
I'H YS IC AL REVIEW D VOLUME 13, NUMBER 2 15 JANUARY 1976

Equivalent-boson method and free currents in two-dimensional gauge theories*

M. B. Halpern
Department of Physics, University of California, Berkeley, California 94720

(Received 22 October 1975)

In the context of the equivalent-boson method a large variety of quark-gluon theories are studied in two

dimensions. A number of simple results are obtained, including the fact that gluon interactions (Abelian and
non-Abelian) leave most of the physical currents free (at zero quark mass).

I. INTRODUCTION

As a method for exact solution of certain two-
dimensional field theories, the equivalent-boson
method has a long history. ' Coleman's recent
work' has stimulated new interest in the method
by emphasizing a naturally broader role: Even
when exact solutions are not forthcoming, the
method provides an equivalence map between var-
ious fermion and boson field theories. Coleman's
equivalence, supplemented by Mandelstam's ex-
plicit boson construction of fermions, ' is in fact
adequate to pair any Abelian fermion theory with
a boson theory. Reference 4 is an extension of
these ideas to non -Abel ian fermions, thus com-
pleting the picture. 'Any fermion (plus bosons if
desired) tm}o-dimensional field theory has its
boson-equivalent fi eld theory.

As a result of this, surprising features of field
theories (at least in two dimensions) are revealed.
Out of many such surprises, I find the "appearance
of quantum numbers out of nothing" to be one of
the most striking: In the U(l} correspondence of
Coleman and of Mandelstam, charge is given an
underlying topological interpretation; from the
boson point of view, charge cannot be seen as a
Noether symmetry; it arises dynamically and
topologically in the formation of the (charged)
soliton. In the SU(N) models of Ref. 4, this is
strikingly uplifted; full non-Abelian symmetries
arise —due entirely to an interplay of topology and
quantum mechanics. ' Extensions of these ideas
to four dimensions are problematic, but I am not
yet convinced that important parts cannot be car-
ried over. In my opinion, there is hope of under-
standing four-dimensional internal symmetry as
a quantum -topological effect.

In the present paper, I am going to use the
equivalent-boson methods to look into the structure
of quark-gluon gauge theories, Abelian and non-
Abelian. The solution to the simplest of these mo-
dels, two-dimensional electrodynamics' ' is well
known, and I have not yet been able to solve the
color-sector of the non-Abelian models; yet there

are a number of simple results which are easy
to see.

Section II is a brief review of the Schwinger mo-
del in the formalism of Refs. 3 and 4. Section III
is concerned with many quarks and non-Abelian
gauge theories. The fact emerges here that, in
such models, most of the physical currents are
free (at zero quark mass). Special cases of this
phenomenon have been noticed by Segrh and
Weisberger' and recently, in a non-Abelian case,
by Frishman. ' With the present methods, we re-
cover their results in a broad picture: For ex-
ample, in an SU(M}8 U(N) color-gluon-quark mo-
del [M' —I gluons; U(N} is ordinary weak-strong
symmetry], all the U(NJ currents are free If.
the Abelian gluon is added, then the traceless
SU(N) currents remain free, while the baryon
number current picks up just the dynamics of
the Schwinger model. In parallel to the equivalent-
boson method, I also give alternate elementary
arguments, based on free-current algebra, for
the freedom of the various currents. The methods
used are peculiar to two dimensions. The results
serve to point up inherent difficulty in using these
models as analogs of color-gauge models in four
dimensions.

II. TWO-DIMENSIONAL ELECTRODYNAMICS

The Lagrangian for electrodynamics is

Z = q(i y' -g y') q F„,F"'—, (2.l)

where g =-y" V„, F„„=a„V,-e„V„. In two di-
mensions, the model has been solved by many
people and with many methods. ' ' Because the mo-
del is a prototype for the more complicated mo-
dels of Sec. III, I will give here an "instant oper-
ator solution" in the language of Refs. 3 and 4.
The implied equations of motion are

(ig-gg)/=0, e"F„„=gJ,, J„=gy, p. (2.2)

Following Ref. 4, we go first to the interaction
picture. A free Fermi field is represented in
terms of a free massless Bose field as
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())r'r(x) =i" 'KN exp -i ~m d$ Pr)($)+(-I}" '(t)r)(x) ~; O'QD =0. (2.3)

Here r =1, 2 is the spinor index, and the subscript
D means free fields in the interaction picture.
rr =(pc/2)r)'" is the usual normalization. The
free current is J„=—(1/~ir )e „,B" ())n (c» =+1).
Using the interaction Lagrangian gl = -gJ„V',
one shows immediately that

U is the Dyson time-evolution operator, so that
the fields on the right, without subscripts, are
full Heisenberg -picture fields.

Thus, the equivalent-boson field theory is

(2.5)

~ 0 g
U QqU=Q+~ V~. (2.4} and the fermion is

y" (x) = V'()", (x)V

pX
=i rrN exp i~m-d( Q($) +~ V, ($) +i" '(t)(x)

J ~(ro ~m
(2.6)

Note that under a gauge transformation V„- V„
-(1/g)B„A, ())- e'A(i), as required. It is a simple
matter of differentiation to show that (2.6) solves
(2.2). Useful in this check are the equations of
motion implied by (2.5}

This last step is a special case of the general ap-
proach (to higher-derivative Lagrangians) of
Ref. 9. All three fields are free. X, has mass
(squared) g'/rr, and y, has negative metric. With
the summarizing relations

P = —g Fg g i
1T m

(2 7)
0 =0'+X2 -X&

(2.12)

To solve this equivalent-boson system, it is
common to express V„ in terms of spin-zero
fields'

V„=e„,B'y+B„r(., F„,= -e„„Cl'r(. (2.8}

X and A. will need rescaling to have the dimensions
of spin-zero fields. Substituting into (2.5), one
obtains

&= (B„A)'+2 'X&'X -~ B"4B„X.
Mm

(2.9)

I have dropped A. by an integration by parts. The
diagonalization transformation Q =—Q'+(g/~rr )r(
results in

(2.10)

where one more integration by parts is implied.
The final simple structure of the system is seen
in terms of the fields g„X„

~ir, ~rr, g'
Xi= +X~ X2= & + XBg g 7f

(2.11)

the Fermi field (2.6) is easily expressed in terms
of the free fields (4)', rt„)(,). Adding a Fermi-
mass term to (2.1) will, as usual, result in an
extra term in (2.11) proportional to'
cos(()) +X2 -21).

The prescription for the gauge-invariant current

1
'Jbl ~ ~ ~v~'

vn
(2.14)

This result is easy to anticipate: f, the field
that makes up the free fermion, is the only scalar
in the problem not involved in gauge transforma-
tions. The gauge-invariant axial-vector analog

(2.15a)

is not conserved by virtue of (2.7}. This of course
is the axial-vector anomaly (here associated with
the relevant single -Fermi -loop vacuum polariza-

Jor(x) =lim: )i)(x}r "exp +ig V, ($)d( g(y):
x~V X

(2.13)

is easily carried out with the representation (2.6)
following Refs. 3 and 4. The algebra takes only
a few lines and the result is proportional to
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tion graph). Conserved but not gauge-invariant
currents can be constructed by writing Q- Q'

in (2.14} and (2.15a}:

studying progressively more complicated quark
and gluon systems.

U(1)e U(N) model

Note also that, in this spin-zero representation,
Maxwell's equations are satisfied only up to a
choice of gauge: One calculates from (2.11) and
(2.12)

By this, I mean an Abelian gluon coupled to a
U(N) multiplet of quarks (say by baryon number).
Here we need the generalized fermion-boson
equivalence of Ref. 4. For free quarks,

or

~VI~ X&
V 7T

(2.16a} ( X

xN exp -i~m d$, $ + —1 " 'P, g)
e ((o

(2.16b)

This is in agreement with Lowenstein and
Swieca. " The fields f' and j2 must cancel in all
physical matrix elements, leaving no massless
physical excitations. It is clear that gauge-
invariant quantities (such as (((P, etc.} are func-
tions of (((('+g, . Then, because these have op-
posite metric, the cancellation in the physical
sector is complete.

The well-known structure brought out in the
discussion above is the "Schwinger mechanism"
for eliminating the Goldstone boson associated
with a "spontaneous breakdown" of the U(1) axial
symmetry. This is called "seizing" in Ref. 1.
Note that in this covariant gauge (h~Q, ~h') = 0.
Here, ~h), ~h') are physical states constructed
out of }(, only, while Q, =IdxJ5O'(x). This vanish-
ing of the axial charges in the physical subspace
is equivalent to 'J'„'=0. The original algebra
of bilinears is easily checked. In actual fact,
however, such statements are quite gauge-de-
pendent: In noncovariant gauges, it can be argued
that no definite value can be assigned to (h ~Q, ~h'). ' "

III. REMARKS ON THEORIES WITH MANY QUARKS
AND NON-ABELIAN GLUONS

In this section, our exposition will be a cata-
loging of various (zero-mass quark) models,

where a =1, . . . ,N, O'Q, =0. Here I have omitted
the IOein transformation operators $ of Ref. 4.
For calculation of charged currents, the details
of their use are found in Ref. 4. The baryon num-
ber current is"

1 e„,s" P y,
g

gV y

(3.2)

The other (diagonal} currents are

y &(O)
gatD)

e„„s' Q x, (a)y, ,
1

2v

Q x, (a) =0,

where X~ (a) are the eigenvalues of the diagonal X

matrices of U(N) [X"' ~]. The charged (off-
diagonal) currents come out (J, -=Z, +J,),

(3 4)

If, as in Ref. 4, we imagine orthogonalizing Q,
into P, , (4(,), a=1, . . . , N —1, then only (t(+ is ex-
cited by the interaction

The equivalent -boson Lagrangian is
1/2

= --F,F""+g — e,8'f, V

1/2
ZI = -gJ„V"=+g — e „,8'~II), V~ . (3.5)

N-1

a=1
(2.6)
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Because I4,) remain free and massless, the so-
lution to this system follows trivially the lines of
Sec. II. That there are in fact N-1 free massless
Bose fields in this model ((4,)) was previously
noted by Segre and Weisberger. ' In fact, it is
easy to see that all the N' —1 (traceless) SU(N)
currents (3.3} and (3.4) are free in this model:
The Q's of which they are comprised are ortho-
gonal to Q, ; hence they can be expressed entirely
in terms of(4, [ (and not Q, }. All remarks apply
equally to axial-vector currents. The Abelian
gluon excites only the baryon number current and
its dynamics is that of the Schwinger model. The
resulting (mass)' of the gluon (or P, ) is g'N(m.
The scalar and pseudoscalar densities involve Q,
as well as 4, , so they are not free.

As it turns out, there is an elementary argu-
ment that the SU(N) currents are free in this mo-
del. One need only notice that for free currents
(in terms of free quarks),

(3.7)

for all x, x' and t, t'. This a well-known, easily
verified, fact peculiar to two dimensions. Since
the interaction is only a function of J„, it is
clear that the SU(N) currents f„commute with
the interaction, and hence remain free. When
phenomena like these occur, questions of quark
confinement may need closer examination.

SU(M) U(1) theories

Here we mean theories with M' —1 color gluons
[SU(M)] coupling to the appropriate colored quarks,
ordinary SU(N) being temporarily suppressed.
The (free) color currents have the form of (3.3),
(3.4); the off-diagonal currents, as discussed in
Ref. 4, appear spatially nonlocal. Thus 2,
= —g V„J"„is a monstrous interaction, that I have
made little progress in simplifying. " However,
one conclusion is immediate: The currents J „
involve only 4, , and not Q, . Thus the tables are
turned in this model. Q, is not excited: The
ha~yon number currents (color singlet) a~e free. '
Non Abelian gluons [S-U(M)] do not seize

SU(M) U(N) theories

Again we consider just the purely non-Abelian
[SU(M)] gluons, this time with a full complement
of ordinary quark quantum numbers [U(N)). We
take the quarks as an M xpf matrix

Ill ~1Ã

411 k.hf1

(3.8)

~lN 0 gN

}N 1 (4 )Nu

so that the color-singlet and" -octet" currents
are, respectively,

(3.9)

where A' are N xN matrices and A. are M ~M.
Before going to the equivalent-boson representa-
tion, we observe that for free quark currents

(3.10)

U(M) e U(1) theories

Here I mean to add the Abelian gluon, making
M' gluons in all. This is the model 't Hooft"
examined in the large-N limit. In this model, one
sees immediately that the SU(M) and U(1) sectors
decouple in the equivalent-boson Lagrangian.
The dynamics of the baryon number (Q, ) currents
is precisely that of the Schsvinger model. I can-
not prove that any currents are free. Seizing
occurs in the baryon number currents, but it is
entirely due to the Abelian gluon.

for all x, x' and t, t', an extension of (3.7). This
statement is true as long as A. , A' are not both
proportional to unity. Thus, we can be certain
that the SU(M) gluon interaction zvill fail to excite
any of the fi(N) currents All U(N} cu. rrents are
free in these models, and seizing does not occur.

In fact, I have not yet been able to extract much
more than this result from the equivalent-boson
representation. However, for the reader's ref-
erence, I will indicate how one sets up the prob-
lem. For the free quarks, we have from Ref. 4
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»

exP -i~i d$Pb ( + —1" 'Pb g (3.11)

where a =1, . . . , M is the color index, b =1, . . . , N is the ordinary SU(N) index. Here again the approximate
sign means I have suppressed the $'s of Ref. 4. For the color-octet currents, one obtains

e „„e' Q x, (a) Q p„, Q x, (o}=0

r»
N exp +i v rr I d$(p, (&) —p ($))+(p, (x) —Q (x)}

cd J -oe
b cd

(3.12}

where (D) and (0) refer, as above, to neutral (diagonal) and charged (off Diagonal). For the color
singlets,

~pve Q Ad(a) Q (4d t

d b

A(o) p»J; = —g ' Nexp i~m
bed 2 cd «oo

(3.13)

Now the interaction term 2, = gV„"J~ (remember,
no Abelian gluon) involves and excites the set of
(M —1)N basis Q's

(3.14)

The entire mode space is spanned by the MN-
dimensional basis Q„, so the number of unexcited
modes is MN-(M —1}N=N. There are N free
massless scalar fields left in tige theory. It ts
easy to see that the neutral U(N) currents (there
are precisely N of them) are orthogonal to (3.12).
These then are a basis for the N-dimensional un-
excited subspace. Further, by SU(N) symmetry,
all the U(N) currents are free This is in c. om-
plete agreement with the elementary argument
above. As before, scalar and pseudoscalar den-
sities are not necessarily free.

U(N } U(lV} theories

Relative to the preceding case, we now add the
final Abelian gluon. This will excite one more
scalar degree of freedom, being (I/VNM)g„= Q, .

Thus there are N —1 massless free scalar fields
in the models. The re are the neutral traceless
(TrA =0) color-singlet currents. All SU(N) cur
rents (N —1) are free in the model; the baryon
number currents have seized —owing as always
only to the dynamics of the Abelian gluon. Such
a conclusion also follows immediately from the
elementary argument based on (3.10}.

Nonzero quark mass

As is well known, ' ' Fermi-mass terms are
"strong" in two dimensions. E.g., in the pre-
sence of a common mass term mug, all the Q's
are coupled, 4 and I cannot prove that any currents
are free. Reference 8 gives some discussion of
smoothness as m —0.
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