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Numerical solutions to two-body problems in classical electrodynamics: Head-on collisions
with retarded fields and radiation reaction. I. Repulsive case*
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Classical trajectories of two particles with like charges have been computed numerically for head-on collisions.

The trajectories are physical solutions of the Lorentz-Dirac equation with retarded fields. To eliminate

runaway solutions, the third-order equation has been integrated numerically backward in time. Results are

presented both for the static case (one particle is infinitely massive) and for two particles of equal mass. In the

latter case„ iterations are required in order to obtain self-consistent trajectories. Compared to results with the

Lorentz equation, in which radiation reaction is ignored, maxin-. um accelerations are markedly smaller,

distances of closest approach are larger, and there is a small loss in particle energy rather than a large gain.

No evidence was found for a lower bound on the distance of closest approach or for an upper bound on the

radiated energy.

I. INTRODUCTION

The interaction of two charged particles is a ba-
sic problem of classical electrodynamics, and in
the head-on collision of two like-charged particles
it takes its simplest form. It is desirable to know
whether reasonable solutions can be calculated in
order to both test the classical theory and, we
hope, gain insight into some related questions of
quantum electrodynamics. It is surprising that the
problem has resisted previous attempts at solu-
tion.

Past difficulties have arisen both from the need
to use retarded potentials and from the practically
pathological character of the third-order Lorentz-
Dirac equation.

It was evidently the difficulty with retarded po-
tentials that, until recently, ' deterred adequate
treatment of the head-on collision problem with
even the relatively simple second-order Lorentz
equation, in which self-radiation reaction is omit-
ted. However, the difficulties are handled straight-
forwardly by storing trajectory information in ar-
rays which can later be accessed to compute re-
tarded quantities.

The pathological character of the Lorentz-Dirac
equation has received considerable attention. ' As
Dirac first pointed out, the third-order equation
is incomplete without a boundary condition on the
acceleration X(t).' With the usual prescription (and
the one we adopt here), namely i(t - ~)- 0, one.
selects a physical trajectory from what is other-
wise a continuum of unphysical solutions. Of
course the prescribed condition does not depend on
computational considerations. However, there is
a strong asymmetry in the stability of the I orentz-
Dirac equation to backward and forward integra-
tion. In the usual forward numerical integration

of the third-order equation, the boundary condition
at t=+ ~ is difficult to apply and runaway contribu-
tions to the solution grow extremely fast, roughly
as exp(e'). Even the physical solution itself has
seemingly undesirable characteristics, such as
noncausal preacceleration and an essentially un-
limited self-energy source of radiative energy.
Dissatisfaction with the Lorentz-Dirac equation
has led some authors to suggest new equations of
motion for charged particles. ' However, these
generally have not proved entirely satisfactory. '

A way around the problem of runaway solutions
is to integrate the third-order equation backward
in time. The runaway contribution is then rapidly
damped to zero (see below). Problems in which a
single charged particle moves in finite fields of
known space-time dependence are thus solved with
relative ease, and indeed the existence of solutions
for this case has been established. ' A few ex-
amples of motion in static fields of fixed (infinitely
massive) point charges are given in Sec. II.

However, for the general interaction of two par-
ticles the fields depend on past trajectories and
solutions using backward time integration require
an iteration procedure for the particle paths. The
question of whether physical solutions exist is in
this case much more complex. A convergent iter-
ative technique is presented in Sec. III and results
are discussed in Sec. IV.

II. MOTION IN STATIC FIELDS

In the limit that one particle is much more mas-
sive than the other, the problem reduces to finding
the motion of the lighter particle in the static field
of the other. The solution is relatively simple; a
single integration of the third-order Lorentz-Dirac
equation, moving backward in time, is sufficient.
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Energy is radiated only by the lighter particle and
can be computed by integrating the relativistic
Larmor power formula. ' By computing trajecto-
ries for this case and comparing radiated energies
with losses in particle energies, we have a check
of the adequacy both of the Lorentz-Dirac equation
and of our integration methods.

The Lorentz-Dirac equation for a particle of
charge e and renormalized mass m is'

ma~ = eE~"u + l ~
P

where I'~" is the external retarded field, I'~ is the
Abraham four- vector

I""= 3e2(da~/dr a"a,u" ),
and v', u~ =—dx /dv, and a" = d2x~—/dv2 are, respec-
tively, the proper time, the four-velocity, and the
four-acceleration. Units with c = 1 have been used.
We consider a particle of unit charge and mass (e
=I= 1) colliding head-on with a massive second
particle of the same charge. The magnetic field
vanishes on the trajectory in this case so that Eq.
(1) reduces to

Plass used backward integration to obtain a tra-
jectory for a particle colliding at velocity Vz = 0.1
with the static field of a point charge. ' However,
he did not compare radiated energy and mechani-
cal energy lost.

%e have extended the Plass results to final ve-
locities V~ ~ 0.96 and have compared energies. As
input data, the particles were given final separa-
tions of d= 1000 units (i.e. , classical charge radii);
we checked that results were not sensitive to the
value of d, and followed the trajectories back
through the collisions until an initial particle sep-
aration d was reached. A Hamming predictor-cor-
rector integration routine' was used. The particle
energy lost during the collision was in each case
in excellent agreement with the radiated energy'
as computed by integrating the Larmor power for-
mula, which for motion along a straight line has
the form

P —'X2y

Results are summarized in Fig. 1 in which are
plotted the distance of closest approach (to the or-

x=y 'E+ —3y('x'+3x2xy'), y=-(1 —x') ' ' (3)

where dots here indicate time derivatives in the
center-of-momentum frame. If the second par-
ticle is fixed at the origin, the electric field E is
simply

E=g ~.

If the third-order equation (3) is numerically in-
tegrated forward in time, an unphysical runaway
solution can build up rapidly from unavoidable
small round-off errors to terms of dominant size
in about 1.5N time units, where N is the number of
significant figures used in the computation. (A
time unit is the time required for light to travel
the classical charge radius and is about 10 ' sec
for an electron. ) The origin of the runaway solu-
tions is readily seen by casting Eq. (3) into the
form

IQ

(y&e-3f/2) — —Pe 3T/2d 3

d7-

where y'=dy/dx. A small error e resulting from
the integration of the right-hand side over 7 will
give a runaway contribution to y' which grows as
e" 2e. Since y' = (y' —1) ' 2dy/d2', y itself will
increase by cosh(e" 2&). However, if we integrate
backward in time, errors & will be damPed as
e "' 'E, and we can also ensure that the asymp-
totic condition (a- 0 as r- ~) is satisfied. Fur-
thermore, traj ectories will not depend sensitively
on the final acceleration (we chose the Lorentz
value, x~=y 3E)
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FIG. 1. Values of the turning-point position x'~;„and
the maximum acceleration xm» both including radiative-
reaction effects (solid lines) and omitting them (dashed
lines). The dot-dashed curve gives the energy loss
-Ay per particle to radiation. When radiation reaction
is omitted, there is no energy loss during collision.
For the curves shown here, one particle is taken to be
very massive and hence fixed in position at the origin.
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igin) x „, the maximum acceleration x, and the
particle energy loss -&y as functions of the initial
velocity VI. For comparison, x „and x are al-
so shown for the second-order Lorentz equation,
which omits radiation reaction. With radiation re-
action, x,„ is larger than the Lorentz result
[~"'""*'=(~—I)"' ~,=(i- V,') '"]
smaller (~(Larents& ~(Lorentz)-2) Furthermoremax min

without radiation reaction, &y is of course zero.
Note that even with radiation reaction there ap-
pears to be no limit on how small x „or how
large X can be when Vz-1. (One would have
been tempted to conclude otherwise if results had
been calculated only for Vz «0.9.)

The computed trajectories appear physically
reasonable and energy is found to be conserved
to high accuracy. These results support the ade-
quacy of both our numerical techniques and the
Lorentz-Dirac equation itself for particle motion
in a static field.

III. SCT CALCULATIONS

The technique of integrating backward in time is
successful in eliminating runaway solutions and is
simple to apply to particle motion in static fields.
Its application to collisions of two identical par-
ticles is considerably more complex: Use of re-
tarded fields requires knowledge of past trajec-
tories before they are computed. We describe
here an iterative method of calculating self-con-
sistent trajectories (SCT).

The method is similar in some respects to self-
consistent field methods in calculations of atomic
and molecular structures. " We start with a trial
trajectory (analogous to a trial wave function) for
particle 2 from which the retarded fields are com-
puted. A new trajectory can now be found for par-
ticle 1 by backward integration of the Lorentz-Di-
rac equation. The trajectory depends of course on
the values of the final time, position, velocity, and
acceleration (t~, x~, V~, and R~, respectively" )
with which the backward integration was started.
These may be chosen to give the desired initial
position and velocity and the desired turn-around
time. The trajectory thus computed for particle
1 can be used for particle 2 in the next iteration.
Since the trajectory at any point depends only on
fields generated in the past, the iterative scheme
should converge if the specified initial conditions
can be attained with sufficient accuracy.

The strongest interaction between the particles
occurs close to the turning points. Very slight dif-
ferences in the times at turn-around change the
initial values dramatically. Figure 2 shows three
trajectories with slightly different turn-around
times. All have the same final velocity V„=0.9,

and all were calculated with the same hyperbolic
trial trajectory, namely

(f) = f.".(V.f) ]""I (I)

in which a=0.55, b=-0.1, and V0=0.9. The turn-
ing-point coordinates were set by changing the fi-
nal t~ at which x~ = 800. The initial velocities are
seen to vary from -0.34 to -0.98 as t~ is increased
from 888.6 to 889.0. Because of this sensitivity,
we found it imperative to match turning-point times
precisely. In the SCT computation, matching was
achieved by adjusting tz until V(0) = 0. With such
matching performed at each step, V~ was then ad-
justed to give the desired initial velocity Vz. After
both V(0) and Vz were correctly set, the x axis was
shifted to equalize the distances of closest ap-
proach of the two particles. Then the iteration was
complete, and the computed trajectory was used to
determine retarded fields on the next iteration.
The procedure was continued until trajectories
computed on successive iterations became equal
to within small limits.

Several factors complicate the iteration scheme.
In Fig. 2 the path of the turning point (xTp, trz, ) is
shown as t„ is varied and Vz held fixed at 0.90 (dot-
ted curve). It is obvious that tT~ is not a linear
function to t~. In fact, at high velocities there may

-5 -4 -3 -2

FIG. 2. Trajectories of particle 1 with slightly dif-
ferent final times tF .. curve a has tz = 889.0, curve
5 hast+=888. 8, and curve c hast+=888. 6. In each case
the trajectory of particle 2 (dashed curve) is the same,
namely the trial. hyperbol. ic trajectory of Eq. (7). The
dotted curve gives the variation of turning-point position
as t~ is varied.
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be one, two, or three values of t~ which give the
desired match t»=0, as can be seen in Fig. 3
where turning-point paths are plotted for V~ = 0.89,
0.90, and 0.91. The trajectories associated with
the different turning-point positions may have
greatly different initial velocities, V~. For turn-
ing points occurring at xTp +Oy VI is usually too
high, namely Vl&0.9999. However, for final ve-
locities V~ slightly less than some limit V„
(=0.9 in Fig. 3), theturning-pointpathcrossesthe
x axis at tmo larger values of x». Consequently,
for each V~ slightly less than V„, there are two

possible trajectories with different VI but both
with tTp = 0 A small change in V~ can cause
roughly an order of magnitude larger change
in VI. At higher velocities, trajectories are
even more sensitive to V~ and t». However,
these are merely computational complications
and should not affect the final trajectory; for
a given trajectory of particle 2, there always
seems to be a unique choice of t~ and V~ which

give tTp = 0 and the desired value of VI for par-
ticle 1.

In a typical computation, ten iterations are per-

formed with increasingly stringent accuracy re-
quirements. Within each iteration about 20 tra-
jectories must be computed with different values
of t~ and V~ in order to reach a VI with the de-
sired value and tTp 0. In each iteration all points
of the last trajectory calculated during the pre-
dictor-corrector integration are stored for use in

calculating retarded fields on the subsequent iter-
ation. On the last two iterations, the integration
error was held to —5 & 10 ', t~ was adjusted to
within 4 x 10 ' of the values required to give tTp
=0, and V~ was set to within 4&10~ of the de-
sired value. The maximum differences in the last
two iterations calculated were generally about 5
&&10' in x(t), 6 X 10' in x(t), and 5&& 10 ' in x(t)
All calculations were made in "double precision"
(about 15 digits) on an IBM 360-65 computer.

On the first iteration the trial trajectory for
particle 2 was the hyperbola of Eq. (7) with param-
eters a and b adjusted by trial and error. Final
and initial separations of between 10' and 3 && 10'
were used, together with final accelerations be-
tween y 'E and y 'E(1+2xE), where E is the elec-
tric field

E= (x+xs) '(1 —V„)/(I+ V„), (6)

0--

6--

with xs and V„—=x(t„) the position and velocity, re-
spectively, at the retarded time t~. It was verified
that the final trajectory did not depend significantly
on either the final separation, the trial trajectory,
or the final acceleration.
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F&G. 3. Turning-point paths for particle 1 for three
different trial velocities Vz. The trajectory of particle
2 is given by the dashed curve to the left.

All the trajectories calculated here seeM physi-
cally reasonable. The colliding particles always
lost a small fraction of their kinetic energy during
the collision to radiation, and compared with com-
putations without radiation reaction, the maximum
accelerations were smaller and the minimum dis-
tances of closest approach were larger (see Fig.
4).

We were at first surprised that the energy loss
was much less than the radiated energy as cal-
culated by the Larmor power formula [Eq. (6)].
We should not have been. The radiation fields of
the two particles of equal mass largely interfere
and result in a much smaller energy loss than
twice the radiative loss of a single particle. The
basic mode is quadrupole radiation rather than
dipole. Since different directions in space general-
ly receive radiation from different relative posi-
tions along the trajectories of the particles, it did

not appear possible to derive a simple expression
valid for all collision velocities for the total power
radiated.
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FIG. 4. Same as for Fig. 1, but now for two particles
of equal mass. gn this case, when radiation reaction
is omitted, the particles gain energy during collision. )

FIG. 5. A comparison of self-consistent trajectories
with (dashed line) and without (solid line) radiation re-
action for initial velocities V1=-0.8. Arrows indicate
the turning points. Particles were started for this plot
at t=o, with x,=500.

If velocities are sufficiently low that retardation
effects between the particles can be ignored, then
the power formula for quadrupole radiation can be
applied. " As far as we are aware, the results
presented here are the first calculations of radia-
tion from like particles colliding at high velocities.

SCT runs were made for incident velocities to
VI= 0.99. As seen in Fig. 4, the results for VI
—0.95 appear to extrapolate to a nonzero distance
of closest approach and a finite acceleration and
energy loss in the limit VI-1. The results for
VI = 0.98 and 0.99 demonstrate the danger of such
extrapolations. As the incident energy is in-
creased, there appears to be no limit to how close
the particles come, how much energy they lose, or
how large the maximum acceleration becomes. In
Fig. 5, trajectories for VI = 0.8 are compared with
and without radiation reaction. %ith radiation re-
action, the particles are seen to turn around at
slightly later times with lower acceleration and at
larger separations. Also the velocities after colli-
sion are slower with radiation reaction. . The max-
imum acceleration is reached after t» even though
the change in velocity before t» is greater than
that after. In Fig. 4 comparison of results with and

without radiation rea, ction are made a,s a function
of VI. The change in kinetic energy per particle
&y is not shown on the plot of log(-4y) for the Lo-
rentz equation since without radiation reaction &y
pp 1

%e have thus demonstrated that for head-on col-
lisions of two like particles, the classical Lorentz-
Dirac equation can be solved to yield physical so-
lutions for incident velocities at least up to V,
= 0.99. At the highest velocities for which com-
putations were made, the particles come to within
a classical charge radius of each other (2x „
=0.515 for VI=0.99). Although a rather complex
SCT scheme was required to obtain the solutions,
the results themselves hold no real surprises:
The trajectories appear entirely reasonable. The
present calculations, we feel, lend support to the
validity and applicability of the Lorentz-Dirac
equation as a classical description of collisions of
like-charged point particles at relativistic veloci-
ties.

In the following paper" we report on our calcu-
lations of head-on collisions of oppositely charged
point particles. There, difficulties with the Lo-
rentz-Dirac solutions do arise.
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