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Bound-state spectra (of mesons or af solitons-antisolitons) are studied for the sine-Gordon and quartic-
coupling nonlinear boson models in one-plus-one dimensions using methods developed previously by the
authors for the example of the nonlinear Schrodinger equation. In addition to reproducing the spectra first
derived by Dashen, Hasslacher, and Neveu (DHN) up to the order of the first quantum correction, we have
alsa calculated (in the semiclassical approximation) all bound-state form factors as well as the matrix elements

of the field between any bound state and any continuum state for the scattering of a meson on a bound state.
For the sine-Gordon theory the results have been abtained in two ways: first, by an algorithm, derived in due
course, for transcribing an exact classical solution into a quantum operatar; second, by a systematic expansion
about the weak-coupling limit which requires the techniques used previously for the nonlinear Schrodinger
equation. Only this latter technique is available for. the quartic model, but its (more complicated) application
here leads to an explanation of why in leading order the same form of bound-state spectra are obtained for
the two models. Compared to the work of DHN, aside from methodology, the main new results are the
matrix elements of the field operators, but we also present a complete quantum interpretatian of all their
classical calculations as well as an explanation of why our methods are equivalent.

I. INTRODUCTION

This paper continues the study of simple non-
linear field theories based on direct solution for
matrix elements of the field equations. In two
previous papers" (referred to as I and II}, we
have studied the soliton in the quartic interaction
model of bosons' (building on work of Goldstone
and Jackiw') and bound states in the nonlinear
SchrMinger equation. 2

In the present paper we again deal with bound

states, this time for the sine-Gordon and the
quartic interaction theories in one-plus-one di-
mensions, precisely the problems dealt with by
Dashen, Hasslacher, and Neveu (DHN} in a mon-
umental work." It is our purpose (i) to reproduce
the bound-state spectra first derived by these
authors, (ii) to generate several classes of matrix
elements not given in previous work, and (iii)
to explain why the two models studied yield the
same functional form for the bound-state spectrum.

We start by reviewing the basic equations for
the models utilized. The sine-Gordon theory is
defined by the Lagrangian density

m4
2(x, t) = 2(8tp)' —2(8„@)'+ cos p —1,

and of the commutation relations

[ P(x, t), tt(y, t)j =id(x —y). (1.4)

On the classical level, the field equation (1.3)
possesses space-dependent static solutions

g„(x)= ~ tan '[exp(+mx)j,
4' (1.5)

which, in the quantum theory, are associated with
the soliton (+) and antisoliton (-), respectively,
Their common mass is, in lowest approximation,

M =8ms/X. (1.8)

Our calculation of the first quantum correction'
to this result is given in Appendix B.

Of the infinitely many time-dependent classical
solutions known, only the one which is periodic
in time and confined in space (the so-called doublet
or breather),

m2 2 1/2

Our study is based directly on the solution of the
field equations

(-8,'+8„2)tt(x, t) — sin —g(x, t) =0 (1.3)
m'

with corresponding Hamiltonian density (tt = 8,$)
4

R(x, t) = stt2+ 2(8„$)2+ 1 —cos

cos&d (t —t,)
cosh(m' —uP)'t 2(x —x,)

will concern us. Here ~ is a continuous parameter
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and to, x, are arbitrary. Upon semiclassical quan-
tization this gives rise to a spectrum of particle
states with masses

(1 8)

where M is the soliton mass (1.6) and the number
of such states is restricted by the condition

n= 1, 2, . . . , & 8@m'/A. . (1.9)

The Hamiltonian density is

K(x) = ~ v'+ —,'(s„p)'+ U(p), (1.12)

and the equation of motion takes the form

8,'Q(x, t ) —8, P(x, t ) —2m'Q(x, t)+ 2A. &jP(x, f ) = 0.

For this equation, the analog of (1.5) and (1.6)
has been fully discussed. ' Exact time-dependent
solutions are, however, unknown. Instead, to
study possible bound-state spectra, we apply the
method developed for the sine-Gordon theory.
For reasons that are explained, the application
requires some care, but the final form of the
c-number field equations suggests that the starting
Hamiltonian can be replaced by a unitarily equiv-
alent one which has the same weak-coupling form
as the sine-Gordon theory. From our previous
results this explains as well why the spectrum
(1.8), with suitably altered constants, is again
found, to the order studied.

In addition to rederiving (1.8) as well as the
first quantum correction to it, we have been able
to derive matrix elements of the field Q connecting
the various states ~n), the bound states at rest
This has been done by two methods. The first
is based on having available the explicit form
(1.7). There then exists a simple algorithm for
transcribing this solution into a generating op-
erator for all matrix elements of the field among
the states ~n). The results of this exercise sug-
gest a viable sequence of approximations, of which
the first is equivalent to the method applied pre-
viously in the solution of the nonlinear Schrodinger
equation. ' By appl. ication of this method, it can
be seen that (1.8) emerges from the lowest ap-
proximation to the semiclassical calcuJ.ation.

The second example which we shall consider
is the quartic-coupling model defined by the La-
grangian density

(1.10)

with

Our presentation is arranged as follows: In
Sec. II, the semiclassical result is first derived
by an irreducibly simple application of Wilson-
Sommerfeld quantization to the exact classical
solution (1.7), giving rise to the spectrum (1.8).
The bulk of this section is then devoted to showing
how the same classical solution yields a generating
operator for matrix elements of the field between
the states in question.

In Sec. III, we develop the method, . suggested
by the results of the previous section, for studying
an arbitrary self-coupled boson model, in semi-
classical approximation, using the quartic inter-
action model and sine-Gordon models as examples,
rederiving the exact results for the latter and
corresponding results for the former. In Sec. IV
we calculate the first quantum corrections for
each model by a technique only slightly modified
from a similar calculation for the nonlinear Schro-
dinger equation and thereby reproduce the results
of DEN. In Sec. V we calculate once more the
first quantum correction to the sine-Gordon model
in a quantum version of the corresponding cal-
culation of DHN. We also obtain thereby a gen-
erating operator for al.l transition matrix elements
of the field between the bound states and the scat-
tering states of a meson by the bound states.

In Appendix A we confirm the Lorentz invariance
of our methods and in Appendix B we collect re-
sults on the (static) solitons.

It is appropriate at this point to add a few re-
marks concerning the connection between our
method and that of DHN, which methods appear,
at first sight, to be quite distinct, but which cul-
minate in precisely the same final integrals. '
DHN calculate the trace of the time-development
operator e ', where 0 is the Hamiltonian, over
a subsPace of the eigenstates of H; they convert
the trace to a functional integral computed by
semiclassical approximations. To understand
the connection between the two methods, we need
the trivial observation that if H is diagonal, com-
putation of the trace of H suffices to calculate
the trace of the time-development operator. In
our method we focus on c-number or matrix-
element equations following from the fieM equa-
tions. We have shown, ' however, that these equa-
tions are the Euler-Lagrange equations for the
trace of the Lagrangian or for the trace of the
Hamiltonian, under the constraint that the oper-
ator commutation relations be satisfied. Further-
more, the consistent approximate solution of these
equations guarantees that H is diagonal to the same
approximation.

From the examples given before' and in this
paper it is therefore clear that we are performing
exactly the same calculations as DHN, though
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II. SEMICLASSICAL QUANTIZATION

A. Wilson-Sommerfeld quantization

Given an exp/icit periodic classical solution,
the most direct way to obtain the spectrum is to
make use of the correspondence principle, which
connects the classical frequency with successive
energy differences,

&o(n) =-E„E„,-=—dE
(2.1)

Even though we are dealing with a field theory
rather than a particle theory, (2.1) contains the
assertion that a simply periodic motion implies
the existence of a set of bound states, labeled
here by the integer n.

We apply (2.1) in the integrated form'0

+n

~(~)
' (2.2)

To apply this condition, we calculate &o(&) as fol-
lows: We first notice that the field energy cal-
culated from the solution (1.7) is independent of
time. (This can be shown from the etluation of
motion and the vanishing of the spatial derivative
at infinity. ) We then find

the technique and mode of reasoning are quite
different: We construct semiclassical approxi-
mations, or asymptotic solutions, to fully quan-
tum-mechanical equations rather than "quantizing"
classical solutions. The only possible advantage
for our method, which we might dare to claim
so far, is based on the fact that we obviously
generate matrix elements as well as energies"
i.n a natural way. Whether there are other ad-
vantages or disadvantages will have to be estab-
lished by future applications.

In (1.7), we choose x, = t, = 0 merely as a con-
venience. From the resulting expression we de-
fine an operator F(x,A, 8) by first writing

Qs(x, t) = Y(x,—n, art)

4m
tan '[y(n, x) cosset], (2.5)

where

t~(nm/2M)
cosh(m[sin(nm/2M) jx)

' (2.6)

In this first step, we have replaced ~ everywhere
in Q~ except in the combination &ot by ur(n), where

dM„nm
(o(n) = "=m cos

dn
(2.7)

The combination cot is next replaced by 8. We in-
terpret n and ~ as the action-angle variables of
an oscillator degree of freedom and carry out a
semiclassical quantization by placing carets on
these symbols which now operate in the one-di-
mensional space of states In) with the rules

8'~ In) = (n —1), I n) =n n). (2.8)

The well-known difficulties" in defining a unitary
operator by (2.8) need not concern us, since we
shall insist on this relation only for n» 1, where
theoretical objections are numerically irrelevant.
In the same limit there is also no objection to re-
garding 8 and n as canonically conjugate variables.
The operator F, defined arbitrarily by the order-
ing exhibited in (2.5), will yield matrix elements
whose significance and accuracy will be specified
below.

The matrix elements of the operator Z between
the states (2.8) are obtained straightforwardly by
expansion of the inverse tangent

(~ I
I'I ~+ 2p+1) =(~+2p+1I I"I~)

E,-a[y, (x, t)]
= (m' —oP)' ~'(2M/m).

Inverting (2.3) for use in (2.2) yields directly

mn =2M sin '(E„/2M),

which is (1.8) with the identification E„

(2.3)

(2.4)

=(4m/v x)
0+['nl/2

X ay n, X

(-1)' 2I+1
(2I+1) I p—

(2.9)

B. Quantum significance of the breather solution

Not only does the breather solution lead to the
semiclassical approximation, (2.4), to the spec-
trum, but, as we now proceed to show, it also
leads to a similar approximation for a whole ar-
ray of matrix elements of the field operator. We
shall first describe the recipe for obtaining these
results and then give the "derivation" of the
recipe.

where [n] =n for n even and n —1 for n odd.
But the relationship of these objects to the orig-

inal field operator has still to be specified: Let
In(p)) be the field-theoretical bound state with
center-of-mass momentum p. We shall introduce
the notation

( Iy(x)I~&-=lim dp

g~p Q 2f

(2 10)
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(n l
y'(x) ln'& =—g (n l

(j(x)
l
n"&(n"

l
$(x) ln'&.

(2.13)

Furthermore, we can replace H by its projection
h on to this space, where according to (1.8), h can
be represented in the form

h =h(A) =2M sin(nm/2M). (2.14)

In the semiclassical limit we would further re-
place the double commutation with h(il) by a double
Poisson bracket (PB).

Thus if we are to identify f'(x, A, 0) with the pro-
jection of Q(x) as required by (2.11), we must
show that the classical function Y(x,n, 8) satisfies

S„'Y+[[Y,h], h]~s =(m'/v X) sin[(WX/m)Y].

(2.15)

to signify an approximation in which the states ln&

are assumed so heavy as to be insensitive to re-
coil in elementary acts of emission and absorption
(fixed-source limit). Then we aver that

( lj'(, il, ~) ')-=& le()l '&, (2.11)

i.e., the matrix elements of j in the one-particle
space equal (in a certain approximation) the ma-
trix elements of the original field operator between
the bound states.

The ambiguity of ordering in defining the opera-
tor F now means that each pair of square brackets
in (2.9}is only the leading term of a series with
the next term down by at least (1/n). For this
reason the matrix elements with P-n are uncertain
to within their own value, as are the high-order
terms of the matrix elements for small p. As we
shall see, however, in the regime to which the
theory best applies, sin(nm/2M) «1, these terms
are themselves small.

We turn to the justification of (2.11). We examine
the quantum field equation [cf. (1.3}]in the form,
for t =0,

s„'j(x)+ [[j(x),H],H] = (m'/v X)sin[(WX/m) j(x)].
(2.12)

We further simplify matters by restricting ourselves
to the no-recoil approximation. (The Lorentz co-
variance thereby destroyed is regained inAppendix
A, where we apply the methods of I to this problem
and convince ourselves that recoil is not relevant
to the present consideration. ) The next step is then
to replace the full field equation by its projection
on to the states ln&. This involves the assumption
that when we calculate matrix elements of (2.12)
between members of the set ln&, matrix elements
of products of operators are also evaluated by the
sum rule

Here

8j &h BF 8h-i[Y I] 8g en sn Gg

and thus

(2.18)

[[Y,i],a]„=-~', , (2.17)

The replacement ~ —et now restores us to our
starting point (2.5), from which we may advance
to (2.15).

This really completes our derivation, which is
more aptly termed an identification of the quantum
significance of the classical breather. In this
identification, we have recognized that it is a dis-
guised form of a generating operator for the bound-
state form factors (2.10). This identification also
permits an alternate derivation of the spectrum
(1.8), on a completely quantum basis. The self-
consistency of our identification certainly requires
that

M, = &~ lHI~&

= (n l H(e(x, n, ~)) l ). (2.18)

= 2M sin(nm/2M), (2.19)

which follows from the recognition that H(Y) is in-
dependent of t, that its value for a~biA any ~ is
given by (2.3), and that in this case &o(n) is given
by (2.7).

To summarize what has been found, we may say
that we have identified the quantum field operator
in the no-recoil, no-loop approximation by tran-
scription of the breather solution (1.7}. In Secs.
IV and V, we shall carry through the study of the
first quantum corrections to this result. But
prior to that we shall deal with a different ques-
tion. Suppose that we have a general self-coupled
boson field in one-plus-one dimensions, where the
interaction is given as a power series in Q(x), and
that an exact cia,ssical solution analogous to
(1.7) is not known. We shall demonstrate in Sec.
III that, nevertheless, in a suitable weak-coupling

The energy is thus given by the constant term in
the Fourier expansion of H(Y) in powers of e'~

evaluated for 8 =n. This can be calculated equiva-
lently by replacing 0-cot and averaging the clas-
sical expression over a period T = (2m/e) of the
classical motion,

T
M„=T ' dtH(Y(x, n, &ot))

0

=H(Y(x, n, &ot))

=(2M/m)[m —QP(n)]' ~
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regime, where the interaction is dominated by its
lowest-order terms, we can generate a viable se-
quence of approximations. We shall apply the
method~ to the sine-Gordon theory and show that
we generate the leading terms of (2.12) and then
show how to apply the method to the quartic inter-
action model studied in I.

III. SYSTEMATIC VfEAI('-COUPLING EXPANSION

A. Sine-Gordon theory

We attempt to generate the series (2.9) directly
as such. It turns out that our methods yield,
fairly naturally, a series in the functions
sino. /cosh[m(sinn)x], n = (nm/2M), rather than
the functions y(n, x) defined in (1.9) and that the
energy is generated as a series in powers of
sino. Only in the sine-Gordon theory do powers
beyond the first vanish. The form of (2.9) sug-
gests in any event that the leading approximation
should be based on retaining only the amplitude

(n l j(x) l
n + 1) = (n l

Y
l
n+ 1)—= lg ')(x) - y(n, x)

(3 1)

and setting all other amplitudes to zero. As in-
dicated, this should yield roughly the first term
of the series (2.9). In the second approximation we
add the amplitude

(nl y(x)in+3) = (nl Yln+3) =((/(')(x)- [y(n, x)]',

( ) m (3.9)

we may verify that the omitted quintic term in
(3.3) is 0(sin'a) compared to the cubic term.
Therefore it will have to be considered only in
the next approximation, which we give in bare
outline.

We first consider the equation for P„3)- (g„' )'.
With the help of the approximation

[The number-smearing approximation in (3.5) is
equivalent to ignoring operator ordering problems
encountered in Sec. II. However, here, we are in
a position, if we wish, to evaluate correction
terms, and the influence of such correction, if
any, on the energy will be considered at the ap-
propriate juncture. ]

From (3.3) to (3.5) we obtain a familiar equa-
tion for P('), na. mely

[-8 2+(m2- (1& 2)]g(') ——')((g('))3=0 (3 6)

which has the solution

(1)(x} (m2 ~ 2)1/22 1
cosh(m' —(1)„')'"x'

(3 7)

When we return to the computation of the energy,
we shall find the value of co„without reference to
any previous considerations, but since we know
that

(3.2)

which should be obtained in leading order at the
same time that we obtain the second approximation
to (3.1).

To obtain equations for the amplitudes (3.1) and
(3.2), we utilize the operator equation (1.2) in ex-
panded form

()„'j(x)+ [[$(x),a],a]=m' j——)(.j'+ —)(.
lkm'

E„„-E„=3'„
and the approximate evaluations

(nl y in+3)= (y )) +5(y( ) y
3

»-=5(C."')',
we obtain for ((3) the equation

( () 2+ 2 9~ 2)q(3) (q(1))3 ) (q(1))2y(3)

(3.9)

(3.10)

(3.11)

+ ~ ~ ~ (3.3)

From the result for g('), it will be evident that
quintic and higher terms in (3.3} may be ignored
during the first go-round. We require the precise
definition

which is solved as

(i) s=0 3 12

(dn =En -En-i (3.4)
q(3) (x) (m2 ~ 2)3/2

5~)( m'

as well as the approximate evaluation

&nl y'ln+»
=(nl(t1ln+1)(n+il jll n)(nl jln+I)

+(nl jln+»&n+Il jln+»&n+21 jln+»
+(nl pin —1)(n —1l pin)(nl jln+1)

3[y(1)(x)]3 (3 5)

cosh'(m' —(d„')'/'x ' (3.13)

Incidentally both g(') and g(3) check with the corre-
sponding leading terms of (2.9) if the known value
of (o„ is utilized.

We next turn to the correction to g('). With the
improved evaluations (which take account of the
presence of g(3) to the required order)
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(ni P'i n+ 1)=—3(g ' )'+ 3(g ' )'g '

(ni $3in+1)=10(g&'&)3,

(3.14)

(3.15)

and
(m2 ~ 2)3/2

m' (3.19)

we find

( s 2+m2 2)y(1) 1&„(y(1))3 & (q(1))2((3)

+ ——(y(")3= 0. (3.16)12 m'

This equation suffices to determine g('& up to sec-
ond order in the form

Equations (3.17)-(3.19) again check with (2.9). It
should be clear that the evaluation of higher-order
terms is only a matter of care and patience.

To complete the present calculation we require
a quantization condition. We present one which
contains the previous semiclassical limit as a
special case: If we evaluate

E„=(nba( j(x))in) (3.20)

in terms of the solutions found above, we will obtain

i)i&'&(x) =
cosh(m' —(u„')'"x E„=E„((u„) (3.21)

where

C

cosh'(m' —(d„2)'"x '

2

a= —(m —(d ) 1+ — 1-2 Xjf2 1 n

(3.17)

(3.18)

as a quantum difference equation for the energy,
in consequence of (3.4). We therefore now turn to
the calculation of the energy which also will allow
us to show that (3.12) and (3.16) can be derived
from the trace variational principle studied in I.
The energy is evaluated by the technique of inter-
mediate sums familiar by now and turns out to be

(~ 2+m2)y(1)2+ (9~ 2+m2)y(3)2+ (() y(1))2+ (() g(3))2 y(1)4 q(1)3)(3) ) y(1)2y(3)2A.

+
~ ~ (i)8+ ~ ~ (i)5 (3) (3.22)

To make the connection to the trace variational
principle studied in I we first note that because
we neglect n-fluctuations the trace variational
principle becomes a simple variational principle.
This holds as long as the trace is taken over a
range of states not greater than Wn about n, a
condition met in the semiclassical limit considered
here.

In I we showed that the constrained variational
principle is equivalent to an unconstrained vari-
ation of the Lagrangian. To obtain the latter
variational expression from (3.22) we thus sub-
tract

power series exists then for the energy of which
series we shall consistently only calculate the
first two terms. For this it suffices to calculate
E„ from the expression

E =— dX ao 2+m' "'+ e
X

(3.24)

as all other terms are of higher order in
(m' —&u„')'i'. To simplify (3.24) we use a virial
theorem

(m2 ~ 2)q(l)2 (s y(1)}2 (y(l))4 0

(3.23)

from 5E„=O, as this gives just the variation of the
expectation value of the Lagrangian L(g). It is
then readily verified that variation of the resulting
expression with respect to P„' and $„3 yields
(3.16) and (3.12), respectively.

As explained above, the solutions (3.17) and
(3.13) to these equations can be viewed as a power
series in m '(m' —(d„')'" = sino. , which is small
in the weak-coupling regime. A corresponding

(3.25)

which can be derived from (3.6). Combining (3.24)
and (3.25) yields the expression, which is our
quantum difference equation,

dg ~2 &i) 2 p„~» 4

2 2)
=(2M/m)(m'-~„')'" I+Oi 1- m' j

(3.26)
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Here the term in the curly brackets only indicates
the accuracy of the present calculation, since we
already know that the exact semiclassical calcula-
tion, defined as the one carried out in Sec. II, re-
places the term in the curly brackets by unity.
It was this calculation which dictated which matrix
elements have to be chosen as nonvanishing in the
above calculation.

The replacement of co„by (dE/dn} in (3.26) yields
a differential equation equivalent to the Vfilson-
Sommerfeld quantization, as one easily verifies.
We shall return for a more complete consideration
of the structure of the answer after carrying
through for the quartic interaction model the cal-
culations analogous to those performed in this
subsection for the sine-Gordon model'.

B. Quartic interaction model

We refer to the model defined by Eq. (1.10}.
This model also gives rise to a one-dimensional
spectrum of bound states. For this spectrum DHN
have given the formula

pected result in the leading approximation re-
quires three nonvanishing amplitudes

P„(x}=—(n —1
~ @(x)

~
n}- (m/Wx) sin(nm/M), (3.29)

o„(x)—= (n
~
P(x) ~n)

- (WX/m}g„'(x),

T„(x)= ( —1
~
$(x)

~
+ 1)-o„(x)

(3.30)

The estimates (8.29)-(3.31) could be made in ad-
vance, (3.29) from the work of Sec. IIIA and (3.30)
and (3.31) from the anticipation that Q2 and Q'
would, in leading approximation, contribute on
equal footing. We have also verified that additional
amplitudes, omitted in the subsequent discussion,
such as

p, „(x)= (n 1 [$(x-) (n—+2}-(X/m )g„'(x) (3.32)

are too small to be included in the first approxima-
tion.

We proceed as follows: If the estimates (3.29)-
(3.31) are correct, then the equation for g„(x), de-
rived from (3.29), is

E„=2nm 1 —
3

nm=2M sin I, (3.27)

+ 12m'(v x/m)[o„(x) + r„(x)]g„(x)

+ 6m'(X/rrr') y„'(x) (3.83)

H= dx 2m~+~ ~ 2+2m2

+ 2m'(WX/I) &f&'+ 2m a(X/4m') P ],

and the corresponding equation of motion is

-8,2$ = —9„2$+4m Q+ 6m~(v x/m)Q'

(3.28)

Since the P' term corresponds to a repulsive in-
teraction, binding, if it occurs, must be due en-
tirely to the Q2 term. The implication is that this
term contributes at least at the same order as
the Q' term.

A self-consistent scheme which yields the ex-

where M = (4m'/3X) is the mass of the soliton for
this model, and the factor within the sine reminds
us that in this model the elementary particle has
mass 2m. Thus (3.27) is essentially equivalent to
the result obtained for the sine-Gordon theory and
suggests that we attempt to derive it using the
method of this section.

The calculation is, however, slightly less trivial
for the present model. Because we are in the
vacuum sector, we must deal with the Hamiltonian
obtained after carrying out a displacement
P -(m/UY+ Q) about the vacuum value of Q. This
yields

Similarly, for o„(x) and v'„(x), we find the equations

0 =4m'o„(x) —& „'o„(x)+ 12m (Wx/m) P„'(x)

+ 12m'(x/m')g„'(x) [o„(x)+r„(x)], (3.34)

0 = (4m' —4&a„')w„(x) — „8'r„(x)

+ 6m'(VY/I )g„'(x) + 6m'(X/m') g„'(x)o„(x)

+ 12m'(A. /m') g„'(x)r„(x). (3.35)

(3.37)

With the aid of these last results, we return to
(3.33) which becomes

0 = (4m —e„)g„(x)—s„p„(x)—24Xp„(x). (3.38)

Comparing with (3.6), we see that (3.38}has the
solution

(x) (12') 1/2(4m2 ~ 2)l/2

1
X

cosh(4m' —(o ')' 'x (3.39)

On the basis of the original estimates and the
estimate [cf. (3.27)] |o„-2m, only the first and
third terms of (3.34) and (3.35) need be retained
for the sufficiently accurate solutions

(3.86)
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From (3.38) we also have the virial theorem

0=(4m' —~„*)f dx(„*(x)—f dx[e„i)„(x)]*

—j2X „4x . (3.40)

H = yg2+~ 8 ~+ 4m ~ —2X 4, 341

In (3.39) we have the analog of the (Iuantity g"(x)
computed for the sine-Gordon theory. It is also
clear that we can generate the corrections of
higher order, but that again the procedure would
be somewhat more tedious than in the previous
example.

We turn to the computation of the energy, where
we soon realize that we cannot proceed blithely by
insertion of the results (3.36), (3.37), and (3.39)
into (3.28). The simplest way to make the neces-
sary point is to remember that the energy is a
quantity which is conserved in consequence of the
equations of motion. Now since the effective equa-
tion of motion (3.38) has the same form as that for
the weak-coupling sine-Gordon case, it follows
from the effective Hamiltonian

where the second form is implied by (3.40). We
must consistently discard the second term in
(3.42), moreover, since as our study of the sine-
Gordon theory implies, it is of the same order
of magnitude as the contributions from the second
approximation to p„(x), which we have not computed.
We therefore find consistently

QpyP &x —2~ g ~3 4m2

(3.43)

which yields (3.27).

C. Further consideration of the energy

Vfe conclude this long section with several ad-
ditional observations concerning the energy quanti-
zation condition in the semiclassical approxima-
tion. First, our calculations for the two special
examples indicates for the self-coupled neutral-
boson model in one-plus-one dimensions that the
Wilson-Sommerfeld quantization condition will
take the form (in dimensionless units)

where Q is now a transformed or effective opera-
tor which possesses the same class of nonvanish-
ing maA ix elements as in the sine-Gordon theory,
in particular, no matrix elements of the type (3.36)
and (3.37). Another way to express this result is
to recognize that H„, is the Hamiltonian that would
result approximately by carrying out a unitary
change of basis designed to eliminate the cubic
term from (3.28). Such a transformation cannot
be expected in the present theory to leadtoa closed
result, but would in the end generate an infinite
series of interaction terms of higher order. What
has been shown is that we can, equally well, gen-
erate the results of such a transformation in ma-
trix element form.

The rest of our discussion will be simplified by
adherence to the new Hamiltonian (3.41). Thus in
Sec. IV we shall base our discussion of one-loop
quantum corrections on it. In substantiation of the
above remarks, we have, however, verified by a
much more elaborate calculation that the same
results can be obtained from the original form of
the Hamiltonian.

From (3.41) we thus compute

E„=sinn+ c sin'n+" ' (s.45)

and that e WO requires a 0. Otherwise, the second
term in (3.45) is at least the seventh power of the
sine. The calculation of c for the general model
under discussion appears to be a suitable exer-
cise for an interested reader.

Secondly, it appears appropriate to consider at
this point the leading n-fluctuation corrections to
(3.44), completely neglected up to this point. These
corrections have two sources. One of these arises
from a consideration such as

(n (
q~b(x)

( n) = ((n ( @ (
n+ 1)) + ((n (

(I)
~

n —1))'

-=2((n[ j(n 1))2+ —((n( j [n -I))'.

Z„= 1 — +a 1 —
~

+ ~ ~ ~ .
dn dn)

(3.44)

In the present section we have shown that a =0 for
the sine-Gordon theory, but we have not computed
a for the quartic interaction model. It is not
difficult to show that the solution to (3.44) is of the
form

Z„=(n ja.„)n&

—= (~„'+4m*)f i)„*(x)+f [a,i)„(x)]'-121 fij (x)„'
= 8m „x —18K „x, 3.42 E E(0)+ g(0) —g(0) + z@(i)

n n 2 dn n (3.47)

(3.46)

Applied consistently to (3.41), for instance, we
find
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dE & d'E
dn 2 dn'' (3.49)

Inserted into (3.4V), this yields a correction term

(dE/dn)(d'E/dn')
2 [1 —(dE/dn)']' '

(3.50)

the complete compensation being a special result
following from E„=sinn.

The upshot of this calculation is that quantum
corrections arising from n-fluctuation are absent,
at least in lowest order. We are finally free to
turn to the remaining first quantum corrections,
the one-loop effects.

IV. FIRST QUANTUM CORRECTIONS:
WEAK-COUPLING LIMIT

A. Associated scattering problem

where by E„'0' we mean [in the units of (3.44)]

E(oj (I ~ 2)1/2 (3.48)

Since, however, (d„=E„-E„»there turns out to
be a compensatory correction" obtained by writing

k'X~(x) =- S„'X„(x)—48'(„'(x)y~(x)

—24yg„'(x)q f(x), (4.5)

(-P —8m' sin'n)q~ (x) =- s„'qf(x) —48yg„2(x)q+(x)

—24xP„'(xb „(x), (4.8)

or in terms of the dimensionless variables,

k = (2m sinn) v, x = (2m sinn)x, (4.'t)

p = —8
4 2

cosh z " cosh z
(4.8)

where n =(nm/I). This evaluation is accurate
only for k -

ppz sin n && ~ and therefore must be
discussed. Recall that we shall utilize the results
of our calculation to compute a correction to the
energy, which will involve an integral over k, by
no means confined to small k. The integral will,
however, turn out to involve only the phase shift
and, at least for the sine-Gordon equation, the
approximation under study will be verified to
yield the exact phase shift.

With this caution, we obtain at this stage the
coupled equations

The considerations here are analogous to those
which have been carried out for the nonlinear
Schrodinger equation, where the physics has been
described completely. To compute one-loop cor-
rections, we need the scattering wave function,

X„„-=&n -1~0(x) ~n- I, », (4.1)

involving some suitable (here unspecified) bound-
ary condition on the scattering state and the bound
state "correlation amplitude, "

&n~y(x)~n 2, k)=q„*„, (4.2)

(4.3)

of which one matrix element, in the form (3.38),
has already been computed.

We here apply (4.3) to the computation of the
matrix elements (4.1) and (4.2). The special points
of the computation are that in the matrix elements
of P' we keep only terms linear in the new ampli-
tudes, and in the equation for p* we encounter the
energy difference

which as we learned in II, must be considered on
an equal footing. The equations for these quantities
will be obtained from H,«, Eq. (3.41), which yields
the field equation

(s,'-s„')j(x, t)+4m'Q(x, t) —8XQ'(x, t) =0,

( 2( 2) 2 4 2
cosh2g " cosh2z (4 9)

x v' —1+2iv tanhz +
1

cosh'zi '

(4.10)
$VZ'

(v' —1)-2iv cosh'z ' (4.11)

E„=(k'+ 4m')'/'. (4.12)

In terms of the dimensionless variables, this
differs from the nonrelativistic ease only in the
energy factor (2E~)'/' required by the Klein-Gordon
normalization in a "box, "

In this last form the equations also apply to the
sine-Gordon equation in the weak-coupling limit,
except that when we return to dimensional variables,
we must replace 2m by m and put in the appropri-
ately different value of e.

Equations (4.8) and (4.9) have been encountered
in our study of the cubic Schrodinger equation.
We may therefore recordthe solutioncorresponding
to a particle incident from x =- ~:

gVZ

a ) X.-(P 1) 2;,

[-2(u„+( k +4m)' /]' —4m' =-- k' —8m' sinn,

(4.4)
lim d~ ~ 2

q (4.13)
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From (4.10), we read the phase shift

2v
5(v) =tan ' (4.14)

B. Calculation of the energy

The one-loop correction, termed &E"', to the
energy, calculated from H,«by the same approxi-
mation that led to (4.5) and (4.6) takes the form

«| )= gf nc[(xxcsm) 'Is -I, +„(4*)'mIs -l, „c*ls'cI(„c-*sscm sm*cinn)-,'Is„l*
V

+ (4~') l I~.l'+ l l'.~.I'- 24~(e)'(Ix, I'+
I ~, I') - »&(y)'(x.n. +x,*~.*)] (4.15)

This is simplified considerably by combination with a virial theorem derivable from (4.5) and (4.6), namely

Pf [s (lx I* I, I
) sm*cmnlsl*)=gf [(Is xi*+ Is cl'& ssxs(lxl*+ Isl )ss'xs(xscxco )]

(4.16)

glvlng

«"'=gf (x*+4m')(Ixl'- lol*&

+gf sm*coc*nlsl*

=P-,'n, + Pf am*coo*nlol*. (4.17)

the lowest-order energy

m2E"'=8 (I 2)' 'sina
tf y 0

8m~ . 4m
sinn — 5m sin&.

3A,

Since

3 ' dI
2m ~ (k'+4m')'"'

(4.20)

(4.21)

Here, E(l. (4.13) has been used to simplify the
first term.

The final expression for the one-loop quantum
correction has three additional contributions:
(i) One is a contribution &E'4) which is the change
in the energy due to the change in the normaliza-
tion of the lowest-order function P„(x) induced by
the inclusion of one-loop corrections. Neither of
two methods described in II for the derivation of
this correction is applicable here, and we must
have recourse to the variational principle associ-
ated with our method. The argument is described
in Sec. IVC below. The result is

' ongf sm'coc*nlsl*, (4.18)

(4.19)

which cancels the second term of (4.1V). (ii) We
must add a term which guarantees that the vacuum
expectation value of II,«vanishes to the first loop
approximation. As is well known, this is the ex-
pression

where A is a cutoff, from (4.20) we obtain

2m S111Q dk

, (a'+4m')'" ' (4.22)

zEq- 2Eq

dE&'5(v) —mJ„2r
4m . 2m . dk P+4m'

sine — sinn
m m' „~ E„k +4m~sin2n '

(4.23)

which results from an integration by parts.
Finally, combination with (4.22) yields a finite

integral

4m&E = — sin~

The combination of (4.1V), (4.18), and (4.19) first
yields"

gE(3 )+gE(@)+ gE(5)

where the distinction between the unprimed (inter-
acting) sum and primed (noninteracting) sum can
only be enforced by starting with L finite, as de-
scribed by DHN. (iii) Finally, we must add a
self-energy correction obtained by writing for

4m . 4m (msin — cos i
——&

$2
(4.24)

2 dp,

(p2+ 1)'i'(p'+ sin'n)sin& cos Q
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This is the result for the quartic interaction model.
For the sine-Gordon theory, the correct result
is obtained by the replacements (quartic -sine-Gor-
don)

1
SZ ~ 2'~

(4.25)
nnz nm
M 2M'

where the same symbol M is used for the soliton
mass special to each theory.

To understand the result (4.24), we consider the
total energy E„"'+&E„=E„and demand

dE„
dt's

=82 cosQ

d& 2' g . de=2M cos(). +
2

()( s—inn, (4.26)
dtl W 2 dn '

i.e., as previously remarked, we may drop the
trace calculation and be assured that our c-number
matrix-element equations follow from (4.32) (as
we have indeed shown by repeated example). For
a solution, however, the Rayleigh-Ritz principle
requires the separate vanishing

i n m x n =0. (4.33)

Now a calculation gives

W X tl = CO + (0

information. In the semiclassical limit, we have

C (s (
L

) s) = C( s~H ) s) —C (s f x * (x) s) = 0,

(4.32)

so that (for the sine-Gordon theory)

dc( m ( ml' l
d. =

2M "~( M)~ "]~. (4.27)

s Q j(z,*(
( 4 [*-

[ S,. ')

+ Ea + Ea- 2~n ~a ~

We therefore take with c a constant of integration

n = (n+ c). (4.28)

Treating (4.24) as first terms of a Taylor expan-
sion, this allows us to write

nm(n —1+c)
n 2~I (4.29)

where M' is the soliton mass including the first
quantum correction, namely

(4.30)

To get a sensible result for n =1, i.e., to require
that E, -m as X-O, we choose c =1, which is the
sante choice as made by DHN."

For the quartic interaction there is a similar
result, only with

(4.31)

C. Normalization condition

We have left one loophole in the argument of
Sec. IVB, namely, the derivation of condition
(4.18). Here the arguments given in II will not
work. Fortunately, the variational principle
underlying our approach provides the required

The resulting M' is not the mass of the (t) soliton.
Here the effect of higher-order terms needs to be
considered.

„2=0 no loop, (4.35)

which is not directly useful because we do not know
what the norm is until after we have quantized
some other w'ay. However, when we allow one-
loop corrections, (4.33) and (4.34) tell us the
change in the norm due to the one-loop corrections.
In fact, remembering (4.13) and the approximation
(4.4), we find

sc)'c f q = —'xc f sm„**coo'o ~c„~*, (4.36)

where the left-hand side is the computed change
in the classical energy due to one-loop renormal-
ization of the classical solution g„, and thus (4.18)
is justified.

V. FIRST QUANTUM CORRECTIONS TO SINE-GORDON
THEORY: A COMPLETE CALCULATION

A. The scattering operator

This section can be considered as the logical
continuation of Sec. II. First, we construct a
semiclassical "scattering operator" p~~(x, A, I)) de-
fined by the equation [cf. (2.11)]

(n
~
lP~(x, n, &)

~
n') —= (n

~
(I)(x) [n', 0"). (5.1)

We then show that the first quantum correction

(4.34)

The condition (4.33) can then be considered for
our purposes in two steps. In the no-loop approx-
imation it tells us that



3306 ABRAHAM KLEIN AND FRANZ ERE JS 13

can be calculated from a phase shift associated
with this operator.

To find the quantity gt» we take a matrix of Eq.
(2.12)and if in the nonlinear interaction term we re-

~ 1

tain terms linear in P»tonly and use a semiclas-
sical approximation, assuming that gt» commutes
approximately with F, we obtain the semiclassical
operator equation

E»'g+ 2E»[P„A.]+ [[P„,h], h]+ 8„'g,

—m' cos[(WA. /m) Y(x, n, 8)]gt»= 0 (5.2)

in the space of the model oscillator states (n) [cf.
(2.15)]. At this point, it is consistent to view the
commutator brackets as Poisson brackets and
therefore to view the entire equation as a c-num-
ber equation where

Writing

e'L»x (5.4)

and introducing the explicit form for Y(x, n, 8),
(2.5), we must solve the equation

l
&„'+2ik&„—m' cos'n &»'+ 2imE» cosu 8»

8m' cosh'e tan'e cos'8 X+ cosh's+ tan'n cos'8

where

8 = m sine x, ct = (nm/2M} (5 8)

lim dxl X(»x, n, 8)l'= (2E,) ' (5.'f)

as before.
The exact solution of (5.5) normalized to (see

below)

[y»t, a]=us» -i—yt(x, n, (ot). (5.3) is

1 coshz sinh» e'" —1
(2E»L)' X (x n, 8) = 2(1+e" ) +—

1 tan'e cos'8 (1+e"') 1 tan'n(1+ e '") «1
(5.8)

where

D = cosh'z+ tan'n cos'8,

sin'ek'+(m —E»coen)' '~'
sin'c. k'+ (m+ E» coas)'

(5.9)

(5.10)
(5.12)

(5.13)

have verified our normalization by showing that
to the required order in k' and m'sin'e that

(nip, (x, 8, 8)ln) =- (,(x),

(nip»tin —2) =—q»*(x),

2v
tan6 =

v —1 ' m sino.
(5.11)

is the same phase shift as we found in the approxi-
mate theory of Sec. IV.

That Eq. (5.8) satisfies (5.5) we leave as an ex-
ercise to the reader. We did not quite discover
this solution, but in fact, "translated" it from
Appendix C of DHN (up to some factors of 2) using
the dictionary described in Sec. II and transform-
ing standing-wave to outgoing-wave solutions. We

and therefore the theory just presented contains
the linearized scattering theory of Sec. IV in the
limit. [To aid the enterprising reader, we note
that the contributions to (5.12), (5.13) come from
the first two terms of (5.8) and from the part of
the last term proportional to (pe") '.]

B. Quantum correction to the energy

We now utilize the scattering operator of Sec.
VA to calculate the one-loop contribution to the
energy. We start from the expression

2 H, , H+- 8„- '
cos —1 n (5.14)

and do the "sum over intermediate states. " The
purely bound-state contribution, E„' ', was com-
puted in Sec. II. We wish to add the contribution
which is bilinear in g». By the same approxima-
tions used to derive (5.2}, we then find the expres-
sion

n dx ~E~2 ~2+2 h, ~~ ~, h,

+!(s,q, (' !m*t:os[(Wi/m)rt~g, (*)n).

(5.15)
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By the same argument as used in Sec. II, this ex-
pression can be replaced by a time average over a
period. Let angular brackets without further in-
dication refer either to (5.15) or to the associated
classical average and we shall also write

his sabbatical year. He is indebted to all his col-
leagues at M. I. T. and at Harvard for the intel-
lectually stimulating atmosphere which they cre-
ate.

[|I'„,h] = is, g„. (5.16) APPENDIX A: LORENTZ COVARIANCE

We proceed to simplify (5.15). First we com-
bine it with a virial theorem derivable from (5.2),
namely

0= &Ez„'Iq„l'+la, q, l' le„y,

—m' cos[(~&/m) Yllt&I'&&,

thus obtaining

(5.17)

(5.18)

E."'-=E.= &6'(8,Y)'+-.'(s.Y)'

—(m'/X)[cos(vY/m)Y —1]j& (5.18)

=-'gE, &le,~,l'&.

This expression is the analog of ~"', Eq. (4.1V).
To obtain a final expression which truly repre-
sents the first quantum correction, we must take
the additional steps which follow (4.1V). These
steps are the same in detail as in the linearized
case except for the argument which cancels the
second term of (5.18) (see below). The final re-
sult is the same as found previously, since the
linearized calculation gave the correct phase
shift.

Finally, we give the argument which leads to
cancellation of the second term of (5.18). From
the classical expression,

1„1 -2 e -2H= dx —9'+ —(8„$) +—Q ——,Q2 2 " 2 4f

from which follows the equation of motion

(A1)

In this appendix we shall investigate the Lorentz
transformation properties of the states associated
with the classical breather solution. These states
are interpreted as heavy particles and their ener-
gy and momentum should thus transform like the
components of a Lorentz vector. In I we exten-
sively considered this question for the soliton of
the $4 theory and established proper Lorentz co-
variance for that case. As we shall essentially
follow the same procedure and use the same
methods here, we shall be brief and refer the
reader to I for details. As an example we shall
treat the sine-Gordon theory in the weak-coupling
regime. It is straightforward to extend the re-
sults away from this limit and also to the p~ the-
ory. We shall first derive the equations for g„,
X„~, and g„*~ with the inclusion of recoil and then
calculate the energy to demonstrate Lorentz co-
variance.

In the weak-coupling limit, keeping only the
first terms in the expansion of the interaction,
the sine-Gordon Hamiltonian becomes

8) Q
—8„$+m Q ——

&fP =0. (A2)

6Z, = 5&(e,Y)'&, (5.20)

utilizing the classical field equation for Y. This
change due to one-loop effects can be computed
from the constancy of

To find, including recoil effects, the analog to
g„"', Eq. (S.l), we take matrix elements of (A2)
between appropriate states of the set (ln(P)&).
This yields

CE„,(P) —E.(e)]' —(e -P)' —m9&~ —1(P)Itis(e)&
n n = e~Y &~ ~+~ (5.21)

=-',
&

—l(&)Ij'l~(e)& (A»
and the separate constancy of the second term on
the right-hand side. We thus obtain Defining the Fourier transform

6E, =6&(s~Y) &

as required.

(5.22)
4.,(x) = —,e'" ""&~—1(P)pl~(e)&,

(AS) is transformed into

-[E.,(~) -E.(~ ~)]'C.,( ) —s.'C.,( ) 't.,( )

(A4)
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—„e*"""& —1(&)I
j'l~«»

where p= -ie„. For large enough n, M„-M„y (l0„

«M„, and since &p&-m «M, we may expand to
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find

E„,(p) —E„(p+P)—= (o„(1—v')'/'+ vP,

where

V=' E. ,(p)'

(A6)

(A7)

so as to eliminate the linear derivative term in
(AS), then we obtain as equation for X„~

[(1 —v') 8„2+ (o„' —m2]x„2(x) +—lx„~(x)l 2x„~(x)= 0.
(A10)

The left hand side of (A5} becomes
2VQ ff(1 —v ), —22( 2}1/2 n+(()n —

1 2 '4p

(AS)

This equation has the solution

(A11)

(A9)

The right-hand side is treated in the same way
as described in detail iri I. If, in addition, the
phase of g„~ is changed by

ZVQPX
g„/t(x) = exp

( 2}1/2 Xn(&(x)&

where X„' is a solution of (A10) for v =0 or, equi-
valently, is a solution of (3.6).

1f the right-hand side of (AS) is evaluated more
carefully to the one-loop level, then (A10) is modi-
fied to

(A12)

where the amplitudes y and )7 are defined below in (A16) and (A26), respectively.
The equations for X and g* are found in an entirely analogous fashion. For X we consider the matrix

element (&2 —1(p)l()&&ln-1(q); », which is an obvious generalization of (4.1). From (A2} follows the equation

(-[E.-1(P)-E.-1(q)—~.]'+ (p —q —»'+ m'] &u —1(p}lulu —1(q} i2& =—
&&1 —1(P}lj'l)2 —1(q)» (A13)

where

—(P2+ m2)1/2

We define the Fourier transform

(A14)

lng

.v(d „(1—uv)x
'42(x v +2) p 1 2 ~n&&(x& v& +2)

(A16)

(A15)

The expansion analogous to (A6) in this case is .

E„,(p) —E„,(p+ p —» —(02 —= —(d2(l —uv) —vp,

(A16)

we find as the equation for X„~

(1 —v )S„+ 1, -m X„,(x, v, u),)
aP(1 —uv)'

= -UC„~2(x)x„,(x, v, (d,). (A19)

A solution of this equation is

where v is given by (AS) and

(A17)

Xnk(X& V& R2) = Cg„(X t Mn) &

where

/ g
(1 2)1 /2 t

(A20)

(A21)

The Fourier transform of the left-hand side of
(A13) then becomes

(1 —uv)(u,
)& (1 2)1 /2 t (A22)

[(1—v') S„'—2iv(o2(1 —uv) S„+(o22(1 —uv)2 —m']

x tp„(x, v, (dn).

Treating the right-hand side as in I and introduc-

and the constant c can be obtained from a consid-
eration of the commutation relation as shown in I.
yo is a solution of (A19} for v = 0.

Lastly, to find an equation for q* we proceed in
a similar fashion from the equation

(-[E„(p)—E,(q) —(d,]'+ (p —q —k)'+ m')(n(P)lyln —2(q), » =—(n(P)l(t&2ln -2(q), k). (A2S)
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We make use of the Fourier transform

Y2', (x, v, (d,) = —'e"""""&n(p)iyg —2(q), 0&

(A24)

and the expansion

E„(p) —E„,(p+ p —k) —= —vp+ uv(o, + 2(d„(1 —v')'/'.

(A25}

Introducing the phase change

Yee(x, v, rve) = exp I[(1—ev)e, —Xrv„(1 —v')' r ]

x q„*,(x, v, (d„), (A26)

we find, without giving details which are entirely
analogous to those above,

[(1—v') 9„2+ &u"- m2]q„*„(x,v, &o,) = ~„2 (x2)&l~,(x, v, ~,),
(A27)

and (A22), respectively, and q'„ is a solution of
(A27) for vanishing velocity. As in I the constant
c' can be found by studying the commutation rela-
tions.

Leaving aside questions of renormalization we
turn to the calculation of the energy to the one-
loop level. The methods used, basically evalua-
tion by sum rules, are the same as in I, to which
we refer for details. To find the energy E„(p) we
take the expectation value of (Al) in the state
in(p)&. In an obvious notation we shall use sub-
scripts x, y, q to denote from which intermediate
states the various contributions to the energy
come. For instance,

& (e), &l I (p)&

dk—dx )(+&)(x, v, ({&2)

where

„(1—uv)(d,
(] 2)1 /2 n' (A28)

x V28 2~+2(
n (] 2)2

X yn&)(X, V, M2), (A30)

Again, the function

(A2S)

is a solution of (A27). x' and &u2 are given by (A21)

where use has been made of the inverse of (A15},
(A18), and of an expansion analogous to (A16). We
only quote the results for the various contribu-
tions:

" dk
&~(p)ls„j'4(p)&, = —„dxX.*,(x, v, ,) -8.'+ ', „. X..(x, ~, ~,), (A31)

&)2(p) if/'g(p) &„=, —dx g„,(x, v, (o,) —v's„2+, , /,'—2&v„, q„*,(x, v, (g,), (A32)

-2
&n(p)i(s„(t))2I&2(p)&n= —dx q„,(x, n, (d,) -s„2+ 2 (,")|/,(d, (o2„2l( XV, (d,), (A33)

(x(P)~idee{&r)&, =2 dxKe{x)(-v'e„v { ",)Xx(x), (A34)

2 2

&n(p)i(s„j)'in(p)&„=2 dxX„,(x) -6„'+ ", X„,(x). (A35)

The evaluation of the mass term gives

m2 " dk, (x(d)Id*le(d)&=I* dx &x'I*+-,
'

—,"'„I(x..(x, v. x.&l'+In, (x. v, x.&l'lI. (A36)

and for the quartic term we obtain

—= -dr (x{d)ld &r((')&=-x r dxn, e(x)Ixlx„x{x)l + [

x Ilx., (x, v, rv )I'vlr)„(x, v, rve)I'III, e(x). (A37)
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Putting everything together, the energy is found to be

(d
r

E„(p)= dxx„*p(x) (1+v') -8„'+ "
—, +m2 X„p(x) —

4 dxlX„p(x)l

+ —
2 dxy„*„(x,v, (o,) (1+v2) -8„'+ 1,, ' +m' g„„(x,v, (o,)

~gi 7f V

+ — —dx7/„2(x~'g~ id2)
I
(1+p ) —8„+, 2~112 (d2 —2(d„2 +Bz Ising(x~ v~ (d2)

(A38)

To finally show that the energy (A37) has the correct Lorentz transformation properties we need a virial
theorem, which we shall derive from the equations of motion (A12), (A19), and (A2V). Multiplying (A12)
by (B„X„2)and using (A37) yields

(1 —1i2)8„(B„X„2)2+((O„2 —m2) B„X„22= ~ (B„X„*2).n x np ex x tip (A39)

In a similar way, but in addition integrating over momenta, we get from (A19) and (A2V), respectively,

I 2i 2' 2

(A40)

2

(A41)

Summing (A39)-(A41) and integrating gives the desired virial theorem. With the help of (A11), (A20),
and (A29) all quantities can be expressed in the rest frame and the virial theorem reads

1 "dk
]I dxlX„+(-8„+(d„)X„+— —(g„+(-8„+(d ))(„+Tj„[ 8„+((d -—2(d„) ]7/+)

I

=I'
i dx lx'.I'+2

i 2, (lx'.21'+I%,I') + dx&, (x'., x'.„4,). (A42)

The mass of the heavy particle associated with the state In(p)) is found by taking the energy E„, Eq.
(A38), in the rest frame where v =0. Making use of the virial theorem (A42), M„ takes the form

dxl 2x'„*( 8„'+ (u„')x„'+ (g,*(-8„'+—id, ')g„+ q'„,[ 8„'+ (~, —-2(o„)']n'„,] I. (A43)

E.(P) =(1 -2')'"~.+~'(I "2)1y2

M„
2)1 /2 &

(A44)

which shows that it indeed transforms as is ap-
propriate for the energy of a particle. In ananalo-
gous way the correct transformation properties
of the momentum density can be established.

By using (A11), (A20), (A21), and (A29) the en-
ergy E„(p), Eq. (A38), can be written in terms of
quantities taken in the rest frame. With the ex-
pression (A43) for the mass M„, we find for E„(p)

APPENDIX B: QUANTUM CORRECTIONS
TO THE SOI.ITON MASS

For the sake of completeness we shall in this
appendix briefly compile the results of calculating
the quantum corrections to the soliton mass, cf.
Ref. 6. We shall first consider the p4 theory. To
include the self-energy correction me write for
the soliton mass

4 mo'
0
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where sma is given by (4.21). We next consider
the contribution of the excited states to the soliton
mass, called ~, in Sec. IV. These states satisfy
the equation

d
—2m'+ 6Xp,'(x) g,(x) = ur, 'g„(x),

where the classical solution g, is given by

with the limiting value Slv for large v. Integrating
the second term in (88) by parts we find

vS Sm "dv ds 3m dv
2 w ~ 2m dv n (v'+ 4)'"

vs 3m Sm dv
2v (v + l)(v'+4)'"

y, (x) = tanhmx.
X

(83) (810)

The spectrum associated with (82) consists of a
discrete state with co,'= 3m' and a continuum with
vk'=k'+4m', to be interpreted as states of a soli-
ton and a free meson. From (82) the following
virial theorem can be derived:

Par„' ~ dxfy, (x)/'=g dx[/&„g„(x)f'-2m'fy, (x)/'
k

+ 6zy, '(x)~(J ']. (84)

The contribution to the soliton mass which re-
sults from the inclusion of these states is

(~),= g-,'(~; —2m') I dx~g, (x)~'
k ~I

The calculation for the sine-Gordon case pro-
ceeds along the same lines. The mass, including
the self-energy, is

M, =8 m, = —™6m', (811)

where

,

"'"dp 1
4 „„„2m (v'+1)'"' (812)

The excited states to be included at the one-loop
level satisfy the equation

d.le.~,( )I'
d3

-+ m cos
dÃ P,(x) q~(x) = (o~'y~(x),

(813}
(as)+3~+

l~
dx y,'(x)(y, (x)['.

k

Using the virial theorem (84) and the normaliza-
tion of g„(hM), becomes

where Q,(x) is given by (1.5). From the solutions
of (813) one finds the phase shift

(~),= g ~; dx~q, (x)~'
k

1
2 (dk. (86)

5 = —»:(v) —tan V.
2

(814)

The analogous expression (88) for the one-loop
mass correction is

(LM), =g 2&@~.
k'

From (81), (86), and (BV) we then find'» for the
one-loop correction to the soliton mass (k = vm)

(av)

d(d Sm dp
gm — 5+ (p )~/2

where 5 is the phase shift to be found from the
scattering solutions of (82). It can be written in
the form (e is the sign function)

In order to insure a vanishing expectation value
of the Hamiltonian in the vacuum we have to sub-
tract the corresponding expression for the nonin-
teracting system,

d(d dP 1
2m 2m (v +1)'I (81s)

m
&M = ——.

'lt'
(816)

The total mass can then be written as

8m' m 8m 3
(81V)

where X' is the renormalized coupling constant

where (811)and (812) were used for the self-
energy part. Integrating by parts the remaining
integral cancels the last term in (815) and we
obtain

6 = ve(v) —tan 'v —tan '—, (88) z'=X 1—
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