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There are reasons to suspect that the spontaneous breakdown of the gauge symmetries of the observed weak

and electromagnetic interactions may be produced by the vacuum expectation values of massless weakly

coupled elementary scalar fields. A method is described for finding the broken-symmetry solutions of such

theories even when they contain arbitrary numbers of scalar fields with unconstrained couplings. In any such

theory, there should exist a number of heavy Higgs bosons, with masses comparable to the intermediate vector

bosons, plus one light Higgs boson, or "scalon" with mass of order a GF '".The mass and couplings of the

scalon are calculable in terms of other masses, even without knowing all the details of the theory. For an

SU(2) U(1) model with arbitrary numbers of scalar isodoublets, the scalon mass is greater than 5.26 GeV; a

likely value is 7-10 GeV. The production and decay of the scalon are briefly considered. Some comments are

offered on the relation between the mass scales associated with the weak and strong interactions.

I. INTRODUCTION

A few years ago, Coleman and E. Weinberg'
(CW) demonstrated that the spontaneous break-
down of gauge symmetries could be produced by
the vacuum expectation values of weakly coupled
elementary scalar fields of zero mass. The vac-
uum expectation values of the scalar fields would
be determined by a balance between the P' inter-
action term and one-loop corrections rather than
between the Q' interaction term and a scalar mass
term.

In this paper we wish to reopen the question of
whether the spontaneous breakdown of the gauge
symmetries associated with the observed weak
and electromagnetic interactions is really of the
CW type. Our reasons for suspecting that this
may be the case are presented in Sec. II. In Sec.
III we show how to extend the analysis of CW to
a much larger class of gauge theories, theories
in which there may be arbitrary numbers of sca-
lar fields with more or less arbitrary interactions.
Sections IV and V deal with the observable con-
sequences of this sort of theory.

Our most striking result is that these theories
require the existence of an unknown number of
heavy Higgs bosons, ' with about the same mass
as the intermediate vector bosons, plus one "light"
Higgs boson, with mass of order nG~ ' '. The
mass and couplings of the light Higgs boson may
be calculated in terms of other masses, even with-
out knowing all the details of the underlying gauge
model. This light Higgs boson may be considered
as the "pseudo-Goldstone boson"' associated with
scale invariance. That is, the theory is scale-in-
variant in lowest order, so the spontaneous break-
ing of scale invariance entails the existence of a
scalar particle with vanishing zeroth-order mass;
one-loop corrections then break scale invariance,

so they give this particle a relatively small mass.
We would like for this reason to call this particle
a "scalon. " The important point for practical pur-
poses is that the mass and couplings of the scalon
may be calculated in terms of other masses, even
without knowing all the details of the underlying
gauge model.

These theories have a great deal of predictive
power, which we have only begun to explore. Not
only is the spontaneous symmetry breaking de-
scribed by weakly coupled scalar fields, so that
all the familiar perturbative results of gauge mod-
els are preserved; in addition, the theory is sub-
ject to constraints, which remove many of the free
parameters of general gauge theories. One of
these constraints is of course the vanishing of the
bare scalar masses; the other constraint is a con-
dition on the g' couplings, described in Sec. III.

In Sec. VI we offer some speculative remarks
about the relations among the various mass scales
of physics.

II. EFFECTIVE FIELD THEORIES KITH MASSLESS
SCALARS

In this section we present our reasons for sus-
pecting that the spontaneous breakdown of the
gauge symmetries of the weak and electromagnetic
interactions is produced by the CW mechanism. '
Our argument is admittedly far from compelling;
the reader who finds it totally unconvincing is ad-
vised to turn immediately to Sec. III, and take the
masslessness of the elementary scalar fields as
a mere hypothesis. Nothing in the next three sec-
tions depends on the line of argument presented in
this section.

It is attractive to suppose that the nonsimple
gauge group of the observed weak, electromagne-
tic, and strong interactions is only a part of a
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larger, simple group. In order to explain why we
only see effects of some of the gauge bosons, we
are then compelled to assume4 that the simple
gauge group suffers a spontaneous breakdown,
much stronger than the breakdown of, say, SU(2)
IEU(1); the unobserved vector bosons then get su-
perlarge masses, much larger than p, ~. In such
a theory the physics of "ordinary" energies would

be described by an effective field theory, ' involv-
ing all those particles which did not get superlarge
masses from the superstrong symmetry breaking.

What particles are these? Certainly the gauge
bosons correspondiilg to symmetries which are
not spontaneously broken at the superstrong level
will not get masses from this symmetry breaking.
Also, there may be chiral symmetries which are
not broken at the superstrong level, and these
symmetries may keep some of the fermions from
getting superlarge masses. These gauge bosons
and fermions, which appear at ordinary energies
as massless fields in the effective Lagrangian, are
to be identified with the "observed" intermediate
vector bosons, quarks, and leptons.

If these were the only fields in the effective La-
grangian, then the masses of the corresponding
particles would have to arise from a further dy-
namical spontaneous breakdown' of the remain-
ing gauge and chiral symmetries. That is, in the
absence of elementary spin-0 fields, the Gold-
stone bosons associated with the spontaneous sym-
metry breakdown of the weak and electromagnetic
gauge symmetries would have to be bound states,
held together by some sort of gauge interaction
which becomes strong at energies of order 300
GeV.

It is certainly possible that the spontaneous sym-
metry breakdown which gives masses to the W and
Z bosons is of this dynamical nature. However,
the idea has drawbacks. ' We do not know what
could be the origin of the strong force which pro-
duces the Goldstone bosons as bound states; it
seems that the ordinary strong interaction is much
too weak at energies of order 300 GeV to do the
job. [Rather, the ordinary strong interactions are
believed to produce the spontaneous breakdown of
chiral SU(2)I3SU(2), for which the pion serves as
Goldstone boson. ] Also, theories of this type tend
to be plagued either with true Goldstone bosons-
massless spin-0 particles that are not eliminated
by the Higgs mechanism —or exact unbroken glob-
al chiral symmetries. ' Finally, and perhaps most
importantly, if the spontaneous symmetry break-
down which gives masses to the W and Z involved
strong interactions, then we could not calculate
quantities such as Pz/P ~ perturbatively, and we
would have no understanding of why the relative
strengths of the neutral- and charged-current

weak interactions are what they are.
These difficulties lead us to ask whether the

effective Lagrangian could perhaps include fields
of spin 0 as well as spin & and spin 1. We would
like to believe that the original Lagrangian did not
involve any enormous mass ratios, so that the
superstrong symmetry breakdown would either
give any particle a superlarge mass, or else leave
it massless. Hence it seems natural to suppose
that those scalars which did not get superlarge
masses from the superstrong symmetry breakdown
appear in the effective Lagrangian at ordinary en-
ergies as particles of zero bare mass, ' like the
fermions and gauge bosons.

The trouble with this suggestion is that no one
has been able to suggest any satisfactory reason
why any scalars (aside from Goldstone bosons,
which do not count because of their derivative
couplings) should escape getting superheavy mass-
es from the superstrong spontaneous symmetry
breakdown. " One possibility is that the super-
strong symmetry breakdown leaves both a chiral
symmetry and a supersymmetry" unbroken, so
that there is a multiplet including massless sca-
lars and fermions. Unfortunately, the subsequent
ordinary breakdown which gives masses to the in-
termediate vector bosons would then produce Gold-
stone fermions.

However, we do not really know anything about
the mechanism for the superstrong symmetry
breakdown —it might even involve strong gravi-
tational forces" —so we are free at least to imag-
ine that it might have left some scalars massless,
along with the massless bosons and fermions. We
must assume that these scalars have flavor but not
color, so that they would not have strong inter-
actions at ordinary energies, and we would not
lose the advantages of a pure quark-gluon theory
of strong interactions. " These scalars would pro-
vide the Goldstone bosons needed for the subse-
quent ordinary symmetry breaking, without the
need for strong forces, so that they would provide
an escape from the difficulties associated with dy-
namical symmetry breaking mentioned above. (Of
course, since they are assumed to have flavor but
not color, their vacuum expectation values could
not break the gauge group of the strong interac-
tions, and would therefore leave the gluons mass-
less. )

Whatever misgivings one may have about this
rather speculative line of reasoning, it at least
leads us to study a well-defined class of theories:
gauge field theories with massless scalars and
fermions. Our concern here will almost entirely
be with the "ordinary" spontaneous symmetry
breakdown in such theories. However, the meth-
ods we use might also be relevant to the super-
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III. SPONTANEOUS SYMMETRY BREAKING IN MASSLESS
THEORIES

In their original analysis of spontaneous symme-
try breaking in massless field theories, Coleman
and E. Weinberg' dealt for the most part with sim-
ple theories having only a single Higgs boson. '
For reasons which we hope to make clear, it is
not entirely trivial to apply their analysis to more
general models having arbitrary numbers of ele-
mentary scalars whose couplings are weak but
otherwise more or less arbitrary. Recently a
method for dealing with such general theories has
been developed by one of us." In this method, re-
normalization-group equations were used directly
to find the minimum of the potential. In this sec-
tion we will present a simplified and generalized
version" of this method, in which the renormal-
ization group is used only to justify the imposition
of cer tain constraints on the couplings; the sear ch
for local minima of the potential is then carried
out by means of ordinary perturbation theory.

We consider a general renormalizable gauge
theory with an arbitrary multiplet of weakly-cou-
pled real color-neutral scalar fields. Spontaneous
symmetry breaking in such theories may be ex-
plored by studying an effective potential" V(4'),
defined as a function of a c-number real scalar
field multiplet 4, . We define the potential so that

(3.1)V(0) = 0.

The theory is assumed to be massless, in the
sense that'

8'V(C )
84"84~ e=o

(3.2)

strong symmetry breakdown itself (as was origi-
nally suggested in Ref. 14) and have up to now been
applied chiefly to deal with the superstrong sym-
metry breaking. "'" Indeed, even if we put scalar
mass terms into the Lagrangian for a gauge theo-
ry, the theory will look like a massless field theo-
ry at superlarge values of the scalar fields. " The
trouble with the assumption that the superstrong
symmetry breaking is of the CW type' is the same
trouble as for any theory of superstrong symmetry
breaking: Even with no mass terms in the Lagran-
gian, in all cases we have examined a superstrong
symmetry breakdown would give all non-Goldstone
scalars superheavy masses, "so that none of them
would be available to break the remnant gauge
symmetries of the observed weak and electromag-
netic interactions.

We will return in Sec. VI to the problem of the
relation between the scale of the "ordinary" sym-
metry breaking —say 300 GeV —and the scale of
the superstrong symmetry breaking.

For simplicity, we suppose there is some sym-
metry which excludes terms in V(4) odd in 4; then
the only coupling constants that we need to define
are the 4' couplings

8'v(4)
84;84 84q84(

(3.3)

v, (4) = —,',f,,„e,.e,.o,c,. (3.4)

In general, the only stationary point of this term
would be at 4 =0. The one-loop corrections are
of order e'4'In(4/A), and it might appear that
these could shift the stationary point of V(4) to a,

symmetry-breaking point where In(4/A) is of or-
der 1/e'. However, such points would be outside
the range of validity of perturbation theory. Thus,
a direct use of perturbation theory fails to reveal
whether the symmetries of this theory are sponta-
neously broken.

However, suppose that before we start to use
perturbation theory, we choose the renormaliza-
tion scale A to have a value At at which V,(4)
does have a nontrivial minimum on some ray 4,.
=n;g We do t.his by adjusting A so that the mini-
mum value of the real continuous function Vo(N) on
the unit sphere"¹.N,. = 1 is zero:

min (f;;»N, NJ N~N, ) = 0. (3.5)

If this minimum is attained for some specific unit
vector N, =n;, then V,(4 ) will attain a minimum
value of zero everywhere on the ray 4; =n;P.

In the work of CW, ' there was only a single Q'
coupling constant f, and the constraint which cor-
responded to our Eq. (3.5) was simply that f (or
at least the part of f of order e') vanished. It is
crucial here that even in more general theories
with many free parameters in the f;,», we are

By "C-A" we mean that the fields here are put at
a renormalization point characterized by a mass
scale JI; this will be made precise below.

For definiteness, it will also be assumed that
for generic values of A the nonzero components
of f;», are all of order e', where e «1 is a typical
gauge coupling constant. An expansion in powers
of e' is then the same as an expansion in the num-
ber of loops. Actually, for our purposes it would
be adequate merely to assume that the components
of f,,» are of a common order of magnitude f, with

f in the range

I )&f )) e .

Only small changes in our discussion would be re-
quired to deal with this more general case,

Under these assumptions, the potential is dom-
inated [for ln(4/A) not too large] by the zero-loop
term
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only imposing one constraint on the f 's, that the
single quantity on the left-hand side of (3.5) must
vanish. With a single renormalization scale para-
meter A at our disposal, we expect even for ge-
neric initial values of the f,,», it should be possi-
ble to find a. value of A at which Eq. (3.5) is sat-
isfied. [This was shown for a variety of special
cases in Ref. 14 by integration of the renormaliza-
tion-group equations. More generally, if we sup-
pose that there are F free parameters in the f;;»,
then the constraint (3.5) restricts these parame-
ters to an (F —1)-dimensional surface, but by
changing A away from A~ we can move the free
parameters in f,,» off this surface and fill out at
least a finite F-dimensional region. ]

In order for the minimum (3.5) to be attained
at a unit vector n, , it is obviously necessary that

f,,„n,.n, n, =O. (3.6)

However, this only implies tha. t Vo(N) vanishes
and is stationary at N=n; we are also demanding
that it is a minimum there. This further requires
that

f,,»u~u, n~n, ~ 0 (3.7)

for all vectors u, . Thus all eigenvalues of the ma-
trix

1P.;-=25;~Enon~ (3.8)

o =, (v, (4) + 5v(4))
— n& y &+OC»

or to first order in small quantities

0=P, ,64,.((f&) +
- n&e&

(3.9)

are either positive or zero.
As a, n example of these constraints on the f 's,

consider 4 's transforming as the symmetric sec-
ond-rank tensor representation of SU(n). Then 4
is an n &&n complex symmetric matrix and

Vo(4) =f,(Tr44 )'+f,Tr(44 ) .
It is shown in Ref. 14 that if we restrict the C 's
to a hypersphere, the stationary points of Vp for
which V, =o occur for values of the f 's such that

f,/f, equals an—integer between 1 and n; the min-
imum on the hypersphere has Vp=0 for nonzero
f 's if and only if f,)0 and f,/f, =n, or f, &—0 and

f./f, =1. -
The minimum of our zeroth-order potential is

attained along a ray 4; = Qn;. When we turn on the
higher-order terms 5V(4) in the potential, we give
the potential a small curvature in the radial direc-
tion, which picks out a definite va. lue (Q) of P at
the minimum, and we also produce a small shift
in the direction of 4, at this minimum. The con-
dition for a stationary point at n,.(Q) + 54; is

where P is the matrix (3.8). This uniquely deter-
mines 54 (and shows that it is of order 5V/V, -e')
except for possible terms in directions along ei-
genvectors of P with eigenvalue zero. It is there-
fore important for us to identify all the zero eigen-
values of P.

One s~ch eigenvector is n itself; according to
(3.6) we have

P, ,n,. =0. (3.10)

Also if the theory has any continuous symmetry

eC,.=~O, ,C„O,, = O, , (3.11)

then by following the usual proof of Goldstone's
theorem" we see that

P, ,(en),. = 0. (3.12)

85V(ng)
- &e&

(3.13)

This is the basic equation we will use below to find

(e)
We have seen that the potential does have a sta-

tionary point near n(Q) for small perturbation
5V(4). But is this a minimum? We will show in
the next section that the matrix of second deriva-
tives of the potential at its stationary point is posi-
tive-definite, aside from zero eigenvalues in
"Goldstone" directions On. Thus, the stationary
point is at least a local minimum. In order to
show that it is an absolute minimum, we would
need to use the renormalization-group equations

In general, there is no reason to expect that P
should have any other eigenvectors with eigenval-
ue zero, and we shall assume that it does not.
Since P is a positive matrix of order e', this
means that all eigenvalues of P axe Positive defi-
nite and of order e', except fox the zero eigenval
ues associated with eigennectoxs n and en. In par-
ticular, this implies that the unit vectors n at
which the minimum (3.5) is attained form a.t most
a discrete set, aside from possible symmetry ro-
tations, "for if V,(n+au) vanished over a range of
infinitesimal E for some vector u orthogonal to n,
then u would be an eigenvector of P with eigen-
value zero.

It now follows that apart from possible sym-
metry transformations 54 —4 +&OC, all compo-
nents of 54 are uniquely determined by Eq. (3.9),
except for the component along the n direction.
Instead of using (3.9) to determine the component
of 54 along the n direction, we must use it to de-
termine (Q) itself. Contracting (3.9) with n; and
using (3.10), we find

o=n, 5V(4)
8

' ac'
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to search for all the values of the renormalization
scale parameter A where (3.5) is satisfied, and
then compare the minimum value of the potential
calculated for each A, as done for special cases
in Bef. 14. We will not attempt this here. How-
ever, we will be able to show below that V is less
at the local minimum than at 4 = 0, so whichever
local minimum is deepest, it is definitely one with
broken symmetry.

Let us now use for 5V the one-loop terms in a
general renormalizable gauge theory. By adopt-
ing suitable renormalization conventions" for the
44 couplings f;;», we can write the one-loop po-
tentia, l a, long the ray 4=ng in the form"

(u'). t =&0&'n;nj(~ et);;,
(M'), = ,'(y&'f „,n,n„-.
(m)~, = (P&(I',)~, n;,

(3.18)

(3.19)

(3.20)

where 6 and I',. are the gauge and Yukawa coupl-
ing matrices. " The one-loop potential may then
be put in the form

5V(ng) =A/ +B4Q 1 (4Pn'/A„'), (3.21)

where A and B are the dimensionless constants

A =, , (3Tr[p, '1n(p, '/g&&')]+ Tr[M41n(M'/(Q&')]
1

—4Tr[m4 ln(m2/g &')]j (3.22)

1B=,
( ), (3Trp, 4+ TrM' —4Trm') . (3.23)

We see immediately that the potential (3.21) has

5V(ng) =,(3 Tr[p4' ln(p, ~'/A~')]

+ Tr[M4 ln(M~ /A~ )]
—4 Tr [m o

' ln(m 4 '/A~')]], (3.14)

where p, ~, M~, and m~ are the zeroth-order vec-
tor, scalar, and spinor mass matrices for a sca-
lar field vacuum expectation value nQ. This ex-
pression now makes precise what we mean by the
renormalization scale A~. (We have assumed that
the scalars have no color, so the strong interac-
tions would only affect the fermion term, which we
shall eventually drop anyway. )

We are working in a massless theory, so the
matrices p, ', M ', and m ' are all simply pro-
portional to Q'.

(3.15)

(3.16)

(3.1 )

where p, , M, and m are the true mass matrices,
evaluated for Q = (P&. Specifically,

a nontrivial stationary point [in the sense of Eq.
(3.13)], at a value of (Q& given by

in((P&'/A~') = ——,
'

A/—B. (3.24)

Note that A and 8 are both of order e4, so the log-
arithm is of order unity, and perturbation theory
should be valid. If we had not chosen a renormal-
ization point satisfying (3.5), then A would have a
term of order e', and the logarithm would be of
order 1/e'.

This stationary point is definitely not a minimum
unless B &0, because (3.21) decreases without lim-
it for Q-~ if B &0, while V is still a pure quartic
if B =0. From Eq. (3.23) we see that B is positive-
definite if there are no fermions in the theory, and
it remains positive-definite even in the presence
of fermions as long as the Yukawa coupling con-
stants are not too large. We will assume from
now on that this is the case:

B &0. (3.25)

= ——,'B&y&4 & 0. (3.25)

The proof that this stationary point is a local min-
imum is completed in the next section.

As promised, Eq. (3.24) shows that the scale of
the symmetry-breaking parameter (Q& is set by
the renormalization scale A~.

lV. SCALAR-BOSON MASSES

In zeroth order, the squared masses of the sca-
lar bosons are given by the eigenvalues of the ma-
trix

s'V, (C )
BC 84

(4.1)

According to the assumptions explained in the pre-
ceding section, this matr'ix has a set of positive-
definite eigenvalues of order e'(Q&', plus a set of
zero eigenvalues with eigenvectors (en), corre-
sponding to Goldstone bosons, "plus one zero ei-
genvalue with eigenvector n, That is, in zeroth
order we find a set of Higgs bosons with masses
of order eg&&, about as large as a typical inter-
mediate-vector-boson mass, plus a set of mass-
less Goldstone bosons, plus one light Higgs boson,
or "scalon, "with vanishing zeroth-order mass.

Turning on a small perturbation 5V(C ) will shift
the mass matrix t.o

82
(M +5M );,=— [Vo(C)+6V(C)] . (4.2)

84
~ 84y n(g )+64

Using (3.24) in (3.21), we see immediately that the
potential at its stationary point is less than its val-
ue V(0) =0 at the origin:

V(n&e&) = 5V(n&e&)
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To first order in small quantities, this gives

(6M'), ,=, , +f,,„,n, M, g ),
a'6V(y)

~ —n&e&
(4.3)

-926V(C)

- ~@z~@J -I n& e &

with M& given by (3.9). We will find below that all
eigenvalues of the ma. trix (4.2) are positive-defi-
nite, except for the zero eigenvalues in Goldstone
directions On; this will then confirm that the sta-
tionary point n(P) +64' is indeed a local minimum
of the potential.

We cannot calculate the masses of the heavy
Higgs bosons without more information about the
details of the theory. However, we note that the
eigenvalues of M' corresponding to these particles
are positive-definite, so that the corresponding
eigenvalues of M'+ 6M' are also positive-definite,
as long as 5M' is a small perturbation.

The eigenvectors On of M' are as well eigenvec-
tors of M'+ 6M' with zero eigenvalue, provided 6V
is, like Vo, invariant under e." Thus the Gold-
stone bosons simply remain massless and need
not concern us further here. (In a rea, listic model
they would have to all be eliminated by the Higgs
mechanism. )

This leaves the scalon. First-order perturba-
tion theory tells us that we must calculate its mass
by taking the expectation value of 5M' with respect
to the unperturbed eigenvector n;. Using (3.6),
this gives

greater than a recently derived lower bound" by
just a factor v 2. The remarkable new thing we
have learned here is that in more general theories
with many scalar fields, there will be some un-
known number of Higgs bosons with masses of or-
der p, ~, plus one scalon with mass given by Eq.
(4.6).

For instance, consider a more or less realistic
model based on the gauge group SU(2)QU(1)." In
order to preserve the usual prediction for m~/m~
in terms of the mixing angle O, suppose that the
scalar fie1.ds form an arbitrary number of doublets

(4.7)

and their complex conjugates. The vacuum ex-
pectation value may be written as a unit vector n
times a modulus (P):

(x,&=m, (y&, g(elm &= &.

We assume of course that charge conservation is
not spontaneously broken, so the unit direction
vector at the stationary point has the form

To determine (Q), we note that the W mass. is given
in this theory by

Mgf 4g t j +zt2 Xg

,V(ny) (4 4)

We can therefore calculate M~' from the second
derivative of the one-loop potential (3.21) along the
ray C =nQ:

M, '=12(@)'[BIn((y)'/A, ')+-', B+A] .

while the Fermi coupling constant is

G~/0 2 =g'/8mw, '.

Using (3.24) to eliminate A~, this gives

Mq ——8BQ)) . (4.5)

From these two relations, we find that

g))=2 ~ G ~ =247 Geg

As promised, this is positive-definite, thus com-
pleting the proof that we have found a local mini-
mum. We may write Eq. (3.23) for B as a sum
over vector bosons V, heavy Higgs bosons H, and
fermions I', and (4.5) then becomes

Mz'=,
~ &, (3'gg '+/M„'-4/m '). (4.6&

For "simple" theories with only a single Higgs
boson, Eq. (4.6) gives the same result as calcu-
lated by Coleman and E. Weinberg. ' Also, for
such theories, this value for the Higgs mass is

just as with a single scalar doublet. " Equation
(4.6) now becomes

2 GE 4 4 & 4 4 4M~ = 2m~ +mz +3 M~ —— m ~

Bn 3

(4.8)

As already remarked in the preceding section, all
known fermions are much lighter than the inter-
mediate vector bosons, so it is reasonable to drop
the sum over fermions in Eq. (4.8). We can write
m~ and m~ in terms of the weak mixing angle 0,
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e2

mW ~ 28C, sin'e'

82

Z'=
8G~ sin'8 cos'8'

so (4.8) becomes

3+2 2+ sec'8
8v 2 Gz sin48

1
3(2m~'+ m ~')~ (4.9)

M~ ~ 2.4585m@~ ' = 5.261 GeV. (4.10)

If we assume (without any real justification) that
the "heavy" Higgs bosons are somewhat lighter

This is minimized by dropping the sum over Higgs
bosons and setting 8 =49.38', thus we have the
lower bound

than the intermediate vector bosons, and if we
take for 8 the experimentally favored value 9 =35',
then (4.9) gives a scalon mass of 7 GeV. If the
Higgs boson contribution in (4.8) is about the same
as the vector-boson contribution, then this esti-
mate becomes 10 GeV.

V. SCALON COUPLINGS

The class of theories considered in this paper
allows us not only to calculate the mass of the
scalon, but also to calculate its couplings. This
is because we know that the scalon corresponds
to an eigenvector of the zeroth-order scalar mass
matrix M, which is in the same direction n,. as
the field vacuum expectation value (C,.).

In general, the couplings of the scalar fields in
any renormalizable gauge theory are given by an
effective Lagrangian"

—,',f,,„,c,.c Jc„c, qr',.qc,. —I(s,c,.)c,.(e.),,w: —,'c,.c J(e.e,),,w".w... (5.1)

where I'; and e are the Yukawa and gauge coupling matrices. We can define fields S and H,. for the scalon
and the heavy Higgs bosons by writing

4; —=n;g&) +n;S+H, + Goldstone bosons, (5.2)

with the heavy Higgs boson field H, defined as that part of 4,. orthogonal to n, and to the Goldstone direc-
tions (0 n);:

a,.&,.=a, (e &),. =0.

The terms in (5.1) which involve S and do not involve Goldstone bosons are then

,' f;»,n;n& HI H, (—S'+2S(g)) —gi';~;S —2 n;n&(e 88)&&A" g„(S'+2S(g)) n;H&(e 98—);;&~Az, S

(5.3)

(5 4)

Referring back to Eqs. (3.18), (3.19), and (3.20), we see that the first three terms of Eq. (5.4) may be
written in terms of the vector, scalar, and spinor mass matrices p. , M, and m. The effective Lagran-
gian for the scalon field is then

kl k 1 (y)2 (y) 0 0 (y) 2P u8 ABv (y)2 (y)
( a 8 )i j e Bu (5.5)

In particular, we note that the coupling constant
for the trilinear interaction SAN of the light Higgs
boson to an elementary particle N of definite mass
's29

M„'/(Q) Higgs bosons

g~„~= m„/(g) fermions

p, z/(P) gauge bosons.

(5.8)

One immediate consequence of these results is that
the scalon decays preferentially into the heaviest
possible particles. (This is not necessarily true
for the heavy Higgs bosons. ) A scalon with mass
above 5 GeV would decay into the heavy lepton in-
dicated by recent experiments, "and into the

S~ p, +p.
S- all 4(1.7 GeV)'

=10 3. (5.7)

Another consequence of these results is that
production of the scalon will tend to be dominated
by graphs in which it is emitted from heavy-par-
ticle lines. For instance, in the production of a
scalon in a neutrino reaction at a center-of-mass

charmed quark, and thence to charmed hadrons.
Taking the mass of both heavy leptons and charmed
quarks as 1.7 GeV, the branching ratio for scalon
decay into p, 'p. pairs (the clearest signature) is
very small":
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energy in the range M~ «E «p, ~, the dominant
graph is the one in which the scalon is emitted
from the virtual-8' line. ' The factor p, ~' in the
SWW coupling is simply canceled by the 1/p, ~' in
the extra TV propagator. In consequence, the in-
variant matrix element for production of the scalon
can be obtained from the matrix element for the
neutrino reaction without scalon production by
dividing by {Q) and changing the value of q' at the
hadron vertex. Detailed calculations of the pro-
duction rate are in progress.

Finally, exchange of virtual scalons between two
particles of mass rn„m, produces a scalar weak
interaction with effective Fermi coupling constant

VI. SCALE RELATIONS

We now want to consider the relation of the re-
normalization scale A~ to other scales in physics.

The constraint on f;;» which defines our renor-
malization scales was described in terms of the
values of the minimum value F(A) of the quantity

f,,»(A)N, .N~N»N, on the hypersphere ZN, N, =1;
our constraint is that E=O at A=A~. In general,
the A dependence of f,,», will be governed by a
renormalization-group equation, which gives

A F(A) = O(e'). —
dA

(6.1)

We do not know what determines the values of
f,,» at any scale, but it seems reasonable to sup-
pose that the couplings of the scalars, left over
after the superstrong symmetry breaking, are
determined to have some definite values of order
e at a renormalization scale A characteristic of

=O(Gsm, m2/Ms ).
If m, and m, are not much less than M~, then G~
is not much less than G» so for hadrons or heavy
leptons this scalar weak interaction may be nearly
as strong as the usual vector and axial-vector in-
teractions. However, its effects are insipid: It
does not break strangeness or parity or isospin
conservation, or transfer charge from leptons to
hadrons, or affect neutrinos at all. It is hard to
see how it could be detected.

the superstrong symmetry breakdown. There is
no reason F(A) should vanish, so we may assume
it to be of order e'. Then Eq. (6.1) shows that the
change in the logarithm of the renormalization
scale required to make F(A~) vanish will be order
e2/s4.

ln(A/A~) = 0 (1/e') . (6 2)

A gs =0(gs~) for gs ~~1 (6.3)

Hence the scale A~ at whichg~ begins to be much
larger than O(e) is determined by

In(A/A, ) =O(1/e') (6.4)

indicating that ln(A/As) is of the same order as
In(A/A((, ). Of course this does not mean that As
and A~ are comparable —a factor of 2 in a large
logarithm can make a very large difference. In
fact, A~ is of order (Q), or 300 GeV, while elec-
troproduction experiments indicate that A~ is of
order 300 MeV. In a sense, this is surprisingly
close: if A/A~ is of order" 10", and A~/As is of
order 10', then the two logarithms (6.2) and (6.4)
differ by only 20%%us. At any rate, since we are not
assuming here that the weak gauge symmetry is
dynamically broken by the strong interactions,
there is no reason to expect that A~ and A~ should
be very close.
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This indicates that the ordinary physical mass
scale determined by A~ is likely to be enormously
different from the scale of the superstrong sym-
metry breaking.

It is interesting that (6.2) is much like the re-
lation" between A and the scale A~ of the gluon
gauge coupling constant in superunified theories.
If we assume that the strong, weak, and electro-
magnetic interactions all arise from a single sim-
ple gauge group, then the strong gauge coupling
constant gz is of order e for renormalization
scales A, and grows (for asymptotically free theo-
ries) as A decreases, with
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