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Nonlinear Schrodinger equation: A testing ground for the quantization of nonlinear waves*
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Quantization of the nonlinear Schrodinger equation is carried out by the method due to Kerman and Klein. A
viable procedure is inferred from the quantum interpretation of the classical (soliton) solution. The ground-
state energy for a system with n particles is calculated to an accuracy which includes the first quantum
correction to the semiclassical result. It is demonstrated that the exact answer can be obtained systematically
only at the next level of approximation. For the calculation of the first quantum correction, the quantum
theory of the stability of periodic orbits in field theory is developed and discussed. Since one is dealing with a
finite many-body problem, the field theory can be written so that no infinite terms are encountered, but the
Hamiltonian can also be arti6cially rearranged so as to destory this feature. For learning purposes the
calculations are carried out with the various alternatives, and our methods prove capable of providing a
uniform final result.

I. INTRODUCTION

This is the second in a sequence of papers whose
aim is the development and exposition of a non-
perturbative, completely quantum-mechanical
approach to selected problems in the quantization
of nonlinear field theories. This method, first
developed for problems of collective motion in
the many-body problem, ' was introduced into the
present context by Goldstone and Jackiw' to treat
the problem of "quantization about a static solu-
tion of the classical nonlinear field equations. "
Our previous paper involved directly an extension
of this latter work. '

The present paper has two objectives. The first
is to show that the same general method is readily
applicable to instances where the known classical
solution is periodic in time and nondissipative,
i.e., the energy is finite and time-independent.
Such solutions are the analogs of bound orbits in
particle mechanics, and as has clearly been
shown, ' each gives rise upon quantization to a
spectrum of bound states. The second aim of the
present work is to show (by example) that prob-
lems of renormalization of infinities and higher-
order effects can be handled quite consistently
with the present method. In the previous treat-
ments, "this involve/ the classical theory of
stability of periodic orbits. In this work, we pre-
sent the analogous quantum theory, leaning in no
way on the classical analysis.

To achieve these aims, we have chosen an ex-
actly soluble, completely finite, nonrelativistic
field theory": nonrelativistic bosons of mass
m interacting in pairs via an attractive &-func-
tion potential, in one space dimension. The the-

ory in question is defined by the Hamiltonian

dx —g (x) —g(x)
d

2 pl dx

——,'K dx ~x ~x x x

[where P(x) is Purely a destruction operator] and
by the commutation relations

[N(x), 0'(y) 1
= 0(» y)- (1.2)

The theory defined by (1.1) and (1.2) is com-
pletely finite and possesses for each value of n,
where fI, is the number of particles and is the val-
ue of the constant of the motion,

just one bound state, with energy

24 k (1.4)

In addition, all possible scattering amplitudes are
known. '

As we come to understand from our method,
the "structure" of (1.4) is to be understood as
follows: (Ksm/II') is the only energy unit in the
problem. A semiclassical approximation then
yields the n' term only. Relative to this leading
term the quantum corrections generate a series
in reciprocal powers of n. Thus the first quan-
tum correction vanishes, as we shall rederive
repeatedly (for learning purposes). The second
quantum correction is needed to derive the sec-
ond term of (1.4). Since neither we nor previous
authors' has so far made this calculation, any
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implication in previous work that this term has
been derived from a field theory is in our opinion
slightly misleading. However, the methods de-
veloped here can certainly be applied to this prob-
lem. (Of course, we can include this term by
requiring that we obtain the known answer for
n= 1, as has been done in the previous work. )

The outline of this paper is as follows. We deal
in principle only with the bound-state problem,
though the calculation of quantum corrections
brings in successively more complicated scatter-
ing states as we go to higher order. In Secs. II-V,
we develop a method of attacking the bound-state
problem depending only on (1.1}-(1.3) and the
"field equation" which follows from (1.1) and (1.2},
namely (5 =m = 1 henceforth)

if(x) =[/(x), H]

=- —d, g(x) -Kg (x) g(x) g(x),
1 d'

which has only finite matrix elements. In develop-
ing the solution both the translational and Galilean
invariance of H play a role.

By formal commutation (1.1) becomes

A known solution' is
g/2 f ~t

( I ) ( /0
h(2~ })I/2 t (2.2)

with energy

E"=H(y") = —(242/3K) ((dj' ' . (2.3)

g( ) dx ( ) ~ ( )
dx (2.5)

Equation (2.3) can be used directly in a variant
of the Wilson-Sommerfeld quantization condition,
namely

(2.6)

This can be calculated directly or through the in-
termediary of a simple virial theorem obtainable
from (2.1) after removal of the time dependence,
namely

2

0= dx ~~ y&'& ]' ——y&'~ —,'K(]y&'~ ]') 2

2 dx

(2.4)

When added to the functional H(f '
), we have that

[which follows from the correspondence equation
e =(dE/dn)]. We thus find

——,'Z dx ~x x ~x x E =-—'Kn
n 24 (2.7)

+ —,'K&(0) dxP (x) f(x) . (1.6) &u„=(dE„/dn) =- 8K'n' (2.8)

When treated in this form the problem has the
essential features of relativistic one-dimensional
field theories requiring simple renormalizations.
In Secs. VI and VII we show that we have or can
develop the tools to deal with this problem. It
requires, in effect, that we understand fully the
quantum field theory of small oscillations about
bound spectra. Some of the more mathematical
details of the theory are treated in Appendix B.

In Appendix A, we treat a point which is .essen-
tial for future developments. In the present work,
we appear to lean heavily on the number quantiza-
tion condition following from (1.3). This is not
available for neutral theories. We therefore show
in Appendix A that the enforcement of the prop-
erty of Galilean invariance yields equivalent in-
formation.

-Kg (x, t) g(x, t) p(x, t) . (2 1)

II. SEMICLASSICAL QUANTIZATION

Consider (1.5) as a classical partial differential
equation

1 d'
if(x, t) = ——d, g(x, t)

The same result is obtained by substituting the
number quantization condition

(') '=2 2 a) '~' X=n

in (2.3). Inserting the relation (2.8) into (2.2)
shows that the latter represents a class of solu-
tions (t=0)

(c)
2 cosh(~Knx)

(2.10)

As developed in the next section, the physical
interpretation of (2.10) is the basis for our quan-
tum approach.

III. CLASSICAL RESULT AS LIMIT
OF A QUANTUM THEORY

Since the correspondence principle tells us that
e„=—E„-E„,[Eq. (2.8)], the quantum interpreta-
tion of P„', Eq (2.10), is,. in fact, obvious,
namely (up to terms of relative order n ')

(3.1)

In this interpretation
~
n) is the ground state for

n bosons, and we are neglecting center-of-mass
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m„=m[n/(n-1)]-n/(n —1) . (3.2)

The quantum method is based on the following
assumptions: (i) The matrix elements (3.1) are
the dominant elements in the theory for large n.
(ii) The classical field equation should be the

motion or recoil, thus taking the kinetic mass of
the states In), (n-1&, . . . to be infinite. This ap-
proximation will simplify the treatment of this
section and the next. Here we shall lean on a re-
sult which is not obvious, but will be proved in
Sec. V: To the first two orders in the energy,
namely O(n ) and O(n'), this "fixed source" ap-
proach is valid, provided that in the Hamiltonian
(and consequently in the equations of motion) we
replace m by an "enhanced" mass m„,

a(n&=Z„(n& .

From (1.5) and (3.1), we find

1 d'
(u„g„(x)=- d, g„(x)

(3.4)

—K(n-1(yt(x) y(x) ljl(x) In) . (3.5)

The desire to reach the classical equation sug-
gests a treelike approximation,

limit of a suitable matrix element of the quantum
field equation.

More carefully now we define

(3.3)

(n —1(g (x) g(x) g(x)(n) —= ( -n1(g (x)(n-2)(n-2(g(x) (n-1)(n 1(g-(x) (n)

=
I l.—,(x) I' l.(x)

= (4'„(x)('4'„(x) 1+0—I (3.6)

Thus (3.5) becomes

]. d'
~.f.(x) =-

2 d .4.(x) -&IP.(x) I'0.(x), (3.V)

which is the classical equation, to leading order. In the same approximation

n dX X X Pl & ff X Pl

The combination of (3.V) and (3.8) implies (3.1), our starting point.
Next, using the same approximation as in (3.6) we calculate the energy and find

Z„=(n(a(n&

a+ + -~ + —'E n~~ +

= —~K'rP [n/(n —1)]+SEPn'= E'+ ~~2 Z'n'—, (3.9)

in which we have consistently kept only the first
two orders of n.

The correct coefficient of n' is known to be
zero. ' ' The calculation in (3.9), as will be clar-
ified in Sec. V, includes the effect of recoil and of
n fluctuation. What is missing to this order is the
effect of virtual dissociation of the bound state
(n) into (n —1) and a single particle (called one-
loop effects in field theory and ground-state cor-
relations in the many-body problem). These are
studied in the next section.

IV. THE ONE-LOOP QUANTUM CORRECTION

In contrast to relativistic field theories, the
effects considered here are finite at all stages of
calculation. They take into account the fact that

the state g(x) (n) has nonvanishing overlap with
states other than (n-1). We must then weighthe
relative overlaps with various states of n-1 par-
ticles such as I

n —2, &), I n —3, &» k, &,

In —3, 2(k)), . . . . Here (n —2, )h& is a scattering
state (with suitable boundary conditions) contain-
ing asymptotically one free boson, momentum k,
and the bound state (n-2&; (n-3, k„k,) is asym-
ptotically a three-particle state; In —3, 2(k)& is
asymptotically a two-particle state consisting
of a heavy and a light bound state. In this class-
ification, only the kinetic energy of the light par-
ticles is taken into account, though this approxi-
mation must be rectified if the next quantum cor-
rection is sought.

To sort out the different orders (in n ') of the
quantum theory, an assumption which proves to be
self-consistent is that
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(n-2, kirk(x) ln& —(n-1 I k(x) In- 1, k& - n '~'(n- ltd(x) tn&,

(n —3, k„k, ( rP(x) ( n) - (n —1, k
I }t) ( n, k').»„««» -(n —3, 2(k) ( |t)(x) ( n) - n ' (n —1(g(x) ( n),

(4.1)

(4.2)

y»(x) —= (n —1(tt)(x) (n —1, k), (4.3)

with an obvious extension to more complex ampli-
tudes if (4.1) and (4.2) are correct. The n de-
pendence in (4.1) and (4.2) was guessed by com-
paring the energy correction derived below with
the discussion following (1.4), but only the exis-
tence of a suitable hierarchy of magnitudes need
be assumed in orde to proceed.

To calculate the O(n') terms in E„, we require
only the amplitudes in (4.1). We thus define

q„(x) =-(n-2, k(y(x)(n& . (4.4)

where the n dependence of these amplitudes and
the scattering state boundary conditions are both
under stood.

If our estimate (4.1) and (4.2) is correct, then
Eq. (3.9) for the energy has to be augmented by
terms at most quadratic in the amplitudes (4.3)
and (4.4). As a typical contribution we have

(n(}t) (x) g (x) It)(x) }t)(x)(n) = "classical'* term

+ g (n(g (x)(n 2, k'&-(n-2, k'(Qt(x)(n-3, k"&
I ' a" a"'

~ »

x &n —3, k"
I p(x) I n —2, k'"

& &n —2, k"'
I tt)(x) I n& + ~ ~

We write consistently

(n —2, k'(g (x)(n —3, k"& =5». „~(n-2(g (x) (n —3)(1+O(n ')] .

This reduces the explicit term in (4.5) to

g I~.()i'tn, ()t',

(4.5)

(4.6)

(4.V)

(4.8)

ignoring n fluctuations in this already corrective term In addi.tion to terms such as (4.V), there occurs
as part of (4.5) a term of the form

Q (n(y (x) (n- 1) (n-1(y (x) (n-2) (n-2(g(x)(n-2, k) (n-2, k(}}l(x)(n)—= y„'(x) y»(x) q»(x) .

For low-order calculations enumeration of the various contributions is quite straightforward. For higher-
order effects the development of an algorithm would be helpful.

The method of analysis having been exemplified, we next quote the expression. for E„calculated by this
means and certified correct to the first two orders in n, namely (g =f„)

1 d 2
z ~ 1 dE„=— dx —})t)(x) —» K dx }t) (x) + ——

2 K dx }t) (x)2 m„Wax 2 dig

—e„pf )g (x)«}*+ g «& g (x)
1 d

«0'(~)ln, (*})'—l~p f«4'(*)(n x +n."x:) . . . (4.9)

The presence of the first of the one-loop terms
in (4.9) requires additional explanation. The equa-
tion for |j}„(x)itself is modified by the. quantum
fluctuations, andwe must ask if the corresponding
change in }t)„will affect the energy to the order

considered. This is investigated by replacing
g„-P„+6/ in (3.9) and examining terms linear in

Utilizing the classical equation (3.'I), we find
easily the additional terms «}„5(Jdxg„') This is.
not zero, since we have a change in the normal-
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ization condition to this order

n= n, '

dx ~x x n

X+ 4X gg, x

QX „=— GX f/I, X

(4.10)

We have now accounted fully for the expression
(4 9)

We have thus reduced the problem to the coxn-
putation of the matrix elements [(2.3) and (2.4)],
g~ and g, . We show that to the required order,

If(., ~& = [Z„+(u /2)](s, ~&, (4.11)

are

these satisfy linear coupled differential equations
defining a quantum scattering problem mhich is the
quantum analog of the classical theory of stability of
periodic orbits against small perturbations. How-
ever, nothing is gained for our purposes by pur-
suing this analogy.

The equations for ~ and )I„* (it is these functions
which are coupled} are derived from (1.5) by the
arguments illustrated sufficiently in this section,
insisting only that terms linear in these ampli-
tudes be retained. The resulting equations, re-
membering also that

(k'/2)X))(x) = -
2 d~ ~(x) -K[2/(x)~(x)+ P(x)q,*(x)],1

I d'
[2 .—(I'/2)]n.*( ) = —

2 ~n.*( ) —K[2/( )n.*( )+0'( )X ( )]
(4.12)

Omitted terms are at least of relative order [(q)'/tg)']-n '.
Before solving these equations, let us note that they can be used to simplify the energy (4.9}. Here we

need only the second of the integrated forms of (4.12),

g(n'/x) f«Ix (*)I lp f*=««x (~)

-x» Q f «(x(~) Ix (n) I'- l» Q J «(n(~)(ni(*)x (*)+n;(»)x'(*)),

p (x~„——,' ') fn« In (x)l l p. f'«=—In, (~)l'
(4.13)

—2»g f «n (~)ln„(*)( ;»g f «((—(ii)(n.(*)x (*)+n,"(~)x,'(x)),

to reduce the energy to the simpler expression [cf. (3.9)]

„= »( iii»„)+ii———,'» dx(i'(x) + Q (~ —,'ti') f I („x—)l'. n (4.14)

We then turn to the solution of (4.12). In terms
of the dimensionless variables

z = 2Knx, v = (2/Kn)k, (4.15)

and introducing the values of P„(x) and (x)„explicit-
ly, we have in place of (4.13}the dimensionless
forms

Equation (4.16) has two bound-state solutions
which do not correspond to any real physical state
but rather express our failure to conserve both
momentum and particle number in lowest approx-
imation. These mill be discussed in Appendix B.

We consider here the usual scattering solution
defined by the condition

d' 4 2
dc " cosh'z ' cosh'z

(4.15)
4

dc' " cosh'x " cosh's ""'

Iim y'„'(e) =~e'"', (4.17)

where I, is the length of the line to which the sys-
tem is confined. This solution, containing no re-
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flected wave, is calculations of (4.24), the purpose of which is to
deepen our understanding of technique.

v -1+2ivtanhz+2 1
cosh2z

L'~' (v -1)—2iv cosh's '

We notice that"
4vg

Iim )('„'(z)= e" '&")
Ll/2

(4.is)

(4.19)

V. MODIFICATIONS FROM CENTER-OF-MASS MOTION

In effect, we start aQ over and take into account
the motion of the n-particle bound states. Consid-
er the equation of motion for the matrix element

e„,(x)=2 Jt
dp'e' '-'"&n —i(p)(y(o)ln(p')&.

(5.i)
Assuming that the energy of the state (n(p)& is
exactly of the form

where

5(v) = tan '[2v/(v' —1}]. (4.20)
E.(p) =E.(0) + (P'/2M. ),
M. -=mn,

(5.2)

(5.3)
We also notice that

I./2

1m XV gv G&c 1
-I./2

(4.21)

At the moment, we re(Iuire from solution (4.18)
only the value of the last term of (4.14). With the
usual replacement

for which there is a well-known elementary proof,
we derive from the e(Iuation of motion (1.5)

Ir' . GE~ +
(

i +P 2M„——(P'/2M„, )I@~(x)Gh'

0 „~(x)+interaction term. (5.4)
1 d'

I d(.

k

we find

g (~ ——,'k') JI (q, (x) ('= —,K'n'.

(4.22)

(4.23)

The transformation

4'~(x) = exp[ipx/(n —1)Q„(x), (5.5)

where the implied P independence of the second
factor is to be verified (it is in fact a general con-
sequence of Galilean invariance), reduces (5.5) to
the form

If we combine this with (3.9), we find

8„=-~K4n'[1+0(n 2)j. (4.24)

This result is as far as we shall go in this paper.
The remainder of our discussion will be devoted
first to a substantiation of the method utilized thus
far- and second to several partially independent re-

1
&o„P„(x)= — ~ P„(x)

282„CBP

+ exp[-ipx/(n —1}jx (interaction term} .
(5.5)

The interaction term is, in fact,

(5.V)

where the n dependence has been suppressed. The
utilization of the inverse of (5.1) and the ansatz
(5.5) proves the latter to be viable, and we obtain
as our final result

the previously defined classical solution. This
distinction will be maintained by writing (()„'(x) for
the latter or even P~')(x, m) and I()~„')(x,m„) to render
a further distinction. Here we note that

'„') x, m =- (Am))) 2n

2 cosh(-,'Kmnx} ' (5.9)

The function defined by (5.8) differs slightly from

having returned the mass explicitly to the expres-
sion in order to aid the reader to follow the sub-
sequent argument.
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To appreciate the significance of (5.5), we recal-
culate the various physical quantities

E„(0)=E,(n, m„) — E—,(n, m)
3

nL= nP dx ~x x np

-=+& (P)lt'(0)I -1(P')&

x&» —1(P') I 0(0) ln(p)&~, (5.10)

3=E,(n, m„) ——V,

d
=E„(n,m„) --—„V„ (5.19)

E.(P)L -=& (P) lffl (P)&. (5.11)

Repeating the type of reasoning which led to (5.8),
we find

in agreement with (3.9).
We conclude this section with one more elemen-

tary exercise by calculating the "classical" part
of the energy associated with the first two terms
of (1.6): Call this E„' We .find

jl dx P„'(x)= n'/(n —1),

E„(p) = (p'/2mn)+ E„(0),

(5.12)

(5.18)

E„'= 2 dx —„x

n 1
(5.20)

z„(o)=(" ')'-: Jd.(,d'(„)'
Further manipulation shows that

E„'= E„(0)+ (2/n) V,

=--K n —-K n1 2 3 1 2 2
24 12 (5.21)

—~K dx „x „, x

dx (j)~'(x, m„)' = n. (5.15)

This suggests that we rewrite (5.14) in terms of
the function g(x, m„). We thus find by another
elementary exercise

(5.14)

Equations (5.8) and (5.12)-(5.14) describe cor-
rectly the results of recoil and n fluctuation. They
can therefore be used to justify the corresponding
calculation of Sec. IV. This can be done in several
equivalent ways. A little thought (or possibly a
lot of thought) will convince the reader that it suf-
fices to insert into (5.14) Eq. (5.9) multiplied by
fn/(n -1)]'~', the factor needed to renormalize to
(5.12), and then to expand the corresponding ener-
gy expression in powers of n '. This same pro-
cedure may be reformulated as follows: First,
with P„as just defined, an elementary exercise
tells us that (5.12) is equivalent to the expression

which we require for later reference. The last
term in (1.6) -6(0) must be treated with the quan-
tum fluctuations which, term by term, will be in-
finite in this treatment.

The effect of recoil on the scattering equation
(4.12) has also been studied, but the result is
needed only in Appendix A, where it will be quoted.

VI. COMPLETENESS AND COMMUTATION RELATIONS

The main result of this section, the complete-
ness relation for the scattering functions of Sec.
IV, is needed to carry through the manipulation
of the next section. The impatient reader need
only be willing to accept the final result, Eq. (6.5).

We derive the relation twice, first by straight-
forward calculation, second from the commutation
relation (1.2). A detailed discussion of the physi-
cal significance of certain peculiar terms which
occur in it is relegated to Appendix B.

We note that Eqs. (4. 12) imply the orthogonality
relation

3

z„(0)=( )).(n, m„).

(The classical calculation may be written

E =T+V,
1T = —2V =-'Kmn,

(5.16)

(5.1V)

(5.18)

(and we have already discovered that the norm is
unity). This suggests that we study the integral

C(», X) = f 2, fX.(x)X*(S)- na(»)n.*(~)] (6 2)
dk

returning the mass to its p)ace. ) It follows that to
the first two orders in n, (5.16) may be rewritten

The integral over k is readily evaluated, and we
find
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C(x, x') = 5(x —x')+ —2'Kne ' '
( Iz —z'I —1)(1—tanhz tanhz') + e(z —z')(Iz —z'I —1)(tanhz —tanhz')

1 1, , tant' tanhz '
Z Z 2 +

cosh z coco'z' coco z' coslPz)

where e(x) is the sign function. With the help of the identity

exp(- I x —y I ) = coshx coshy —sinh x sinhy —e(x —y) sinh x coshy+ e(x —y) cosh x sinhy,

(6.3) can be reduced to the form (through straightforward but slightly tedious algebra)

8 8 8
C(x, x') = ~(x-x') ——4,(x)4.(y)+ —x—+I—k.(x)4.(y)

with P„given by (5.9), for example. Equivalent forms used later may be obtained from the identity

0 (x) = 0 (x)+ 0,(x).
8 1 g 8

(6.8)

(6.4)

(6.5)

(6.6)

We next verify (6.5) with the help of the commutator

& (P)II:4( ), 0'(3)) I
(P)&=l' (PIP»( -3)

= 1.5(x- y). (6.7)

A consistent approximation to (6.V) is to include number conservation and momentum conservation for the
bound intermediate states but to ignore it for the scattering states, the same approximation that has been
made throughout. We thus find

XA ++ Xk X+ Qk ++ Ok 3+ + n+y ++ n+y 3+ n++ n 3+ + + 3

d 6x-y . 68

The terms depending on g„are to leading order

1 8« —,„l().(x z ()(.(s + ()I- -„ (.(x z ()(.(s z ()--„ (x- s) —,, ((.(x + ()(.(s z ())I

« —[(„(x+ ()('„(X+ ())—— (x + ()—+ (C + ()—(„(x+ ()('„(V + () I, (6.9)
8 j, 8 8

the eqivalence of the two forms following upon
integration by parts. The resulting integrand of
(6.8) can now be required to be independent of g,
whence (6.5) is regained.

Since only (6.5) is needed for the calculations
which follow, further discussion is relegated to
Appendix B.

VII. ALTERNATE CALCULATION
OF FIRST QUANTUM CORRECTION

correction, utilizing as a basis the form (1.6) of
the Hamiltonian. This calculation has elements
quite analogous to those which occur in relativistic
field theories requiring renormalization. We shall
thereby establish toe soundness of our approach for
application to such cases.

Starting from Eq. (1.6) and utilizing the standard
reasoning, we obtain a new expression for E„(0),
namely

With the help of the completeness condition (6.5),
we now give a new account of the first quantum

2
E„(0)=Z„'+-2'A6(0)n- ~g I

dxIq, (x) I'+-.' g dx —q, ( )x
k

(x) [2 I )Ia(x) I
+ 2 I &2(x)

I
+ 2&2(x) )Ia(x) + 2 y)s (x)q)s (x)],

k
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where E„' is given by (5.21).
This can be rewritten for our needs with the

help of a special case of (6.5), namely

g [tX (x) t'- tn, (x) t']=&(0)- —q„'(x),

and with the help of (4.12), where the aim is to
eliminate the interaction terms in (7.1). We thus
find

E„(O)=Z„'+ (2/n)V, +K6(0)n

+ ,'g -~t d -.'k [t&,(x) t' t~, (x) t']

dx-'[t s„y,( ) t'- ts„q„( ) t'].
(7.3)

Though (7.3) is not the final form sought, we
check it, nevertheless, by explicit introduction of
the solutions (4.18). Each of the last two terms of
(7.3) is cubically divergent, but these leading di-
vergences cancel, leaving, after a small calcu-
lation, the expression

kp = 2pv,

kg+ 26 = 2pw,
(7.9)

k~ —= k~ —(2 6/I. ) . (7.10)

Remembering also (V.S), this yields altogether

(7.11)

where 6(v) is given by (4.20). The integral (V.11)
is again finite and conveniently reduced by in-
tegration by parts to the form

Qg„= —K pg.

dv 1
27K v +1

= 8K'.1 2 2

the required result.

(7.12)

VIII. CUBIC SCHRODINGER EQUATION FOR FERMIONS

corresponding sum for the noninteracting system.
Following a standard argument, we have

dV V—2Kn 2ii (v + 1)

When combined with the term

(7.4)

(7.5)

I.et us now interpret the field g(x) as an N-com-
ponent fermion field g, (x), i =1,... ,N. Thus we
replace (1.1) and (1.2) by the expressions (sum-
mation convention)

H=2
)

dx —g, (x) —q, (x)
we obtain a finite sum and value 4K'n' which leads
again to a complete cancellation of O(n') terms in
(V.S).

We now have our final go at (7.3). In the penulti-
mate term, we introduce the normalization
(4.21). For the last term, we use yet another
special case of the completeness relation,

—2K' t dxgt(x)g~~(x)g, ( )xq, ()x, .

Q, (x), g,'(y))=5,.P(x- y),
and (1.4) becomes

dx j& g& = ~

(8.1)

(8.2)

(8.3)

= lim s„s„6(x—y) —[s„|tI(x)]'+—g(x), p(x) .4 2 8

z.(o) = -—,', ~'n' ,'z'n'+ 5E„, —

with

(7.7)

6E„=2 g 2k' —2 p 2(k')'+%6(0)n, (7.8)

where the first sum is over the k values of the
interacting system in a box and the second is the

When Eq. (7.6) is introduced into (7.3), the last
two terms of the former yield a contribution 8K n'.
By consequence of all of the above, (7.3) is trans-
formed into the expression

If we consider the ground state for any n&N, it is
degenerate; the different states are labeled
ti, i„), where i, . ~ i„ is an ordered set of dis-
tinct integers from the set 1 ~ ~

¹ The matrix
element with which we would begin our study,

&i', i'„,
I g, (x) ti, (8.4)

is zero unless j is in the set i, ~ ~ i„and not in
the primed set (which otherwise must coincide with
the unprimed set). If the indices match properly,
the matrix element depends only on the total num-
ber and not on the individual indices. A com-
pletely analogous simplification occurs for the
scattering matrix elements. When these points
are taken into account along with the observation
that the algebra of the operators played no es-
sential role in the first, finite calculation of the
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energy which was carried out in Secs. III-V, we
reach the almost immediate conclusion that the
Fermi system enjoys the same ground-state en-
ergy spectrum as the Bose system. Amusing dif-
ferences in the completeness relations implied
by the algebra will not be discussed here.

APPENDIX A: GALILEAN INVARIANCE
AND ENERGY SELF-CONSISTENCY

In the body of this paper we have depended
heavily on the existence of number conservation.
Indeed it served an essential role as quantiza-
tion condition, as exemplified by Eq. (4.10). How-
ever, this raises the problem of how one can pro-
ceed in theories without number conservation or
equivalent (such as neutral scalar theories). It
is comforting, therefore, to be able to prove that
the same normalization condition emerges from
the insistence on Galilean invariance.

We first recall the elementary basis for such
considerations translated into the language of
second quantization: In terms of the center-of-
mass operator

X(x, h, p)-=e'k k "~"Xk ~~(x),
Y' (x h P) = e' * "g*y )k)(x)

(A5)

(A6)

To the required order this implies (4.10).

(A7)

APPENDIX B: QUANTUM THEORY OF STABILITY
OF PERIODIC ORBITS

The scattering equations (4.12) are rewritten as

X = —
2 X -K(2( X+ g rl*) —+X

d 2 2

2m dx
(B1)

where, in particular, it is the result (A6) that is
needed below.

At this point we then repeat and extend the cal-
culation summarized in (5.2)-(5.14) including all
the quantum fluctuation contributions to first order
order. The quantity E„(0) is unaffected. The term
proportional to p' yields the condition

2 2

dx y„'(x) + —,p dx I qk(x) I'

NX= dx ~xx x,
the state

I (p))= ' 'I (o))

(A1)

(A2)

where

, q* -A(2$'q*+ g'X) —&op*,
2m dx'

1
k —co ~

2

2m
(B2)

has the energy E„(0)+(p'/2nm). We must then de-
mand that when we calculate &n (p) I

H In(p)) by the
sum over states method we reproduce the P2 term
exactly.

In our calculation the coefficient of (P'/2m) will
present itself as a power series in n '. We re-
quire that the leading term be n ' and that all
higher-order terms vanish. To reproduce (4.10)
we shallneedterms of order n ' in this series.

For this purpose we must include center-of-
mass motion in the scattering functions. We only
quote the needed results: Defining the amplitudes

d~'
X(x h p)=

x &(n- 1)(p) le(0) l(n- I»'»»

Equations (Bl) have the matrix form (v, are Pauli
matrices)

ev, Z =MZ,

z (x)

(B3)

(B4)

and M is a Hermitian differential operator matrix.
In general, an equation of the form (B3) may have
both bound and continuum solutions. In order not
to have to make the distinction in the formal dis-
cussion that follows, we imagine "box" normaliza-
tion. The solutions of (B3) possess a number of
interesting properties. Most proofs are left as
exercises. "

(i) Orthogonality. Consider two solutions
&,(e,), &.(e. ):

(A3)
Z pv'3Z g = 'O, (85)

dA~
yw(x h P) P e l(k'+k k)x

&&n(p)
I
&'(0)

I
«- 2)(p'» »

by studying the equations of motion for these coup-
led quantities, we can show that to leading order
in the corrections

(ii) Doubling. To every solution Z„, e„there
is another solution 7]Z*„with opposed eigenvalue

This doubling fails only when e„=0, which
occurs in many cases of interest (see below).

(iii) Stability. We return to our particular case.
Let us aM for the condition that the semiclassical
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energy

-3K x

two independent solutions for e =0, namely,

(q„(x) ~Z'(x)=
~

(-q„(x))
(814)

be a local minimum for states of a given n. We
investigate this condition by introducing into (86)
the comparison functions

subject to the condition

(88)

A straightforward calculation, utilizing (88) and
the equation satisfied by )l), shows that for small

E (q+()) —X„„(()=-,' Jdx))x(x)MB(x), (88)

(Blo)

where M is the same matrix as occurs in (83).
The condition for a local minimum is thus that
M be positive-definite, i.e., that all its eigen-
values be positive. This is not so in our case,
but we shall turn below to the difficulties thus
engendered. We first pursue the reasoning associ-
ated with the simpler case that M is positive-
definite.

(iv) Sign of norm. From (83), we then derive

(d („/dx)
Z& &(x) =

(dq„fdx)
(815)

It will later be clear that by consequence of the
calculations of Sec. VI there are no others. In
contrast to the scattering solutions discussed in
Sec. IV, these are not associated with any physical
states of the system. They represent "spurious"
solutions which signal the fact that the semi-
classical solution violates number conservation
and momentum conservation, respectively. This
is clear from the considerations of Sec. VI in
which concordance between the completeness re-
lation computed directly and that inferred from
the commutation relation requires precisely this
interpretation.

(viii) Altered completeness relation. We turn
finally to the problem of how the completeness
relation (812) is altered in the presence of zero
eigenvalues. Let there be a set of linearly inde-
pendent zero-energy solutions Z', i=1, . . . , q
satisfying

Mg(') =0. (816)

g«) ~ Z(i) 0
~ ~

~3 (817)

Assume M is real and that the Z ' are real. As
in (814) and (815), the upper and lower components
of Z' are equal up to a sign, and therefore

g~v73Z„= g~v~g v
& 0. (811)

We may also assume by construction that

Thus the sign of the norm JZ„7,Z „ is the sign
of the energy. We designate the pairs as g „,
Z.--v Z*. .

(v) Completeness. If M is Hermitian and posi-
tive-definite, the solutions of (83) satisfy the
completeness condition

g(') g( ) 0
x

3

~

~
t

I ~ (818)

and of course

(819)

Let us now imagine that we alter the operator

Q [Z „+(x)Zt~( y) 7, -Z, -(x)Zt-( y)r, ]= 15(x —y) . M-M'=M+5M(5a, ~ 5u ), (82o)

(812)

(vi) Normalization. From (85) and (812) we
lear n

Z ~v ' v'3Z v ~ = +1 .~
v 3 v

I~ (813)

(vii) Zero eigenvalues We first consi.der the
situation for our special case (81). We can find

where 3f is positive-definite, but q of the eigen-
values are small. I.et the vectors (2(I of them)
associated with the small eigenvalues be designated
g,i . The passage to zero eigenvalues requires a
rescaling of the solutions because of the discontin-
uous jump in norm from zl to 0. This rescaling
is most easily investigated in terms of different
functions, as we see below.

In the limit of zero eigenvalue, we lose one
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solution. By suitable choice of phases, let us take
the surviving solution as the limit of the sum

Utilizing (821) and (822), we replace (826) by
the appropriate sum and difference equations,
which up to higher-order terms become

()Z(i& (Z(&&+Zi )

and suppose that

(821) uZ(,"= 0,
~Z(i) ~(&) ~ Z(&)

p 3 e

(82V)

(826)

(822)

fz(i) ~ Z(c) Z(g)T Z(i) 0e 3 e o 3 o (823)

The three orthonormalization conditions involving
Z,' translate into Z(i& = (&i)i/2Z(i&

y(i& =Z(i&/(~i)i/2

have finite limits. This yields the equations

(829)

(830)

Now if (824) and (825) are to have a finite limit
and (827) and (828) are to be finite after rescaling,
the only possible solution is that the quantities

l Z(')v Z(')= Z(')Y Z(') =1e 3 p 3 e (824) fZ('), Z(') = Y('), Y(') = 03 3

If we examine the contribution of these terms to
the completeness relation, we find

Z&,'&(x)Z,*~(y)~, -Z&'&(x)Z'*' t(y) ~,

=Z" (x)z"~(y)~ +Z" (x)Z "~(y)~ (825)
MZ") =0,

(Bs1)

(Bs2)

(Bss)

sd' 7' Z' = (M+ 5M)Z ' (826)

In the limit e' -0, Z,' -0, but the discontinuity
of the conventional norm forces Z,' -~. However,
the structure of (824) and (825) suggests that it
may be possible to rescale these quantities so
that their product is and remains finite.

This can be substantiated precisely by studying
the limit of the equations

MY'& = r, z~'& . (Bs4)

These equations determine an auxiliary set of
functions Y ', needed to form a complete set of
functions.

To summarize: When there are zero eigenvalues
the completeness relation reads

g [Z „+(x)Z„+(y)1., -Z „-(x)Z„-(y) ]7g+[Z"'(x)Y"'t(y)1.,+ Y"'(x)Z"&~(y)T,]= 5(x —y)1, (835)

where the Y~'& satisfy (up to a possible scale) special example, where it is easy to show that

M Y")= ~,Z"), (836) Y(i&( )
sz (x)

Bn
(836)

Y(i)~ Z(i)
3

(Bsv)

To illustrate this formulation, we return to our

(Bsg)

satisfy (836). Aside from the direct solution of
(836), we verify (838) and (839) by showing that
when inserted into (835) they yield the complete-
ness condition (4.5). This is so.
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