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Covariant Heisenberg picture of a relativistic positive-energy theory:
The operator algebra of the rigid string
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The covariant operator Heisenberg equations of motion and commutation relations following from positive-

energy wave equations are obtained. The resulting theory is identical to that of a dual string model restricted
to excitations of only the lowest normal modes. It is suggested that recent classical Dirac-bracket formulations
of the full dual string are subject to reinterpretation, and are apparently Poincare covariant in four
dimensions. The nucleus of the complete set of covariant quantum string relations is obtained from the
restricted model, and it is shown that covariant normal-mode operators and those of the null plane cannot
both have simple creation-operator character.

I. INTRODUCTION

The proper quantization of the relativistic dual
string model of Nambu' has been a very interest-
ing problem to which considerable effort has been
applied. ' The result, ' following from a null-plane
quantization procedure, that the Lorentz algebra
is satisfied only in 26 space-time dimensions is
physically unacceptable, while the model itself
is nonetheless useful. Several authors4 have re-
cently suggested that a more physical result might
perhaps be obtained should the quantization be
completed in other than the null-plane formalism,
and quite recently Marnelius' presented a classi-
cal Dirac-bracket algebra of the relativistic string
in an arbitrary, orthonormal gauge.

These results are only partially correct; how-
ever, our analysis, although restricted, is suffi-
cient to indicate that at the classical bracket level,
and within the "proper-time" gauge, covariance
in four dimensions is immediate. At the quantum
level, the restricted nature of the present model
causes the question to remain open, but indicates
that the same result is highly probable.

The model which we shall consider represents
a generalization of the spinless, relativistic posi-
tive-energy theory of Dirac. ' In Ref. 7, hereafter
designated I, a spin- —„positive-energy relativis-
tic wave equation was presented. This equation
had the property, lacking in the spinless theory,
that a minimal coupling to an Abelian gauge field,
such as the electromagnetic field, couldbe formally
accommodated. More importantly, for our present
purpose, the wave-function solution to this equa-
tion has a null-plane character and is one of the
eigenstates of a null-plane Hamiltonian theory of
composite elementary particles advanced by Bie-
denharn, Han, and van Dam. ' A null-plane Poin-
care algebra for this model has been reported. '

Subsequently, in Ref. 10, hereafter designated

II, the classical relativistic limit of the theory
proposed in I was obtained in terms of a Poisson-
bracket algebra, and it was noticed that the re-
sult could be interpreted as describing the end
point of a classical string whose motion was re-
stricted to translations and rotations only, i.e.,
one having only the lowest covariant normal
modes.

Now, such a model represents a severe restric-
tion of a true string. However, it has the con-
siderable advantage of being obtained via a limit
procedure from a theory which is already con-
sistent, fully covariant, and quantized. We find
that the results of an analysis of the quantum
Heisenberg picture, while restricted, neverthe-
less contain much of the nucleus of the proper
quantization rules for an unrestricted theory.

In Sec. H, we recall the positive-energy theory
of I on which our results are based. In Sec. III,
a complete covariant Heisenberg operator alge-
bra based on a generalized Lorentz-scalar Ham-
iltonian is obtained. In Sec. IV, we obtain the
indispensable set of operator and state conditions
following from the complete model, and recall,
as well, the corresponding conditions which ob-
tain in the classical limit of II. Section V con-
tains the results of our analysis recast into the
language of the dual string model. There we dis-
cuss also the effects of the restricted nature of
our model upon the generality of our results and
indicate our conclusions about a complete model.
A very important result about the relationship
between null-plane and manifestly covariant boson
operators is developed in the Appendix.

II. POSITIVE-ENERGY %AVE EQUATIONS

The model which we shall consider was pre-
sented and discussed at length in I. For complete-
ness, and in order to fix the notation, we shall re-
view here some of the essential elements of that
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[r„,r„]= is„„,
[r„,s„a]= z (gee r~ -su~ ra)

[Sq S~~]=i(Eq~s„g Zq-ps~„+S~ssq~ -Z~Sqe).

(2.1)

The representation content of realizations of this
Lie algebra may be conveniently specified in
terms of the Lorentz scalar operators

F-=—,'S„,S~',

G =—8 &" SqvS~6,

and

D=r~r„,
(2.2)

the first two of which are the Casimir operators
of the Lorentz group.

We shall be concerned with the Majorana re-
presentation" of the Lorentz group, one which
may be defined by the statements

discus saon.
Our model is based on covariant eave equations

involving operators I'„and S„„which are realiza-
tions of the Lie algebra of SO(3, 2):

When this realization is used, the representation
conditions (2.3) are operator identities. It follows
then that"

and

F "S~v -—Svp I'" = —
~ iI'v,

S~pS v= ~ iSpv —FpX' —2',
(2.6)

Spa ~v Spv~n+Sn ~p

The wave equation considered in (I) is

(mr„- ~p„+zS„„p")y = 0, (2.7)

3fpv
——Lpv+S pv (2.8)

where I(.
' and m are constants, with m&0. Use of

the realization (2.5) implies that the wave function
is g = t}(x",q„q, ), a single component function of
the indicated arguments. The wave equation (2.7)
is not Lorentz-invariant; rather it is Lorentz-co-
variant. If it is satisfied in any one Lorentz
frame, then it is satisfied in every Lorentz frame.
The wave function g transforms under the Lorentz
group generated by the operators

F= —+

=0,

1D=-2.
(2.3)

where I-„,=-x„P„-x„P„denotes the usual space-
time generators, and the operators S„„account
for the spin degrees of freedom of the states.

The covariant equation (2.7) comprises four con-
ditions upon the single function g. Let (re 0)

Majorana's representation is sometimes realized
in terms of infinite-dimensional Hermitian ma-
trices. However, we choose to consider a realiza-
tion" as differential operators on the space of I;
functions of two dimensionless variables, q, and

%'e define the quantum conjugates q&
= (- i ) 6/aq„so that (j, k = 1, 2)

[q), nal= ~&;a (2.4)

Then the Hermitian operators I'„and S„,may be
given the realization

Tq = (mrs+ —i—s q,p') .=I (2.9)

Then (2.7) becomes

T~g =P qg, (2.10)

[1'„,r„]y=0. (2.11)

and the necessary condition that there exist a
wave function which is simultaneously a solution
to the four equations (2.10) is that

1r, = .( q, v}, + q,-q.-),

I', = —,
'

(q,q, +q,q, ),
I",= —' (q,'+ q,' —q, ' —q,'),

Szo g (qi gs q~ +)2 ) ~

1
S20 ~ (7102 qlq2)

30 2 (ql 11 02q2) I

su = 2 (qi'q2 —q2'%) i

s„=—,
'

(q,
' +q, ' —q,

' —q, '),
1S 3

=
& (q6'2+Ra'f}2) ~

(2.5)

Now,

[T„,T„]=—(m P)s„——(P-„T„P„Tq), -

(P' -m') y = 0 . (2.13)

Any solution to Eq. (2.7) is thus a timelike state
of fixed mass, m.

Other consequences of Eq. (2.7) following direct-
ly from the use of Eqs. (2.3) and (2.6) are the equa-
tions

(2.12)

so that the six conditions (2.11) reduce via (2.2),
(2.3), and (2.10) to the single condition
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(1'"P„—«m) g =0

(2.14)

of his new equation, a function which is also the
solution, for «=-,', to Eq. (2.7),

~'g = —m'(«' —4) g,
gD =My, (q, p) exp(- ip "x„), (2.15)

where 5 „ is the Pauli-Lubanski operator follow-
ing from Eq. (2.8). Further, it was shown in (I)
that solutions to Eq. (2.7) exist if and only if the
constant a has one of the fixed values K= & or
K =1.

The first of Eqs. (2.14) is just the usual form of
Majorana's equation. " It follows, for the case z
=-'„ that the solution to Eqs. (2.7) is just the
(timelike) massive, spinless solution of Major-
ana's equation. As is well known, timelike solu-
tions of Majorana's equation have strictly positive
energies, so that Eq. (2.7) defines a relativistic
positive-energy system. In the only other con-
sistent case, that of « = 1, Eq. (2.7) describes the
(timelike) massive spin--,' solution of Majorana's
equation, and the positive-energy character is
again present.

The spinless, positive-energy equation recently
presented' by Dirac is considerably different in
form from Eq. (2.7), in the spinless case of « =-', .
However, it was shown in I that the two spinless
theories are completely equivalent. Dirac's new
equation simply defines a projection upon the in-
finite solution spectrum of Majorana's equation,
selecting the spinless, timelike state. Dirac has
given the general momentum-eigenstate solution

—2((, (e,e, )] I (2.16)

The general momentum-eigenfunction solution
to the spin- —,

' equation of I, i.e. , Eq. (2.7) with ](:=1,
is given by

y = (Aq, +Bq, ) y, (q, p) exp(- ip "x„),
with A. and B arbitrary. The spin-& character is
reflected in the two degrees of freedom A. and B
transforming' one into the other under the action
of the Lorentz group in the manner appropriate to
a spin-& system.

The wave function (2.15) has been interpreted by
Biedenharn, Han, and van Dam' as a description
of the ground state of a relativistic composite par-
ticle bound by a harmonic-oscillator interaction
specified in the null plane. The spin--, wave func-
tion (2.17) is the first excited state of this null-
plane relativistic dynamical system. The Ham-
iltonian of which these two wave functions are
eigenfunctions has the null-plane Galilean form'

where N is a normalization factor, and where"

(,(e, p) = exp
I

—
2 [ee(e,' eq, '] e i(,(e,* —e.')

Pa+Pa

+~ —(r +r )+ '(r -r )-2—'r -2—'r + — ' ' (r +r )
(P,'+P, ') « p+ (P,'+P, ')

G 2p p 0 3 ~ 0 3 ~ 1 ~ 2 p ~2 0 3 (2.18)

where P, =—(P, +P, ) plays the role of a Galilean
"mass, " and the constant ~ represents a freedom
of choice of scale present due to the Galilean
structure. ' [The results of Ref. 9 indicate that
the choice e =m is required in order to comple-
ment the definition of the M„„chosen in Eq. (2.8).]

The harmonic-oscillator nature of the interac-
tion is reflected in the appearance of the I „with-
in the bracketed interaction term of the Hamilto-
nian. The first two terms within the bracket in-
volving (I', + r, ) are just the usual harmonic-oscil-
lator terms when the particular Majorana repre-
sentation (2.5), chosen for its null-plane form, is
used. The remaining terms within the bracket
are present in order to ensure' the full covariance
of the theory. The Hamiltonian, of course, in-
volves the boson operators a;, a& constructed in
the usual way from the q;, q&, however, when ex-
pressed in terms of operators a;(P), a,.(P) obtained
from the a&, a, via a P"-dependent Lorentz trans-
formation, '" then the interaction part assumes

the form of a sum over simple number operators,
N;(P) It follo.ws that the number of excited oscil-
lator quanta present in a given eigenstate of the
properly constructed operator (2.18) is an invari-
ant to all observers, so that eigenfunctions of H&

may simultaneously satisfy covariant wave equa-
tions, such as (2.7).

The particular generator p =—2H~ of Biedenharn,
Han, and van Dam has been integrated' into an (in-
teracting) Lie algebra of the complete Poincare
group, but one which closes properly only when
applied to the states. At the Poincare level, the
full set of eigenfunctions of H~ define a Chew-
Frautschi mass-spin spectrum (m' s) ((dP, be-
comes a Poincare-invariant constant), but only
within an infinite-direct-sum Hilbert space. A
unified Poincare Hilbert space incorporating these
eigenfunctions as other than a direct sum is, of
course, impossible. " The fu11 set of states is a
unified entity only when analyzed in the submani-
fold of the null-plane, and not at the full Poincare
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four-space level. "
The implication of these results for the dual

string model is that unless one wishes to obtain
the trivial case, " then any set of null-plane gen-
erators incorporating a number operator Hamilto-
nian and realizing the Poincare algebra in four di-
mensions may close their commutation relations
only upon the states of the theory.

Returning the discussion to the case at hand,
the Majorana representation (2.5), it has so far
been possible to write single mass, single spin
covariant wave equations for the eigenfunctions of
Bo only for the cases" of no quanta (spin zero)
and one quantum (spin —,'), i.e. , Eq. (2.7). The
Regge behavior of these cases may, of course, be
extracted, subject to the remarks above, via the
Hamiltonian JI~ in a null-plane analysis. '

We shall turn, in the next section, to the covari-
ant four-space Heisenberg picture of the theory
defined by Eq. (2.7). The classical (nonquantum)
relativistic limit theory has been reported in II.
There it was found that the variables x" exhibit a
type of Zitte~bezvegung, at the classical level, and
that this motion was a planar rotation at the veloc-
ity of light, hence our interpretation of this struc-
ture as a rigid string, with end point x". We shall
obtain a similar Zittexbezvegung at the quantum
level, along with a complete operator algebra
whose direct relation to the dual string operator
algebra will be shown in Sec. V.

[r„,r„]=o. (3.2)

C =-~m-r9 (3.3)

We view 4 as a generalized Hamiltonian" with an
associated c-number parameter v. The theory is
then defined by Eq. (3.3), along with the state con-
straints

C=O

I'= m'

and, of course,

Tp=Pp,

(3.4a)

(3.4b)

where we have defined the operator M'=-P "P„and
expressed Eq. (2.13) in constraint form.

The operator equations of motion in this picture
are

Nevertheless, the Heisenberg pictures generated
by each of the individual operators T„are alterna-
tive and exclusive. Each such picture must be de-
veloped and viewed singly, and therefore presents
a picture which is not manifestly covariant. The
Heisenberg picture generated by T„ for instance,
singles out x, as a parameter, and necessarily
results in a three-vector formulation equivalent
to the usual Heisenberg picture.

Following Dirac, ' we shall consider here the
Heisenberg picture generated by a Lorentz scalar
operator suggested by Eq. (2.14):

III. A HEISENBERG PICTURE
i

d
=[P",4],

In a nonrelativistic theory, one has a single
Hamiltonian operator, and the Heisenberg picture
is obtained via a time-dependent unitary transfor-
mation generated by the Hamiltonian. In a rela-
tivistic theory, there exist, in general, several
operators which may be considered to be general-
ized Hamiltonians and which may be used to gen-
erate alternative Heisenberg pictures.

In particular, in the present case, one may
focus upon the operators T„of Eq. (2.9), for ~ = —,

or ~=1. The theory defined by Eq. (2.7) may then
be written

=[r&, c],
and

=[s ' c]

which may be evaluated, via (2.1), to yield

dP
4'T

(3.5a)

T„=P„, (3.1)

where the symbol = denotes a condition holding
only when the operators are applied to the states
of the theory, and not as an operator identity.

In view of Eq. (3.1), the operator T, of Eq. (2.9)
is the "usual" Hamiltonian operator. Now the four
operators T„, each of which is a Hamiltonian in
the relativistic sense, do not commute, as dem-
onstrated in Eq. (2.12). Qf course, according to
Eq. (2.11),

dX'&
= -S~'P

67
(3.5b)

and

dS&'
PPPu PIJP P

d7

The linear equations (3.5b) may be iterated to ob-
tain
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O'I'"
, +M'I'»=P»(xm —C), (3.6)

where the combination (a m —C ) has been substi-
tuted for the operator I'uP„.

Dirac has repeatedly emphasized" that con-
straint equations such as (3.4) may not be em-
ployed until all commutators, such as those of
Eq. (3.5a), have been evaluated. In his partial
discussion' of some of the Heisenberg equations
of the Majorana theory, Dirac chose to make the
substitutions 4 =0 and M'=m' at this point, and
consequently obtained operator solutions valid
only upon states. Qur purpose is to study the
complete operator solutions, especially the com-
mutation relations, so that we shall retain Eq.
(3.6) in its present form.

The mathematical problem presented in Eq.
(3.6) is a simple one, since M', P", and 4 are all
7 independent, mutually commuting operators.
The solution to (3.6) may be obtained by inspec-
tion, and the set (3.5b) then solved serially to ob-
tain, finally,

I'" =A" cosMv+B» sinM7+M 'P»(Km —4),
S""=(A»P"-A'P")M 'sinMv

—(B"P"—B'P")M ' cos Mv+D»",

and

1T" = —(mA" —iB»M) cosMv
K

1
+ —(mB»+ ZA»M) s111MT

+ M'P»—(~ m —4 ) .
K

(3.10)

Then the state conditions (3.4) yield the results

Au= iau

so that, from (3.7),

(3.11)

Qur use of the operator M, and also M ', is
valid so long as the spectrum of the operator M'
is strictly positive, and M is defined to be the
positive square root operator. Therefore, the
solutions represented in Eq. (3.7) retain their
validity only so long as the state conditions pre-
clude zero mass and negative energy. In a gener-
al SO(3, 2) theory, such as Majorana's, or the
usual Dirac equation, the results (3.7) are limited
to the positive-energy timelike sector. For the
positive-energy theory defined by Eq. (2.7), the
results are general.

In terms of the solutions (3.7), and using the
conditions (3.9), we obtain Eq. (3.3) as an identi-
ty, while the operators T„of Eq. (2.9) assume
the form

M 'P»7(tc m —4')

+A"M 'sinM7-BuM 'cosM7+C",
xu= —Puv+ —e +CuK -fm7

m tn
(3.12)

where the operators A", Bu, C", and D"' are v-
independent integration "constants. " The commu-
tators of the operators of Eq. (3.7) with P" yield
the information

[A",P"] = [B",P'] = 0,
[D»', p ]=o,

and

[C" P']= —ig"".
(3.8)

The last result above indicates that the operator
Cu is that part of the xu affected by a translation
of axes, and therefore describes an origin for that
motion of the x" which is parameterized by v..

The equations (3.5), since they are linear, im-
pose conditions upon the A", B",Duv which read

The positive-energy nature of the theory is re-
flected here in the absence of the corresponding
negative-frequency Zitterbemegung term in Eq.
(3.12). Nevertheless, since Zitterbeavegung be-
havior is present, we must interpret its origin in
terms of the composite-particle nature of the
states. If expectation values are taken, then, of
course, these terms vanish.

Turning our attention now to the commutation
relations among the operators on the right-hand
side of Eq. (3.7), we may evaluate the commutator
of, say, I'u with 4 and impose the requirement
given by Eq. (3.5a) to obtain the results

[A», 4 ] = iMB»

(3.13)

AuP
u

=BuP =DuvP, =p
u (3.9)

[B»,4] = —iMA».

and which are to be understood as operator equa-
tions, not as conditions upon the states. Conse-
quently, the operators A", Bu, and Duv must ex-
plicitly contain the P» in such a way that (3.9) are
algebraic identities. Explicit expressions demon-
strating this fact are given in the Appendix.

The same procedure applied sequentially to Su'
and xu yields

[D "e]=0
(3.14)

[C",4] = iM 'P "(»m —4) .
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and

[A",D 8]=i(g» M'P -"P8)A"

—z(g~ -M-9 ~P )A', (3.16)

[B" D"']=f(g»-M 'P&P')B-

—& (g" -M 'P "P ) Bs,

while those among the S"' yield, then,

[D"" D"8) =i(gI' M 2PuP )D -8

—i(g» -M-'P ~P') D'"

+ i(g'8 M-2P P&)D

—i(g"" M'P'P")-D "8. (3.17)

The requirement that x" commute with F' yields
the new information that

[C~,A" ] = iM-2A9"

(3.18)

[C",B"]=iM 'B"P"

Then the vanishing of the commutator of x" with
S 8 yields

Further requirements on the operators Au, Bu,
Cu, and D""are obtained from the fact that the
operators of Eq. (3.7) must obey the SO(3, 2) Lie
algebra. The commutation relations between I "
and F" yield the results

[Au A ] [Bv B ]=iD

(3.15)

[A",B"] = [A",B"].
Then the commutation relations between I"u and
S 8 yield, in addition,

[A",B"]=i(g"'-M 'P"P")M '(am —4),

I= 2 vn 8u

so that, with'(3. 22),

8'" = 2
&"" D„~I'g

and, via (3.8) and (3.9),

(3.23)

(3.24)

W' = —-'D
u, D u "M'. (3.25)

The operators M"" of Eq. (3.22) and W" of Eq.
(3.24) are thus manifestly v-independent constants
of the motion, as expected. Further, it is the op-
erator D"' which should be understood as the fun-
damental intrinsic spin tensor, not only because
of Eqs. (3.22) and (3.25), but in particular because
of the additional property from Eq. (3.9) that
Du"P„=O. It follows that in the proper Lorentz
frame, the space-time components of D""vanish
when acting upon the states, as is proper for an
intrinsic spin tensor.

This same property permits the definition

Du~= ~- ~u 8W P,n 8~ (3.26)

so that the D"' may be uniquely extracted from
the Pauli-Lubanski operators. Alternatively,
since we are viewing the xu, P u, 1"u, and S"' as
the primary operators of this theory, according
to Eq. (3.5), we may express the D"' in terms of
the primary set as

D~"=SI'"+M 2P~S"P--M-2P'S~" P„, (3.27)

from which the properties developed above may be
directly obtained.

The covariant intrinsic spin operators D""do
not obey the usual commutation relations of the
M"", but rather those of Eq. (3.17), as first
pointed out by Finkelstein. "

Before closing this section, we would like to
consider one further operator,

[C",D"8]= —iM '(D" P8 -D"8P"), (3.19) X"—= C" —'M 'P "P"C,——2C,P"P "M ' (3.28)

while the fact that the xu are self-commuting
yields, finally,

in terms of which the Lorentz generators may
also be expressed in the fundamental form

[C ~, C" ] = —iM 'D ~". - (3.20) Nu =X'I'u Xup +Du (3.29)

Thus, the operators Cu which fix the origin of that
motion of xu which is parameterized by v, and
which might be termed the "origin" operators,
are noncommuting.
Other operators of interest are the Lorentz

group generators Mu, and the Pauli-Lubanski op-
erators W". We have, from Eq. (2.8),

X9 +P Xu=O
u u

and

I Xu=-'~
u 2

(3.30a)

(3.30b)

involving the D~" Using (3.28). and the properties
of the Cu, we obtain the results

mu"=x"I u -x9 '+Su",

so that, with (3.7),

~u C pu Cup'+Du

The Pauli-Lubanski operator is

(3.21)

(3.22)

so that X" has a particularly interesting repre-
sentation in terms of the Poincare generators:

X~ = —'M-2(M ~ "P„+P„M~"-). (3.31)

This representation identifies X" as the postulated
"center" operator of Finkelstein and also of
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Bacry." The results

[X&,I ")=- i(g»-M-'I ~P"),

[x~, M']=0,

[x&, w']=o

(3.32a)

(3.32b)

(8.82c)

and

~~" BD„A,=O,

c~"asD B =. 0II a g

D~"(~m —C) =(A~B"-A'B~)M.

(4.4a}

(4.4b)

(4.4c)

[x",x"] = —iM 'M-» (3.82d)

follow" from (3.30) and (3.31).
Now, the result (3.28) indicates that X", since

it is independent of 7, is properly to be considered
an operator of origin type, rather than one of
"center" type. Further, the quantity I' "C„can-
not, for convenience, be set to zero in a quantum
theory, as demonstrated, for instance, by the
essential difference between Eqs. (8.20) and
(3.32d). However, after a transition to the clas-
sical level, the result (3.30a) indicates that the
right-hand side of (3.30b) vanishes, and one may
then set P "C„, or even C" itself, to zero (see II),
provided that no classical bracket relations are
subsequently computed. These remarks will have
a bearing on our discussion of the classical string
model results in Sec. V.

A ~A „=B~B„=—(~2+ —,'), (4.5a)

A "8

with

(4.5b)

A~= zB~. (4.5c}

The fact that the operators A" and B" do not com-
mute precludes any contradiction from arising. -

Applying A„on the left to both sides of Eq. (4.5c),
we obtain the result

A&Aq =iA "Bp,

so that (4.5a) and (4.5b) yield the constraint

(4.6}

Quite properly, no conditions on the magnitude of
the "origin" operators C" may be obtained. "

It is instructive at this point to compare the con-
ditions following from (4.la} and (4.2a) with that
of Eq. (3.11), i.e.,

IV. MAGNITUDES OF THE INVARIANTS K +2=pK.1 3 (4.V)

In obtaining the results of the last section, we
have made use of the SO(3, 2) Lie algebra, Eq.
(2.1), but not of the fact that we are considering
a particular realization of the operators I'„,S„„
for which the Lorentz scalar operators of Eq.
(2.2) have the values (2.8).

The representation condition D = ——,', applied
to the operators I'„of Eq. (S.V), yields the infor-
mation

Thus, we recover the result of (I) that the set of
equations (2.V) is consistent if and only if the con-
stant ~ has one of the fixed values ~= 2 or ~ =1.
We are also reminded that we may replace oper-
ators with their values upon states only when they
have been commuted to the right of an expression.

We may also obtain the magnitude of the opera-
tor W' of Eq. (3.25). The result (4.3) implies that

A "Aq B"Bq ———g -M——'(am —4)'

and

(4.la)
w'=-,'M'-(~-c)',

so that

(4.8)

A"B +B"A =0. (4.1b)
w'= -m2(~'--,'), (4.9)

The first of the identities (2.6) then yields the
relations

A "B„=~ i M '(zm —4),
A" D„„=-—,'iA„—M 'B,(Km —4),

and

B"D» —~i B„+M 'A„(am —4) .

(4.2a)

(4.2b)

(4.2c)

D""D„„=——,'+2M-'(~m —4 )'. (4.3)

Finally, the condition 6 =0, in the form of the
last of identities (2.6), implies the results

Subsequently, the representation condition F= ——',
may be shown to imply that

in agreement with (2.14). It follows again that
the states are spinless if g= —,

' and have spin
~ if g=1.

It is convenient at this point to recall the results
developed in II. A completely defined nonquantum
relativistic theory may be obtained from Eqs.
(3.3), (3.4a), and (3.5) via the familiar technique
of replacing commutators with Poisson brackets.
This possibility exists for the current theory be-
cause the choice of the (unitary) Majorana repre-
sentation of SO(3, 2) permits the definition of the
operators I'„,S„„asdifferential operators, as in
Eq. (2.5). These definitions may be taken directly
to the classical level as definitions of classical
functions of conjugate real variables. Poisson
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brackets may then be unambigously defined in
terms of classical partial derivatives.

One obtains then, in a classical fashion, exactly
the same Eqs. (3.5b). Now, however, the Eqs.
(3.4a) must be applied as exact equations of
motion, so that we arrive instead at the classical
solutions

pgJ KI = —P +A. cosm7+B sinmv,
m

S""'=' (2 p" -2 "p")m 'sinmr

—(B"p" B"p"-)m 'cosm ~+a"",
(4.10)

pc[ Kx" = —P"7.+A."m 'sinmv -B"m 'cosmg+C",

A. A. p,
=B Bp = —K,p p cl (4.11a)

(4.11b)

(4.12)

where the operator P" has been replaced by the
classical vector p", and the conditions (3.9) are
again applicable. The condition (3.4b) may not
be applied classically, "but is replaced by the
condition p' ~ m.

One next confronts the problem of the magnitudes
of the invariants E, D, and G. [Use of the quantum
values (2.3) results in an inconsistent theory. ] As
shown in II, the correct conditions upon Nese
quantities follows from the fact that they are c-
number quantum operators, and implies that,
as classical functions, they must vanish identic-
ally. Of course, these conditions are met when
the particular functional forms (2.5) are used in
a classical evaluation.

We obtain, then, results differing from those
above:

we shall recast these classical results and their
quantum counterparts into the notation customarily
employed' in discussions of the dual string, and
shall draw' conclusions about the proper eovariant
quantization of the string model.

V. THE RIGID STRING

The classical, relativistic string, in the ortho-
normal gauge, may be characterized by the form"

1 p ~ TIx"(e, r )=(2a ')'~'(q"+'a,"v'+i+ —a„"eosnve '"'),
n 40 i'

(5.1)

where n' is a constant to be identified with the
slope of the leading trajectory, the integers n are
positive, negative, or zero, (a„")*=a"„,v' is an
unconstrained dimensionless parameter, and
o& [0, vJ is a parameter specifying a point along
the string. The x"(c, ~') of Eq. (5.1) obeys the
equations of motion following from the Nambu
action' provided that

8x 8xti

87 80'

(5.2)

8x 8xp 8x 8xp
8g 87' 80' 80'

relatiotl. s which are taken to represent' the classi-
cal counterparts of the Virasoro constraints.

Once the form (5.1) is specified, then the pro-
perties of the string may be completely deter-
mined in terms of those of either of its end points.
Taking, say, @=0, we may then focus upon the
quantity

1x"(7') = (2c.')"' q" + a,"7'+ i Q —a„"e '"", (5.3)
n &0

subject to the single condition

(4.13) V"Vp =0,
where

(5.4a)

eD""= A "B"-A B" . (4.14)

It was shown in II to follow that, in the proper
Lorentz frame, where the time variable is g7, the
motion of the classical three-vector x is a rota-
tion in the plane defined by the orthogonal three-
vectors A and B, with a velocity c.

These results were interpreted as being des-
criptive of a massive, extended particle composed
of two massless constituents, where the particle
mass, m, is dynamical in origin and the spin is
due to the co-rotation of the constituents. Alter-
natively, an interpretation in terms of a rigid
strong was suggested. " In the following section

y)( — (2o, l)~n a)) +
di n&0

(5.4b)

The opinion is usually expressed' that, after
quantization, the quantities a„", n4 0, should
acquire the status of simple creation and annihila-
tion operators. As we shall see, this opinion is
incorrect. Another classical result, that a," is,
up to a constant, the four-momentum, is also
technically incorrect at the quantum level. In
order to establish these results, it is necessary
to make identifications of the quantities appearing
in Eqs. (5.3) and (5.4) with those of the model of
the previous sections. This may be accomplished
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by setting a„" = 0, ~n ~

~ 2, so that the string con-
sidered is one which is restricted to excitations
of only the lowest normal modes, i.e., to transla-
tions and rigid rotations. Clearly, this represents
a mutilation of the concept of the string. Never-
theless, considerable information may be obtained
from such a restricted model. Dimensional con-
siderations shall also be important in what follows,
so that we shall absorb the factor (2o, ')'~' and
replace z' by a dimensional parameter z.

We replace, then, the model (5.3) and (5.4) by
the restricted model

c1 j. 2
O(g) '0( g)

= -2K (5.11b)

(5.12)

so that the condition L, =O is also satisfied. We
should emphasize that the results (5.10) follow
from the Lie algebra, while those of (5.11) follow
from the requirement, discussed in Sec. IV, that
the invariant function D of Eq. (2.2) must vanish
at the classical level.

The final classical result of interest may be
obtained from Eq. (4.14),

pvcl .I p v Q v
1(D = 2&(a(»a(» —a(»a(») q

x"(r)=q" +a,"r+—a(",)e i™T=a(" »es™' (5 5)
so that, from (3.22),

Jfv clKM"" = mq"a," -mq"a', + KD"', (5.13)
subject to

where

r" =- =a" +a" e ' '+a" e' 'dx"
o (x) ( x)

(5.6a)

(5.6b)

which, at least for the spin- —,
' case, which might

accommodate couplings, is just the usual result"
in dimensional form.

We are now prepared to turn our attention to the
quantum problem, and we focus on the results
(3.7)

and m has the dimensions of mass in order that v

should have the dimensions of reciprocal mass
(time).

A direct correspondence may now be established
with the classical limit results (4.10) via the iden-
tifications

I'" =M 'P" (~m —4)+A" cosM7+B" sinMT

(5.14a)

x =C" +M P (((m —4)r+ A" M'sinMv

qP
~~ CP (5.7a)

-B"M 'cosMT. (5.14b)

gp c'
pp (5.Vb)

The same type of correspondence may be estab-
lished with a quantum version of Eqs. (5.5) and
(5.6b) via

a(",)
'='

—,'(A" +iB"),

a(",)
'=' -', (A" -iB").

(5.7c)

(5.7d)

qP ( If

ao =M 'P" (Km —4),
a(",) =-,'(A" + iB"),

(5.15a)

(5.15b)

(5.15c)

In this restricted model, there are only three
conditions following from Eq. (5.6a), namely, a(",) =-,'(A" -iB"). (5.15d)

I„=O, n=1, 0, -1,
where

1Lp= z(a, a, + 2a(» a(»)
Lg = Qo ' Q(g)

L-, -ao ~ a(,) .
The classical results, from Eq. (3.9),

Pv =B"p

(5.8)

(5.9a)

(5.9b)

(5.9c)

(5.10) [q P Pu] igPv (S.l.6a)

The reader is urged to take particular note of
the difference between Eqs. (5.7b) and (5.15b).
The other forms (5.15) are the same as those of
(5.7) due to the fact that proper dimensional
factors were introduced" into (5.5) and (5.6b).

The quantum relations developed from the model
in Sec. III may now be translated into the notation
of the string model. We obtain, from (3.8) (n =1,
0, -1),

then imply that two of the conditions are identically
satisfied. Moreover, (5.7b) yields

(5.11a)

while the results (4.11) yield

[a„",P"]=0, alln (5.16b)

while, from (3.13) and (3.14), we obtain

[a,",q"]=i(g"" MP"P")M '-(((m -4) (5.1Va)
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[a,",a„"]=nM-'P" a„",

and, from (3 ~ 18) and (3.20),

[q", a„"]=i M 'P"a„", no 0

and

[q~, q" ] = iM-'1)~'.

(5.17b}

(5.18a)

(5.18b)

Before listing the remaining relations, it is
worthwhile to consider, at thi s point, a compari-
son with recent classical results. Applying Eqs.
(5 ~ 15b), (5 ~ 17a), and (5 ~ 17b) to the states of the
theory, we obtain

employed in the interpretation of bracket rela-
tions, particularly in any theory in which the
Hami ltonian vanishes as a result of the equations
of motion. While Eqs. (5.2 lb) and (5.21c) are
correct as they stand, one may not use Eq. (5.2 la}
in the inte rpretation of these results vis-a -vis
translations . The proper quantum relation s from
which to make a classical transition with subse-
quent interpretation of the effects of trans lations
are the Eqs. (5 ~ 16)~

Continuing now with the quantum relations fol-
lowing from the analysis of Sec. IG, we may ex-
press the generator of homogeneous Lore ntz
transf ormations as

and

au " ~u (5 ~ 19R)

(5 ' 19b)

(5.19c)

Mu ' = q'S u —qu a" +D u "

and we have, from (3 ~ 8) and (3 ~ 14),

[D&' a"]=0

and, from (3.16), for nt 0,

[D"',a„]=i(g" M'P"-P")a„'

-i(g'" -M 'P'P")a~.

(5 ' 22)

(5.23)

(5.24)

In a recent paper, Marnelius' has developed the
classical Dirac brackets of a string model for the
general orthonormal gauge . Now, our re suit
(3.9) reads

P„au =0, n0 (5.20)

u c& u

a" q =gu ——a"a

(5.2la)

(5 ~ 2 1b)

so that certain of his results in what he has called
the "proper time gauge" may be compared with
ours. Making a classical transition from our re-
lations (5 ~ 19), we would obtain the results

The last two results may also be obtained directly
from Eqs. (5 ~ 16), (5 ~ 17), and (5 ~ 18)~ It is then
straightf orward to verify that the quanti tie s of
Eq. (5 ~ 15) transform correctly under the action of
the M"" . The required relations among the Mu"

may be obtained by making us e of the additional
result, Eq. (3.17), for the commutators among
the D"".

In our opinion, the results developed to this
point are not likely to change in a model which is
not restricted as to the number of modes present. "
However, those given below follow from the re-

strictions

s imposed and are very likely to change .
Using (3 ~ 15) and (3 ~ 16), we may obtain the rela-
tions

and
[a(,), a(,)]= [a(,), a( 1)]= 0 (5.25)

—a„' —ao ~ (5 ~ 21c) [at, ), a(,)] = —'(g"" M'P" P" )M '(—)(m -4')

Marne 1ius has concluded, on the basis of results
similar to these, that these operators are not
transforming covariantly under translations, a
result which he attributes to a fixed origin in

Our conclusion, however, is that Poincard co-
variance is not in doubt; rathe r it is the fact that
Eq. (5 ~ 19a) represents a state condition which
causes Eqs. (5.21) to imply aPparently inconsistent
results . Stated differently, Dirac has empha-
sized" that classical constraint equatio ns may not
be employed until after all bracket relations have
been calculated, and we would like to append the
remark that constraint equations may also not be

so that

+ —,
' iDu", (5.26)

(1) (-1) (-1) (1) (1) (-1)
u va( -1)a(1)}~ (5 ~ 2 7)

in a form which shows the expected sy mme'tr iza-
tio n in n and ant isy mme tri zation in p. and v. The
result analogous to Eq. (5 ~ 12) may be obtained
from Eq. (4.4c), and reads

D""()(m —@)= iM(a(, )a(, ) + a(,)a(",)

—a( 1)a(1) —a(1)ae 1)) (5.28)
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and, from (3.9), or from (5.20),

D~ "Z, =0. (5.29)

1
Lp (5.30a)

Even within this restricted model, it should be
clear, from Eq. (5.26), that the a„", nt 0, are not
a complete set of simple boson operators. While
the symmetric part of the commutator might sug-
gest such an identification, the antisymmetric
part, involving the operator D"", is an indePen-
dent and necessary part required in a covariant
theory. The underlying set of simple boson opera-
tors is the q„))& of Eqs. (2.4) and (2.5). Creation
and annihilation operators constructed from the

q&, g» and discussed briefly" in the context of a
null-plane theory in Sec. II, are of course linear
in the q&, g&.

Now, within our restricted context, there exist
10 independent bilinear operators which may be
formed from the set of q&, g&, and these have been
arranged into the convenient set of operators of
Eq. (2.5). (These of course, commute with the
x".) On the other hand, in the Heisenberg picture
the operators of interest are 4, A~, B", and
D"". Since the P" are independent of q&, g&, then
the conditions (5.20) and (5.29) reduce the number
of independent operators of this set to exactly 10.
Therefore, we expect that the 4, A", B", and
D ' are intrinsically bilinear operators, i.e.,
not of creation-annihilation type, and, in particu-
lar, that the D~" must be regarded as fundamental
entities, essentially independent from the a„", Eq.
(5.27) nonwithstanding. " Explicit expressions for
these Heisenberg picture quantities in terms of
the q„g~ are obtained in the Appendix, where
these remarks are verified.

In our restricted model, we have three opera-
tor conditions which follow from the Majorana
representation conditions (2.3), and which were
obtained in Sec. IV. These we shall label as
Virasoro conditions, although with severe reser-
vations as outlined in the preceding paragraph.
From Eqs. (5.20}, (4.1), and (4.2a) we obtain,
then,

lowing from Eq. (5.20), and, as discussed in the
Appendix, follow directly from the form of the
a„", ne0. As such, they are not bona fide re-
strictions. On the other hand, the particular
magnitude of the invariant (5.30a), a genuine con-
dition, is due to the value D = —

& obtained for the
realization (2.5). (In no sense is the operator I,o
a Hamiltonian in this model. ) We should also
remark that the ~ere inclusion of a larger num-
ber" of primitive oscillator variables q„g, ,
even with the attendant modification of the null-
plane Hamiltonian (2.18) to accommodate an arbi-
trary number of modes, "will have an effect upon
the magnitudes of the invariants, but not upon the
restricted form of the result (5.5). Rather more
fundamental generalizations are required in order
to realize a full string model, and these are under
investigation.

We would finally like to discuss the implications
of the state conditions (3.4b) in the string model
notation. We have, from Eq. (3.11), the result

a(",) = 0, (5.32)

which, of course, only reflects the positive-energy
nature of the original, unitary theory. Now, in-
ferences drawn from a single sample are very
likely to prove incorrect; however, if we may be
permitted to speculate, then we shall point out
that in a complete theory with an infinite number
of covariant normal modes, an ad hoc infinite set
of on-shell gauge conditions may certainly be
quite simply imposed via the generalization of
Eq. (5.32) to arbitrary negative n. Inasmuch as
the operators a„" are bilinear in terms of the
simple, null-plane boson operators q„g» then
such a set of relations does have the proper alge-
braic status of "number operator" relations,
while those involving operators of the type (5.31)
are rather quartic in the primitive operators.
This is an attractive possibility, due to its sim-
plicity, but one whose physical utility cannot be
judged until the development of a less restricted
theory is completed.

L, =L~=O, (5.30b)
APPENDIX

where
lgLo=2(ao'ao+ (i) ' (-x)+ (-i) ' (x))
l.

I = 2( 0' (I) a( ) 0) (5.31)

1(a, a(,)+a(, ) ao}.
The results (5.30b) are operator identities, fol-

In order to include a treatment of all of the quan-
tities of the theory, to explicitly demonstrate the
bilinear nature of the string operators a„", and to
afford the reader an opportunity for comparison
with the null-plane analysis of (II), we detail here
the Heisenberg picture of the quantities q;, g~ of
Eqs. (2.4) and (2.5).

The equations analogous to (3.5) are (j,k = 1, 2)
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i '=[q„c],

(Al)

which imply the consideration of the n, , P& as in-
dependent.

The commutation relations among the q&, gk and
also the relations (A5) or (A6) may then be em-
ployed to determine the sets of relations

In terms of the null-plane quantities P, = (P6—+P,),
we obtain via Eqs. (2.4) and (2.5)

and

(A7a)

dpi
d7 , (P,qI +—P,q, —P,q, ),

dtg2

d7
= —2(P 7)2 —P,q, —PIq2) I

d7
—2(P q, +PILI —P22)2)&

(A2)

and

dg2 1

d&
=2(P q, —P22)I —PIrj2).

The linear equations (A2) may be iterated lo obtain
the results

d g~+4M q;=0
dv2

[x,, x,] = [a, , o,] = o,

[~,, o,]= iM-'P 5,,
(A7b)

c.I'+ &2'+ pI'+ p2'=4M 2P,(vm —C ), (AS)

as well as the explicit expressions for the A„,P„
of Eq. (3.7)

Relations across the independent sets may be ob-
tained from (A5) or (A6).

Now the particular results (3.3) and (3.7) must
hold, while at the same time the quantities I'" and
S2' are expressed, according to (2.5), in terms of
the q&, 2)„of (A4). Taking, say, the n&, p& as in-
dependent, then a great deal of straightforward but
tedious algebra yields the result

and

lk j 2+~M gk=0,dr2

so that

q,. = c2& cos 2 Mr+ p& sin 2M2

(A3)
A6 = (P,) '[6 ( P, P, +P,'+ P,') y, + ~2 MP Iy2 —2 MPy, ],
AI=(P, ) '[2My, +6PIyI],

A2 = (P,) '[- 2My, + 6P2y I],

A2= (P,) '[—,'(P„P,—P, —P, ')y, —,'MP, y, + ,'MP—,y,], —

B,= (P.) '[—,'(P, P, +P,'+P, ')y, —2MPIy6+ 2~MP2y6],

and

k ~k cos p M7 + o'k sin 2 M7

(A4) BI=.(P.) '[- 6My6+ 6PIy21

B,=(P,) '[2My, +6P2y4],

(A9)

P n, -Mo, —P,X, +P,A,„
P n2 =Ma'2+P2A, , +P,A.~,

~1 M~1 PI+I +P2 21

P p2 = —MA.2+P2o', +P,o'2,

(A5)

relations which imply that the X, , o,. may be con-
sidered the independent operators. Equivalently,
one may obtain instead the relations

P,XI = —MP I —P In I + P2n2,

P.X2 = —Mp, +P2o. I +PIn„
P,oI =MnI —PIpI+P2p2,

P++2 M 2 +P2I I + IP29

(A6)

where the n, , p&, X2, and o„are &-independent
operator constants of integration.

The linear equations (A2) then imply four rela-
tions among the eight operator "constants, "which
read

and

y2= &I P2+ &2fII

y4 1~1+I I I+ 2~2+~2 2

2 2 2 2y. o-, —o'.=-P, +P. , —

y6 +I+2 PI P2'

(AIO)

The commutation relations (3.15) may then be em-
ployed to obtain explicit, P dependent expressions
for the D"". These expressions involve the re-
maining three independent bilinear quantities which
may be constructed from the cI,, p, . Direct cal-
culation then yields the results A "P =B~P
=D "P„=0, as algebraic operator identities.

B,=(P,) '[—,'(P, P, —P,' —P, ')y, + ,'MP, y, ,'MP, y—,], —

where
2 2 2 2y, =~, +~. P, P,-, -

y. = ~, P, ~.P,
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Ref. 6.

23It is amusing to note that the two interpretations are
apparently not incompatible.

24M. A. Virasoro, Phys. Rev. D 1, 2933 (1970).
25There is no unique way to introduce the factors m into

the classical expressions (5.5) and (5.6). We have
chosen to keep the expression for I'& simple. The
choice becomes important at the quantum level, since
these factors become the operator M, and we have the
result (5.16a) with which to contend.

2~At the classical level, this gauge is also specified
by the condition that P~C =0. In this case, one has

clthat C~ =X~, where the operator X~ was discussed in
Sec. III. This condition may not be applied prior to
the calculation of bracket conditions, and not at all at
the quantum level. This accounts for part of the dis-
crepancy between the results.

27At the classical level, the origin of the parameter 7

is fixed by the requirement p "C& =0. See Ref. 26. Re-
moving this requirement in the Dirac bracket construc-
tion forces also the removal of the Uirasoro string
condition La =0, resulting in a physically different
model, but one with a fully covariant bracket algebra.
[R. Marnelius (private communication)].
We base this opinion on the fact that these relations
closely resemble those of Ref. 5. The remaining re-
sults of Ref. 5 suggest, as we11, that changes are re-
quired in those to follow.

29The reader is cautioned against notational confusion
between the operators a; of Sec. II and the a~ of this
section. The two are (nearly) unrelated.

3 We mean here that, at the classical level, the D~'
may be defined, as in Eq. (5.12), to be certain combin-
ations of the a~, suggesting that the a„" comprise a
complete set. At the quantum level, these combinations
become commutators, and the D"' acquire independent
status.

3~8 e the Appendixes of II, Ref. 10.
32An arbitrary number of null-plane modes may be

accommodated as a direct-sum representation of
SO(3, 2). This technique has been used to incorporate
multiplets, giving symmetric SU(6) Young diagrams,
while avoiding the hypotheses of the no-go theorems:
At the full Poincare level, an infinite-direct-sum
Hilbert space results. See L. P. Staunton and H. van
Dam, Lett. Nuovo Cimento 7, 371 (1973).


