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Head-on collisions of oppositely charged particles obeying the Lorentz-Dirac equation with retarded fields
have been investigated both numerically and analytically. We show, in agreement with Eliezer for this case,
that no physical solutions exist with finite initial values of position, energy, and acceleration and that Clavier’s
contention to the contrary is flawed. If the electric field is everywhere finite, a physical solution does exist, but
in the limit as the field becomes singular, one or more of the initial values of the physcial solution must
become infinite. Thus, difficulties with the “physical solution” of the Lorentz-Dirac equation for this problem
occur not just when the particles are close together, but as soon as they are released from rest at large

separations.

I. INTRODUCTION

It is surprising that some of the simplest and
most basic problems of classical electrodynamics
remain unsolved. In particular, the interaction of
two charged particles in head-on collision has not
been treated adequately in the past using the
Lorentz-Dirac equation and retarded fields. In a
previous paper! we have presented solutions for
head-on collisions of particles with like charges.
Here we consider the attractive interaction of op-
positely charged particles.

Both the nature of the third-order Lorentz-Dirac
equation and the use of retarded fields have prob-
ably hindered progress on problems of two interac-
ting charges. There has also been the notion® 3
that such problems are of no intrinsic value if they
require the particles to come within a Compton
wavelength of each other, since at such separa-
tions the classical theory is not applicable and
must be replaced by quantum electrodynamics.
Nevertheless, neither classical nor quantum elec-
trodynamics gives a completely satisfactory pic-
ture of elementary interactions, and they share
some of the same difficulties. (Both require mass
renormalization in order to subtract away diver-
gent energy terms, for example.)

If studies of the classical Lorentz-Dirac equation
are to suggest origins of difficulties associated
with both classical and quantum theories of elec-
trodynamics, problems must not be restricted by
somewhat artificial size and energy limitations.
Instead, one needs to investigate the range of
validity of the theory within a classical context.

In particular, are there problems for which no
physically reasonable solutions of the Lorentz-
Dirac equation exist? If so, what are these prob-
lems and what is the nature of their unphysical
solutions ? One of the aims of this paper and of
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paper I has been to answer these questions for
head-on collisions of charged point particles.

In paper I, physical trajectories were calculated
for repulsive interactions by integration back-
ward in time. The Lorentz-Dirac equation gave
physically reasonable results in all cases consid-
ered, including collisions at high energy in which
the particles come well within a classical charge
radius of each other (less than 0.005 of a Compton
wavelength for electrons). Here we consider at-
tractive interactions and let the particles of oppo-
site charges fall directly toward one another. No
longer can we use backward integration to avoid
unphysical runaway solutions since presumably
any physical trajectory ends at or at least passes
through the singular point at the origin. (How-
ever, we can use backward integration for finite
fields and take the limit as the singular field is
approached. See Sec. V.) Instead, we must find
a way of choosing that initial acceleration which
gives a physical solution. We must then limit the
trajectory pathlength sufficiently to prevent round-
off error from growing into a runaway solution.

Head-on collisions of oppositely charged point
particles have been studied previously, both with
and without radiation reaction. In numerical
studies of the Lorentz equation with retarded
fields® it was shown that without radiation reac-
tion, two particles of equal mass fall together with
an acceleration which approaches V2 as the sep-
aration goes to zero (in natural units, e=m=c = 1),
Similarly, one can show that if one of the particles
is infinitely massive, the other falls in with an
acceleration which approaches zero. In both cases
the velocity % approaches unity.

In analytic studies of the Lorentz-Dirac equation,
on the other hand, Eliezer® showed that in all so-
lutions with radiation reaction, particlesfalling in
an attractive Coulomb field never reach the origin.
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Instead, they always turn around at finite separa-
tion and apparently follow runaway trajectories
outward. Unfortunately, Eliezer also made less
well-founded assertions of the nonexistence of
physical solutions to the Lorentz-Dirac equation.®
Plass® pointed out errors in some of Eliezer’s
work and Clavier’ even claimed to have found
physical solutions for a particle falling toward the
origin of an attractive Coulomb field.

In this paper we first describe the numerical
technique and show how an expansion is derived
for finding the initial acceleration which appears
best able to avoid runaway solutions (Sec. II).
Then (Sec. III) we present and discuss features of
some of the numerical solutions. An analysis
(Sec. IV) confirms Eliezer’s conclusions for a
charge falling directly toward the center of an at-
tractive Coulomb field and extends his results by
calculating lower bounds on the point of closest
approach for any initial conditions. An essential
error in Clavier’s derivation of a physical solution
is pointed out. Conclusions and a brief discussion
of the significance of these results follow (Sec. V).

II. NUMERICAL METHOD

In order to investigate with the Lorentz-Dirac
equation how two point particles of opposite charge
approach one another, we integrate forward in time
since there is no well-defined final state from
which to integrate backward. Consequently, we
must contend with rapidly growing runaway solu-
tions.! In any physically reasonable solution to
the problem, the two particles presumably meet
together at the origin where the electric field of
the other particle is singular. The usual equation
of motion consists of the third-order Lorentz-Di-
rac equation plus the imposed boundary condition

X(t=)=0. 1)

(Notation is the same as in I.) However, because
of the singularity, it does not appear sensible to
demand Eq. (1), and we are left with only the third-
order equation. Given any three initial values
x(0), %(0), and ¥ (0), the trajectory is uniquely de-
termined. However, physically, only two values,
usually x(0) and #(0), can be chosen independently.
Each choice of ¥ (0) then determines a different
trajectory, and all but perhaps one such trajectory
are runaway solutions. An obvious strategy is to
find that ¥ (0) value which minimizes the runaway
component of the solution.

The question naturally arises: How do we deter-
mine the size of the runaway component? The
Lorentz-Dirac equation for motion along a straight
line can be put in the simple form

L tyer == 3E@e7, @

where y' =dy/dx, €=%, and y is the dimensionless
energy, y=(1-%2"%/2 Integration of Eq. (2) with
respect to the proper time 7 gives the integro-dif-
ferential equation

V(1) =y (T)e™ o/ €
(1g=T)/ €
+ f dy eE(T+¢y), (3)
(0]

where 7, is any reference time. Usually one takes
To= and y’(«) =0 to ensure no runaway component
is present, but as mentioned above, this choice is
not appropriate here since we expect a singularity
from the second term on the right of Eq. (3) when-
ever 7, is larger than or equal to the proper time
at which the particles reach the origin. Instead,
we set 7,=0 and take y{=9’(T7,) to be the initial
value of y’(7). Any error in y} leads for 7> 7, to
an exponentially growing term which in just a few
time units swamps the physical component. If y’(7,)
is too small, a runaway inward, i.e., toward the
origin, apparently results; if ¢/(7,) is too large,
we obtain a runaway outward.

Next we need a method of finding the desired
value of y’(7,). In principle, one can find y’(7,)
by trial and error, but this can be tedious since
we need y’(7,) as accurate as possible, namely to
about 15 significant figures for double precision
runs on an IBM 360-65 computer. To find y'(7,),
we use the suggestion® that the physical solution
for y/(7) should be an analytic function of . We
rewrite Eq. (2) as

y'=E+an”, (4)

where vy’ =dy/dx=vy*%, v =d®/dx*=y°% /% + 3y°% 2,
and # =dx/dT=y%. In the limit u~0, y’=F is not

a solution of Eq. (4) because unless %" =0, y” -
in this limit. However, by iterating Eq. (4) ¥’ can
be written as a power series in g,

y'=E+euE' + *(uE" + yEE’)
+€%u(2yE’?+ 3yEE” + u*E™ + E®E’)
+0(e*), (5)

where primes indicate derivatives with respect to
x and O(e*) means terms of order €%, With €=0,
the Lorentz (no radiation reaction) result is ob-
tained, whereas with € =%, the power series seems
to be a useful asymptotic expansion for vy’ when E
and its spatial derivatives are small. In the static
case (one particle very massive)

—x"2 >
E={ x2, x>0 ©)
x¢, x<0.
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For the results presented in the following sec-
tion, the particles were taken to be at rest at
t=— o, and the field is “turned on” at £=0. The
value of y in terms of ¥’ can be found by integrat-
ing Eq. (4) with E=0. One finds

y=coshey’, t=0. (7

Equations (5) and (7) can be solved simultaneously
by iteration [start with y=1 in Eq. (5), substitute
the resulting v’ into Eq. (7), etc.] to obtain y, and

Yoo

III. NUMERICAL RESULTS

The expansion (5) for the initial value of ¥’ did
indeed seem to be the best value for avoiding run-
away solutions. Higher values of y/=v,"%(0) gave
trajectories in which the particle, after falling a
short distance toward the attractive Coulomb cen-
ter, then turned around and headed outward with
exponentially increasing energy (i.e., an outward
runaway), whereas lower values of ¥/ appeared to
give inward runaways.

With y§ as given by Eq. (5), trajectories were
calculated until they seemed to become obvious
runaways. Minor adjustments were made in y
even into the 15th decimal place so as to extend
what we took to be the physical solution as far as
possible inward. We were limited to trajectories
which lasted less than about 22 time units since for
longer times, the round-off error itself, 'in the
16th significant figure, could give rise to run-
aways. Separations at £=0, when the field was
“switched on,” were usually 6—10 natural units.

Several characteristics were common to the so-
lutions which we considered physical. For one,
the initial inward acceleration was greater in mag-
nitude than when radiation reaction was omitted.
This would mean, of course, that shortly after re-
lease, the particles gain more kinetic energy when
radiation reaction is included than when it is
omitted. The excess energy presumably comes
through the Schott (%') term from the interference
of radiative and bound fields. However, curiously,
the acceleration did not continue to increase in
magnitude as the particles approached one another.
Rather, —¥ reached a maximum and then de-
creased to zero well before the particles came to-
gether.

In Fig. 1, the time and position at which ¥=0 is
plotted as a function of the acceleration ratio
¥ (0)/¥ porentz(0) Where ¥ ... =7E is the value of
the initial acceleration when radiation reaction is
omitted. For the plots of Fig. 1(a), one particle is
taken to be extremely massive and hence static.
For Fig. 1(b), both particles have the same mass
and the retarded fields include effects of the pre-

acceleration for £<0. The behavior of particle 1
is seen to be qualitatively the same for m,=m, as
for m, =,

A trajectory in which ¥ =0 at some x =7, is a
physical solution of certain—albeit artificial—prob-
lems. For simplicity let us concentrate on the
static (m, =) case. If the Coulomb field of parti-
cle 2 is due to a thin spherical shell of charge of
radius 7,, and if, once particle 1 has penetrated
the shell and before it reemerges, the charge is
neutralized, then particle 1 experiences the Cou-
lomb attraction only until ¥ decreases to 7,; after-
ward it is a free uncharged particle. A trajectory
in which the acceleration vanishes at x =7, is thus
a physical solution, It is evident from Fig. 1(a)
that as 7, becomes smaller the preacceleration
must become larger. In fact, it takes particle 1
less time to reach the boundaries of very small
charged shells than those of some larger shells,
as is seen by the maximum in the plot of #(¥ =0)
as a function of ¥ (0)/% 1,,rentz(0)-

Judging from Fig. 1, it is conceivable that an in-
finite amount of preacceleration is required to ob-
tain a physical solution for »,=0. We investigate
this question analytically in the next section and

15.8
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Il 1 1 1 1 5.0
.44 6.46 6.48 6.50 6.52 6.54 x10°6
% (0)/ X onewrz (0) ~1.00855

1.2 14 1.6 4{8 21.0 2‘.2 2.4 x 10~
% (0)/ % onenrz (0)~ 1.0086
FIG. 1. Time (solid line) and postion (dashed line) at
which the acceleration is zero, as a function of the initial
acceleration ratio & (0)Xorent, (0) for an initial separation
of six units: (a) One particle is fixed (very massive) at
the origin; () the particles have equal masses.



13 NUMERICAL SOLUTIONS TO TWO-BODY... . II. ... 3265

find an even stronger result: No solution with a
finite preacceleration ever reaches the origin., If
the initial acceleration is finite, the solution turns
around at some finite x,,, >0 and becomes a run-
away outward.

IV. SOME INEQUALITIES

The Lorentz-Dirac equation for a charge falling
directly toward the fixed point source of an attrac-
tive Coulomb field is given by Eq. (4) with » =
—(¥®=1)t/2 E=—x"2, and e=%. Expressing the
equation in terms of spatial derivatives of y, we
have

—y" =3y (- 1R, )

Let the initial values be x =x,, ¥=7,, and y’ =v{.
A value x=x,>0 can always be found for which
x,"2+7" =0 and, therefore, —y” >0. If ¥} =—x,2
then of course x, is such a point. Otherwise, as
shown in detail in the Appendix, such a point is

X, =(=¥))""2, 9
where
=¥ == 7§+ 3102+ (3 1n2 - y)[exp(3x,) - 1]>0.
(10)

As x becomes smaller than x,, —y” and hence
v’ increase until y drops to unity. At this point the
velocity is zero and, since ¥ is continuous at fi-
nite x, the particle turns around. In the Appendix
we show that the turn-around position, x,,,, obeys
the inequality

X min> X0/ €XP[1 +2y4(v,— 1)/3] if v5=0 (11)
and
Xmia™ %,/€XP[2+2(y; = ¥ix, )y, = vix, = 1)/3]
otherwise, (12)
where
Y1 =7, exp[(In2 - 27{/3)(e** /2~ 1)]. (13)

We have thus established a lower positive limit for
the turning point of any solution of the Lorentz-
Dirac equation [Eq. (8)], given that the initial val-
ues x,, v, and y; are themselves not infinite.
Once the particle turns around and starts to
move outward, the proper velocity «=(y%-1)2 g0
that the sign of y” in Eq. (8) must be changed. For
outward motion after the turning point then y” and
v’ remain positive, and consequently y grows with-
out limit. We conclude that all trajectories with
finite initial values x,, y,, and y} are “runaways”
and hence unphysical solutions. There are no
physical solutions to the Lorentz-Dirac equation
for this problem which have finite initial values.

Similar conclusions were drawn by Eliezer®
about 30 years ago. Although he did not establish
limits for x_,,, his arguments appear valid and
his conclusions are essentially the same as ours.
It is necessary to rederive the results here be-
cause some of Eliezer’s work has been discred-
ited.® In particular, Clavier’ asserted that by
adding a pointlike distribution at the origin to
normal integrable functions, he could obtain a
physical solution to the problem. Since none of the
solutions actually ever reach the singularity at
the origin, it is difficult to understand how Clavi-
er’s modification can help. Indeed, it appears
that an inequality which Clavier used to establish
the existence of solutions is in error. In Eq. (50)
of Ref. 7, the left-hand side should be compared
with (u,+7,)? and not with zero, and Clavier’s
“solution” is not acceptable.

The results of this section are easily extended
to the head-on collision of two particles with equal
mass. In Eq. (8) the electric field E =- x™ must
be replaced by

E=- (x+xR)-2(1 - VR)/(I- + VR) s (14)

where the subscript R refers to retarded quanti-
ties, satisfying

xp=x(ty), Ve=i(ty),
(15)
X+txp=t—1tg.

While the particles are coming together, —-1<V,
<0 and x satisfies

xp<x+ |V, |t-tp), (16)

where |V, | is the largest magnitude obtained by
x during the collision. Combining Egs. (15) and
(16) we find

xp<x(l+ |V, ])/Q- |V, ]). 1

An upper bound v, to y=(1~ V3)™/2 for 0 =x =x,
is derived in the Appendix [Eq. (13)] and is true
for any electric field E =0. Therefore,

|V1‘ =(1“71-2)1/2 . (18)

Equations (14) and (15) give a lower bound for -E:
1- v, 1\?

—Ez( 5 ) . (19)

The derivation of a lower bound on x,,, is similar
to that above. In the results [Egs. (11) and (12)],
we need merely replace the factors of % as fol-
lows: B

%"%[(1—?1/10]2' (20)
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V. DISCUSSION AND CONCLUSIONS

From the inequalities of Sec. IV we are forced
to conclude that for head-on collisions of opposite-
ly charged point particles, all solutions of the
Lorentz-Dirac equation with finite initial values
Xy, 7o, and v} are runaways. Since, it seems, the
singularity in E at the origin is to blame for diffi-
culties in finding a physical solution, we might
well ask: What happens to the physical solution of
problems with finite E, in the limit that E becomes
singular ?

The numerical results of Sec. III indicate an
answer for at least one such limit. One particle
was represented not as a point, but as a thin
spherical shell of charge which is neutralized
when penetrated by the opposite charge. As the
radius of the shell was made smaller, the preac-
celeration, hence —y(, required by the physical
solution became larger. Evidently as the radius
goes to zero, the physical solution with any
finite x, and y, must have —y(—~«. We emphasize
that this conclusion holds for any finite separation
Xy: X%, may be half a classical-charge radius or it
may be thousands of deBroglie wavelengths.

To further test the limiting behavior of physical
solutions as the electric field becomes singular,
we have computed solutions by backward numeri-
cal integration for the attractive field

E=—x/(x*+a2)/? (21)

with a range of a, values. The backward integra-
tion ensures that any runaway components initially
present are quickly damped to zero.! The final
values (with which the integration was started)
were xp=— 50, yp=1, and y%-=0. The initial val-
ues were taken both at x,=500 and x,=50. Values
of y, and y] are shown as a function of g, in Fig. 2.
In the limit ¢, —~ 0, the physical solution apparently
has y,— . Similar results were obtained with
other x, values, including ]xF] <a,.

In this last example, as the field is made singu-
lar at the origin, the initial conditions at large
separations x, become infinite. This result is
consistent with the conclusion above that all solu-
tions with finite initial conditions are runaways,
but it gives new insights into the limitations of the
Lorentz-Dirac equation. If the problem were sim-
ply that there are no physical solutions, it would
be tempting to blame the close approach of the two
particles for somehow changing the physical solu-
tion into a runaway. However, the problem seems
more serious: For any bounded field E there is a
physical solution, but as the field approaches that
of a point charge, initial values (y, and/or y¢) for
the physical solution become infinite. The difficul-
ty thus occurs before the particles have come

105 10*

104 —103
103 102
Yo %
10?2 10

ios 1(5-2 1o~ o
do
FIG. 2. Initial energy v, and its spatial derivative v
as a function of the size parameter «, of the static elec-
tric field. Solid lines are used for an initial separation
%¢=500 natural units, dashed lines for x,=50.

close to each other; they may even be separated
by “classical” distances. It is contrary to our in-
stincts of causality to blame the difficulty with
initial values on the collision that occurs much
later. Nevertheless, the presence of a singular
field is in itself not sufficient to cause trouble.
(Consider, for example, head-on collisions of like
point charges’ for which no difficulty arises.)
Evidently, in accordance with discussions of the
existence of physical solutions,?? difficulty occurs
when a singularity actually lies on the true trajec-
tory. What we have shown here is that, due pre-
sumably to effects of nonlocality in the Lorentz-
Dirac equation,® the difficulty can manifest itself
noncausally at much earlier points in the trajec-
tory. -

APPENDIX

Lower bounds on the distance of closest approach
X min @re derived here for use in Sec. IV. One can
easily find higher lower bounds than those found
here. We have accepted more modest bounds in
order to keep the derivation simple.
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Head-on collisions of a charge with the Coulomb
field of a fixed point charge are described by the
Lorentz-Dirac equation in the form

—y"=3(ax 2 +y")/ (= 1) /2, (A1)

where a>0 measures the strength of coupling to
the electric field. Consider two ranges of initial
values:

Case 1: y)>- ax,™
and

Case 2: y{<— ax, 2.

Case 1. 7" is initially negative so that ¢’ in-
creases as x is decreased below x,. Consequently
7" becomes more negative; indeed

=72 3(ax 2+ )/ (=112, x<x, (A2)
and
Y=Y, x=x,. (A3)

Case la. y,=0. Inthiscase, (y? - 1)1/3<y <7v, 80
that

"')’”>%0‘7’o- x7?, x=x, (A4)

and integration from x to x, gives a stronger re-
sult than (A3):

1

_/1
Y -vh=3av, ‘(;—};) . (A5)

A further integration gives an upper bound on v,
Y<¥ot+2ay, [1-1n(x,/%)], x=x, (A6)

which with y=1 gives as a lower bound on x

Xmin > %o/ €XD[1+ 294y, - 1)/3a]. (AT)

Case 1b. v,<0. In this case we can use (¥?
= 1)2<y = y,=v{(xo— x) <¥o— 74X, and integrating
twice as above we find

Y <¥o= Yo %o
+30(yo = 75%0) 2= In(xy/%)] , (A8)
which gives as a lower bound on x
Xmin > %o/ €XP[2+ 2(yo = v %) (Vo= ¥4 %0 — 1)/30] .
(A9)
Case 2. Now y” is initially positive. By Eq.

(Al) it is bounded from above by
” 3y’
V' <y (A10)
As long as y’ remains negative, then since y”
=y'dy'/dy
dy’ 3

- E’)T <W . (All)
Integration gives
s | _yHGA-1)2
Yo=7' =2ln Tt Z= 1) <21n(2v/7,) ,
(A12)
which is easily rewritten
(=v'/VEn@y/ve) - ¥4I ' <1/y=1. (A13)

A further integration gives
In(y/v,) <In(y,/v,) = (In2 — 2y¢/3)[exp(3x,/2) - 1] .
(A14)

Combining inequalities (A12) and (A14) we find
that —y’ is bounded from above by

oy <myl ==y + 3102+ (3102 - ¥)[exp(3x,/2) — 1]
Y 71 0

(A15)
Define
2, =(=a/y)2. (A16)
By Eq. (Al15), at x=x,,
y'>- ax,"? (A17)

and we now apply the results for case 1 to obtain
the lower bound

Kmin > %1/ €XP[2+ 2(y, — vix )y, - v/x, - 1)/3a],
(A18)

where y, and y] are given by Eqs. (A14) and (A15).
This completes the derivation. When the field is
that of a fixed (very massive) point particle, we
set a@=1 in natural units. If we consider the head-
on collision of two point charges of like mass,
then we can replace « in equation (A18) by its
lower bound,

o= 4= 0], (A19)

where |V, |=(1-v,"%)'/2 is an upper limit on the
magnitude of the inward velocity (see Sec. IV).
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