,

(d) zg c~( dq P Pq
2(2v)~ p'qp (k+q)q k

1 1
q' —p' (q+ k)' —p,

'

(,) i t, g't p,p +pp' 1 1
(A13)

where we have set the Feynman parameter associated with the vector-meson lines equal to one, following
Appendix B. To repeat: The result (A13) can be found by conventional integration over q, followed by per-
forming one Feynman-parameter integration explicitly. The short-cuts (All) and (A12) reveal the nature
of the eikonal approximation for Yang-Mills vertices,

To do the integrations over P„P„observe that P, and P, must both be small, and that either P,/P, -O, or
P,/P, -O; there is no contribution when P,/P, is finite (see Appendix B). Scaling P„P, as in Appendix B, we
find for (A13)

E~~ ——pC~t —
8 2 A,dh,

p k „, Z'(1 x)t+2yp k y'(1 x)t ij,'. (A14)

(A15)

The unwanted term in (A3) is gone, leaving only the result claimed in (Al).

APPENDIX B: THE ONE-LOOP GRAPH r(p+k, p k)

We give some simple results for the one-loop
graph for fermions of momenta p+k, p' —k coupled
to a scalar form factor. Assume that p and p' are
on shell and ignore the fermion mass M every-
where; this does not affect the leading singularity
in the asymptotic regime t = (P —P')'»M'. As
usual, the loop momentum q and k are neglected
in the numerator. The one-loop graph is defined
as

dq(4p'p)
(2~)' (q'- V')(p+k q)'(p'- k- q)'-
g't dP, dP, dp, ~(1 —P, P. P,)——

P,P,t+ 2P,P, p. k 2P.P.p'k-
In (B2), we have neglected k' compared to P k or
P'k. The leading singularities come when P, and
P, are small, so we may set P, =1 and ignore the
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6 function. The variables P„P, are scaled as P,
= Xx, P, = X(1—x), X & 0, 0 + x + 1. The following
results are obtained, in leading order:

r(p+ a, p'+ u)

A.dX
g
8m

1
Z'xt —2''kdx

l 1
+ dx x'(I x)t+ 2' k

r(p+ u, p')

AdX dx
g't 1
8m' X'xt- p,

'

(B3)

1
+ dx X'(1- x)t+ 2' a

(B4)

The integrals are elementary; our point in dis-
playing them in this form is to demonstrate that
I'( p+ k, p') —I'(p, p') has contributions only from
x- 1, while I'(p, p' —0) —I'(p, p') only has contri-
butions from x-0; these facts were used in Ap-
pendix A. Also noteworthy is the equation

I'(P+ k, P' —k) + I'(P, P')

—I'(p+0, p') —I'(p, p' —k) =0.

(B7)

This equation leads to an alternative derivation of
(A3). Instead of using (A2) to combine graphs
7(a) and 7(b), these graphs are separately eval-
uated using (A4). Their sum then yields (A3) when

(B7) is used.
In the text we make frequent use of the approxi-

mation of ignoring q' in fermion denominators
like (p —q)' —M' =q' —2p q. The one-loop integral
then becomes superficially divergent, as we see
from

r(p, p' k) = + xdh dx,
I, xt —2''k

1
x'(1 —x) t p,

'—
(B5)

1

) xt —p,
dx

1
x'(1-x)t- ((J,

(B8)

(»)' (q'- t ')p qp'q' (B8)

This means that the value of J is ambiguous, and
other authors have used a different value for J
than we have. " We argue that J(p, p') and r(p, p')
have the same leading behavior, as we see by
regulating (B8) by replacing 2P q- nq'+ 2P. q,
2p'q- pq'+2p'q, arbitrary o.', p. A simple scal-
ing, p-op, p'- pp', shows that J„,(p, p') =I'(p, p')
for all finite n, P, independent of n and P. Then
we define J(p, p') for n= p=0 as I'(p, p').

APPENDIX C: THE EXTERNAL-LINE RULE

Thus, for instance, the quark form factor
I (P, P') is continued to values of the momentum
transfer t = (p —p')' in the unphysical interval
(0, 4M'). This procedure would not work for mass-
less external particles; the available Euclidean
region would be "of measure zero" (nor can it be
used in the fixed-angle regime).

We shall consider only graphs without fermion

The following is a heuristic discussion of the ex-
ternal-line rule which we claim (Sec. II C) is ap-
propriate for the infrared limit of (nonforward)
amplitudes whose mass- shell quanta are all mas-
sive fermions. The rule is as follows:

To obtain the entire set of leading (L+ 1)-loop
skeleton graphs, connect by a virtual gluon line
a pair of external quark lines of each L-loop
skeleton graph in all possible ways. The leading
nonskeleton graphs are obtained by vertex and
propagator insertions to leading skeleton graphs.

Our argument is not rigorous since we make
certain plausible assumptions as we go along. We
invite the reader to supply the missing steps.

We begin by noting that the cutoff method is im-
material for leading logarithms: p, can be inserted
as mass in the gluon propagator or the external
fermion momenta can be taken of the form P, + y, ,
where P =M and y,. is a small departure from
mass shell, i.e. , y,. ~ p..

As p, -0 a general Feynman integral will behave
as

(inq)'c( p„p„.. . ) .

Since we are here only interested in the expo-
nent P and not in the (momentum-dependent) coef-
ficient c(p„.. . ), we conveniently continue analyt-
ically the quark momenta P„p„.. . to a Euclidean
region while staying on-shell. This can be done by
rotating the integration paths of the three momen-
tum components (rather than the energy component
as is customary) to the imaginary axis:
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loops. Our experience from low- order calcula-
tions (up to two loops) indicates that they are non-
leading; in fact, it may be that, just as in @ED,
they are nonleading by a whole power of p for
reasons of gauge invariance.

The leading logarithmic contributions for a given
Feynman graph G come from (one or several dis-
tinct) regions of integration where a set of L (L
=number of independent loops of the graph) inde-
pendent virtual gluon (or ghost) momenta
k„k„.. . , k~ approach zero. For nonforward am-
plitudes this implies that there exist certain other
internal lines carrying momenta of the form &+k,
where 4 is a nonvanishing combination of external
momenta and k is some linear combination of
k„k„.. . , k~. In extracting the leading contribu-
tions of the specified subregion of integration we
may set 4+ k = &. In so doing these momentum-
transfer- carrying lines are removed from under
the integral sign. Graphically speaking, these
lines are short-circuited to a point and the graph
is replaced by one in which all fermion lines meet
at this point in a starlike fashion (see Fig. 9).
Each fermion ray consists of fermion propagators
carrying momentum p,.+ k, where p,. is the appro-
priate mass-shell fermion momentum (or near-
mass-shell momentum if the off- shell infrared
cutoff method is employed) and k is a linear com-
bination of the small momenta k„k„.. . , k~. We
shall make the following eikonal approximation in
fermion propagators:

f(gf+ k')+ I sf'+ fd
(p+k)'+M' 2p k

'

This makes the amplitude a homogeneous function
of the quark momenta (and quark masses) of de-
gree zero.

Observe that since the leading infrared loga-
rithms come from all k,. being small, the form
and value of the ultraviolet cutoff is immaterial.
We choose to simply restrict the integration by

k, '&A', 2=1,2, . . . , L.
We now have an integral of the form

T(p, ; g) &x d'k, d kzI(p;; p, ; k„.. . , k~)
y. &A

k6

(~1)

k~

P~

k4

k5
P4

P5

P4

P5

FIG. 9. (a) An example of a fermion graph for the dis-
cussion of Appendix C. When the momentak~, ..., k6 ap-
proach zero the lines by (1), (2), and (3) carry nonzero
momentum transfers. (b) 1"he same graph with lines (1),
(2), and (3) short-circuited.

pick up another power of In(A'/p') so that it be-
haves at most like [In(A'/p')]~.

We now focus on that part of the domain of in-
tegration where a certain gluon (or ghost) line
carries the smallest momentum of all the others.
Let k, be that momentum; if we choose it as one
of the integration momenta we may write the cor-
responding contribution as

4

~ 2&P2 k1 —P,
1

(Cl)

T, (P;, A, k, ) = d'k, d'kiI, (P;; 0;k„.. . , ki),
p2&p 2

i

(C2)

where I, is associated with the graph G, obtained
by opening the k, line. In (C2) p was set equal to
zero since k, provides the necessary infrared cut-
off. (C2) can also be written as

d'k, ~ d'k~I(p;; 1;k„.. . , k~) .
y ~ 2&+2/ p 2

This last equality follows from the fact that I is
homogeneous of degree —4L in k1 k2 kg JLL.

In this last form we see that the infrared behavior
is directly related to the ultraviolet limit (A- ~)
of the integral. The superficial degree of diver-
gence is zero so that for L =1 the integral behaves
like In(A'/1L') and for each additional loop it may

1 d'k, .d'k
kl g2/ k 2&P 2

k,
Pf, 0&

k 2)1/2 r k2)

(C2)
If G, is a one-particle-irreducible graph [see Fig.
10(a)] the above integral is superifcially conver-
gent (degree of divergence -2). It behaves at
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ki
bution of D, is nonleading. The same is true if
G, has only one fermion pole [see Fig. 10(b)].
Instead of (C3) we have

ki T, (k, )

1 1
k —'

(k 2)~i2
1

k,
1 ~ ~ 0

k 2~ /
I

ki

k]

(c)
k)

kp

most like [In(A'/k, ')]~ ' so that T"' behaves at
most like

dk,

i.e. , if G, is one-particle irreducible the contri-

FIG. 10. Upon opening a gluon (or ghost) line carrying
momentum jm|', one obtains (a) a one-particle-irreducible
graph, (b) a graph with a single fermion pole, or (c) a
graph with two fermion poles.

where again the integral is superficially conver-
gent (degree of divergence —1) and so it behaves
at most like [ln(A'/k, '))~ ' and correspondingly
T&» - [In(A'/p')]~-~

If G, has tsuo fermion poles [see Fig. 10(c)], then

&,) d'k, I',(P„k,) I', (P„k,) -
( )

kl I ~1 kl S6 P2 kl

where I'„I', are proper or improper vertex graphs
and T, is associated with C„a graph for the same
process as G but with fewer loops. Each of these
"component" graphs of G, has degree of divergence
zero so that together they can provide as many
factors of ln(A/k, ) as their total number of loops,
namely I —1. The corresponding contribution to
T"' would then be [In(A'/p, ')]~, i.e. , leading. The
argument may now be completed by induction. To
make it rigorous one should justify (i) the neglect
of fermion loops, and (ii) the assertion that as the
ultraviolet cutoff A approaches ~, a Feynman in-
tegral with I. loops behaves at most like (InA)~ or
(InA)~ ' if its superficial degree of divergence is
zero or less than zero, respectively.

*Work supported in part by the National Science Foun-
dation.

~C. N. Yang and R. Mills, Phys. Bev. 96, 191 (1954); a
standard reference work is the paper by E. S. Abers
and B. W. Lee, Phys. Rep. 9C, 1 (1973).

2D. J. Gross and F. Wil.czek, Phys. Bev. Lett. 30, 1343
(1973); H. D. Politzer, ibid. 30, 1346 (1973); also see
G. 't Hooft, in Proceedings of the 1972 Marseille Con-
ference on Yang-Mills Fields (unpublished). Unique-
ness is discussed by S. Col.eman and D. Gross, Phys.
Rev. Lett. 31, 851 (1973).

3C. G. Callan, Jr. and D. J. Gross, Phys. Rev. D 8, 4383
(1973).

4H. Fritzsch and M. Gell-Mann, in Proceedings of the
XVII International Conference on Kigh Energy Physics,
Chicago-Batavia, Ill. , 1972, edited by J. D. Jackson
and A. Roberts (NAL, Batavia, Ill. , 1973), Vol. 2, p.
135. Professor Gell-Mann has suggested the name
"quantum chromodynamics" for this model.

5S. J. Brodsky and G. B. Farrar, Phys. Rev. D 11, 1309
(1975); V. Matveev, B. Muradyan, and A. Tavkhelidze,
Lett. Nuovo Cimento 7, 719 (1973).

6G. Tiktopoulos, Phys. Rev. D 11, 2252 (1975); C. G.
Callan and D. J. Gross, ibid. 11, 2905 (1975); M. Creutz
and L.-L. Wang, ibid. 11, 3749 (1975); in nonvector
theories RGE are also valid for form factors: G. C.
Marques, Phys. Rev. D 9, 386 (1974); S. -S. Shei, ibid.
11, 169 (1975); J. M. Borenstein, ibid. 11, 2900 (1975).

7C. G. Call. an and D. J. Gross, quoted in Ref. 6; also see
T. Appelquist and E. Poggio, Phys. Rev. D 10, 3280
(1974).

A brief description of these fixed-angle results for
gauge theories was given in J. M. Cornwall and G.
Tiktopoul. os, Phys. Rev. Lett. 35, 338 (1975).

9The physics of the Abelian infrared problem was first
correctly described by F. Bloch and A. Nordsieck,
Phys. Rev. 52, 54 (1937). A comprehensive treatment
of non1. eading logarithms is given by D. R. Yennie,
S. C. Frautschi, and H. Suura, Ann. Phys. (N. Y.) 13,
379 (1961), and G. Grammar and D. R. Yennie, Phys.
Rev. D 8, 4332 (1973). For a highly readable account
see S. Weinberg, Phys. Bev. 140, B516 (1965), where
infrared gravitons are also discussed. In more recent
work, coherent states of an indefinite number of pho-



3396 JOHN M. CORN%ALL AND GEORGE TrKTOPOULOS 13

tons have been proposed as a more appropriate frame-
work: V. Chung, Phys. Rev. 140, 81110 (1965); T. Kib-
ble, J. Math. Phys. 9, 315 (1968); Phys. Rev. 173, 1527
(1968); 174, 1882 (1968); 175, 1624 (1968); P. Kulish
and L. Fadeev, Teor. Mat. Fiz. 4, 153 (1970) tTheor.
Math. Phys. (USSR) 4, 745 (1970)]; J. Storrow, Nuovo
Cimento 54A, 15 (1968); S. Schweber, in Cargese
Summer School Lectures, edited by M. Levy and
J. Sucher (Gordon and Breach, New York, 1972);
D. Zwanziger, Phys. Rev. D 11, 3481 (1975); 11, 3504
(1975).
See G. 't Hooft, Nucl. Phys. B33, 173 (1971).

~~P. W. Higgs, Phys. Rev. 145, 1156 (1966); T. W. B.
Kibble, ibid. 155, 1554 (1967).

2There is an immense literature on infrared-related
high-energy behavior in QED. For the form factor, we
mention work by V. V. Sudakov, Zh. Eksp. Teor. Fiz.
30, 87 (1956) fSov. Phys. —JETP 3, 65 (1956)]; R.
Jackiw, Ann. Phys. (N. Y.) 48, 292 (i968); 5i, 575
(i969); T. Appelquist and J. Primack, Phys. Rev. D 4,
2454 (1971); and H. M. Fried and T. K. Gaisser,
Phys. Rev. 179, 1491 (1969). For fixed-angle am-
plitudes, see: H. M. Fried and T. K. Gaisser,
Phys. Rev. 179, 1491 (1969); J. L. Cardy, Nucl.
Phys. B33, 139 (1971); I. G. Halliday, J. Huskins,
and C. T. Sachrajda, ibid. B83, 189 (1974); B87,
93 (1974). We do not use Fried and Gaisser's
evaluation of the infrared part of the one-loop
integral (see Appendix B).
The idea that fixed-angl. e hadronic amplitudes are pro-
ducts of electromagnetic form factors times the Born
approximation times a scale-invariant function has been
around a while; it has nothing to do with infrared singu-
larities. See J. M. Cornwa1. 1 and D. J. Levy, Phys.
Rev. D 3, 712 (1971); W. R. Theis, Phys. Lett. 42B,
246 (1972); A. A. Midgal, ibid. 37B, 98 (1971).

~4Here we specifically have in mind amplitudes for pro-
cesses involving elementary quanta. Bound-state
scattering and the rol.e of multiple disconnected con-
stituent scattering (Landshoff effect) is discussed in
Sec. V.

~5N. Christ, B. Hasslacher, and A. Mueller, Phys. Rev.
D 6, 3543 (19V2).
Y. Shimamoto, Nuovo Cimento 25, 1292 (1962); see also
¹ Nakanishi, Prog. Theor. Phys. 17, 401 (1957).

'J. M. Cornwall and G. Tiktopoulos, Phys. Rev. D 8,
268V (19V3).
J. Polkinghorne, J. Math. Phys. 4, 503 (1963); P. Feder-
bush and M. Grisaru, Ann. Phys. (¹Y.) 22, 263 (1963);
G. Tiktopoulos, Phys. Rev. 131, 480 (1963); I. G. Halli-
day, Nuovo Cimento 30, 177 (1963).
V. V. Sudakov, Ref. 12.
J. J. Carazzone, E. R. Poggio, and H. R. Quinn, Phys.
Rev. D 11, 2286 (1975). After correcting some minor
mistakes in their published work, these authors have
informed us that they now find exponentiation in the
Sudakov limit as given by Eq. (2.3).
H. M. Fried and T. K. Gaisser, Ref. 12; J. L. Cardy,
Ref. 12; I. G. Halliday et al. , Ref. 12.
This integral, with the quadratic terms ink dropped in
the fermion denominators, has the same leading in-
frared singularities as the exact one-loop integral. See
Appendix B.
A. Slavnov, Kiev Report No. ITP-71-83E (unpublished);
J. C. Taylor, Nucl. Phys. B33, 436 (1971); G. 't Hooft,

ibid. B33, 173 (1971); B. W. Lee and J. Zinn-Justin,
Phys'. Rev. D 7, 1049 (1973).

4F. Low, Phys. Rev. 110, 974 (1958).
25The result of Eq. (3;16) is gauge independent: A4&k~

term in the gauge-meson propagator does not affect the
exponent.

SM. I.evy and J. Sucher, Phys. Rev. 186, 1656 (1969);
H. D. I. Abarbanel and C. Itzykson, Phys. Rev. Lett.
23, 53 (1969).
H. T. Nieh and Y.-P. Yao, Phys. Rev. Lett. 32, 1974
(19v4).

+B. M. McCoy and T. T. Wu, Phys. Rev. Lett. 35, 604
(1975).

9T. Kinoshita, J. Math. Phys. 3, 650 (1962); T. D. Lee
and M. Nauenberg, Phys. Rev. 133, B1549 (1964).

3 C. G. Callan, Jr. , Phys. Rev. D 2, 1541 (1970); K. S.
Symanzik, Commun. Math. Phys. 18, 227 (1970); 23,
4v (1ev1).

3 See W. Zimmermann, in Lechcres on Elementary Parti-
cles and Quantum Field Theory, edited by S. Deser
et al. (MIT Press, Cambridge, Mass. , 1971), Vol. 1,
p. 397.

32D. J. Gross and F. Wilczek, Phys. Rev. D 9, 980
(1974); H. Georgi and H. D. Politzer, ibid. 9, 416
(19v4).

33D. J. Gross, Phys. Rev. Lett. 32, 1071 (1974).
34S. Deser, W. Gilbert, and E. C. G. Sudarshan, Phys.

Rev. 115, 731 (1959); M. Ida, Prog. Theor. Phys. 23,
1151 (1960); N. Nakanishi, ibid'. 26, 337 (1961); Prog.
Theor. Phys. Suppl. 18, 70 (1961).

3~A. De R6jula, Phys. Rev. Lett. 32, 1143 (1974); D. J.
Gross and S. B. Treiman, ibid. 32, 1145 (1974).

3 Note that Eq. (3.15) and a straightforward variation of
the discussion of gluon emission given in Sec. III C
implies that the contribution of multigluon intermediate
states to the imaginary part of self-energy parts vani-
shes if summed to all order of perturbation theory,
This seems to indicate that the inverse gluon propagator
D (q ) is analytic at q = 0.

~VJ. M. Cornwall and R. E. Norton, Phys. Rev. D 8, 3338
(1973); R. Jackiw and K. Johnson, ibid. 8, 2386 (1973).

3 J. M. Cornwall, Phys. Rev. D 10, 500 (1974); E. Eich-
ten and F. Feinberg, ibid. 10, 3254 (1974).

39H. Georgi and S, Glashow, Phys. Rev. Lett. 32, 438
(1974).
A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and
V. F. Weisskopf, Phys. Rev. D 9, 347i (i974); A. Cho-
dos, R. L. Jaffe, K. Johnson, and C. B. Thorn, ibid.
i0, 2599 (i974); W. A. Bardeen, M. S. Chanowitz,
S. D. Drell, M. Weinstein, and T.-M. Yan, ibid. ii,
i094 (i975).

4'K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
42J. Schwinger, Phys. Rev. 125, 397 (1962).
438ee the first paper in Ref. 38,
44J. Schwinger, Phys. Rev. 128, 2425 (1962); J. Lowen-.

stein and J. Swieca, Ann. Phys. (N. Y.) 68, 172 (1971);
A. Casher, J. Kogut, and L. Susskind, Phys. Rev. Lett.
31, 792 (1973).

45P. V. Landshoff, Phys. Rev. D 10, 1024 (1974).
4~Further evidence against the Landshoff contributions is

provided by comparing the angular dependence of
pp pp implied by these contributions with the data:
G. Farrar and C.-C. Wu, Nucl. Phys. B85, 50 (1974).
An analogous suppression mechanism in the Abelian
gluon model was suggested by J. C. Polkinghorne, Phys.



INF RARED BEHA VIOR OF NON-ABE LIAN GAUGE THEORIES 3397

Lett. 49B, 277 (1974).
+The success of the "constituent interchange model, "of

R. Bl.ankenbecler, S. J. Brodsky, and J. F. Gunion
I.Phys. Lett. 39B, 649 (1972); Phys. Rev. D 8, 187
(1973)], which is based on the completely disconnected
irreducibl. e graphs only tFigs. 8(e), 8(f), and 8(g)],
suggests that while the Landshoff pinch contributions
are infrared suppressed, the "end-point" contributions
of connected graphs are also negligible —this time be-
cause of the ultraviolet logarithms and asymptotic free-

dom.
4~6. Zweig, CERN Report No. TH 402, 1964 (unpublished).

H. Fritzsch and P. Minkowski, Nuovo Cimento 30A,
393 (1975).

~~More precisely, its leading piece cancels against that
arising from the fermion self-energy graph (not shown
in Fig. 8). This cancel. lation is a consequence of the
Ward identity relating the fermion vertex to the fermion
propagator in @ED.


