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An algebraic proof of the equivalence theorem, to all orders of perturbation theory, is obtained by applying
the equations of motion repeatedly in a normal-product algorithm. It is shown that, for certain nonlocal
transformations, the equivalence theorem can be maintained by introducing Faddeev-Popov ghosts.

I. GREEN'S FUNCTIONS UNDER A LOCAL
TRANSFORMATION

The equivalence theorem in Lagrangian field
theory is a very useful concept, which was con-
ceived decades ago. ' A rigorous proof was given
in Ref. 2 for perturbation theory, and since then
various authors have discussed different aspects
of it.' The proof in Ref. 2 is based on formulating
the quantized theory in the normal-product al-
gorithm, but unfortunately it consists of laborious-
ly examining a delicate conspiracy among graphs,
and it relies on the Haag-Ruelle' theorem to con-
clude the equality of the scattering matrices. In
this note, we will present a short and elegant
proof that does not depend on a detailed manipula-
tion of graphs, nor on the Haag-Ruelle theorem.
We will also extend the equivalence theorem to a
certain type of nonlocal transformation and will
find that it can only be maintained if we introduce
ghosts into the Lagrangian which are not unlike
those of Faddeev and Popov. '

For simplicity, we will study only the case where
there is one scalar field. Generalization to cover
more particles and to include spin is obvious. Let
the Lagrangian

&.(~) =-'s.~s'~- -'~'~ II~+~&,.~(~) (1 1)

be quantized with "hard mass, "' and let its inter-
action term S„,(y) be such that the Bogoliubov-
Parasiuk-Hepp-Zimmerman' (BPHZ) renormal-
ized two-point function has a pole at the physical
mass m. The double bars II in the mass term in-
dicate hard quantization for the mass term. Under
the local transformation

where we have assigned oversubtractions (indica-
ted by II in the anisotropic product)' to those terms
that arise from the transformation of the mass
term --,'m'pily in z, .

We will now show that the Green's functions of
these two Lagrangians are related. For this pur-
pose, let us define, for each p between 0 and 1 in-
clusive, a Lagrangian 2, to be

&,(V) = &.(Ii',(V)),

where

&,(v) = v+ p&(v). (1.6)

If Q and X are functions of y and its derivatives,
we define

X= 8 '''8 X,
pep n! 89 ''' 8n=o '

p& f'n

(1.7)

6Q@(V)) 6X . ~Q

5p 5p
(1.10)

The proof is given in part (1) of Appendix.
The classical equation of motion is of great help

in determining what the quantized version is. For
the Lagrangian Z,(p), the equation of motion is

~ (-1)" . . ., sQ
Qy ~ ~! pl wn 88 '''8

+n

Then if Q is a function of X and its derivatives, and
if X is a function of y and its derivatives

v- v++(v), (1.2)

where E(y) is a polynomial in y and its derivatives
and where E(p) 0-y, 20(p) becomes

&,(v) = &.«+&(v)),
~ (v) = 's.v& "v —'m'v'

I I
~-+ &.v s "&(v-)

+-'&.&(v)s'&(v) -m'9 Il&(v)

—~'&(v) ll~(~)+ ~~ .«+&(~)» (1 4)

which because of (1.10) assumes the form

(1.12)

By the well-known normal-product algorithm' and
with the conventions described in Ref. 9, it can
easily be shown that the quantized version of the
equation of motion is that, for any functions Y(y),
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C, (y), C,(p), . . . , 4,(y) of y and its derivatives,

d y
' 1+p — Y yXx

where

and N and M denote the order of perturbation in
X and in p, respectively. The double bars ~~ on
the left-hand side of (1.13) indicate an aniso-
tropic normal product, which only takes effect
for those terms derived from the mass term of
Z, (W,). On the other hand, we may easily show
the operator relation

S

X(x) = (4,.(p))(x, ), (1.14) '(y)=-'(') F()
ep 5W

P

x = 'I xq 4,. p x~, (1.15) which means thai

T dy yXx =T dy ' F Xx

Letting Y in the equation of motion (1.13) be F and combining the result with (1.17), we obtain

Xx = T dy- o -p E yXx ' +i

(1.17)

(1.18)

Using the equation of motion (1.13) repeatedly with Y = (-p5F/5+)F, ( p5F/5-p) F, ~, ( p5F/5p-) 'F, this
equation is converted into

T d4y''yxx =T d4y 0 p
p E yxx

+iT —p E x (1.19)

The above equation is true for all e ~0 if the second term of the right-hand side is considered to be zero
for n =0. From (1.19) and from the renormalized Schwinger action principle which is easily established
in the normal-product algorithm, we get

(T[X(x)]) ' =((T J(d T (-p ) FI( )X(T))x

—p» + T x (1.20)

In Sec. III, we will show that this equation leads
to the invariance of the S matrix. Here we will
content ourselves with obtaining a transformation
of Green's functions. Let

X(x}= ] {C,.(W,(q)))(x,.). (1.21)

Then from the identity

5Q 5Q 5X
5y
'

M 5y
' (1.22a, )

which is proved in part (2) of the Appendix, we
obtain

5X
1

5F

P

(1.22b)

for any function Y(p). Moreover, it follows direct-

(1.23)

=i T ' d y -p E yXx

+ T —p E x, 124

I

ly from (1.21) that

BX 5X
Bp

Letting Y in (1.22b) be

g(- .':)'
and combining the result with (1.20), (1.22b), and
(1.23), we obtain

(T[K(x )])))('„
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for all n~ 0. Letting n~ I, each term on the
right-hand side of (1.24) is zero, because its pre-
scribed order in p is exceeded. Hence

S

T (C, (W,(y))}(x,) = 0.
ep S, M

Consequently, the matrix elements

(1.25)

T C]Wy x]

are p independent. Choosing successively p = 0
and p=1, we have proved that, for allN and M,

S Sp s
T C] y x] = T C] y+E x]

X4

(1.26)

On the right-hand side of (1.26), M now refers to
the number of F vertices (that is, the order of per-
turbation in p at p =1).

II. NONLOCAL TRANSFORMATIONS

FIG. l. Unwanted loop diagram with five 6G/5Q ver-
tices. The dashed line represents the propagator
E&{x-y;p).

Let us now generalize the problem of Sec. I by
constructing the Lagrangian

&,(m) = &,(V+F(e)), (2.1)

where Z, (y) is given in (1.1) and F(y) is now the
nonlocal obj ect

(F(V)}(x)= &'y&~(x —y; u)(G(V)}(y) (2.2)

&,(~) = ~.(IY,),

where

II,(e) = V+ pF(e),

(2.3)

(2.4)

In the above equation, 4~(x -y; p) is the free prop-
agator for a particle of mass p, and G(p) is a local
object; then the Feynman graphs generated by the
Lagrangian Z, (y) can still be renormalized by the
BPHZ formalism. The discussion in Sec. I sug-
gests that we may establish the equivalence theo-
rem by introducing, for 0 & p & 1, the Lagrangian

c (x)c'(0) =is~(x; p). (2.6)

The reader may prove that Z', (p) is equivalent to
S,(p) by the same technique as in Sec. I.

We will present here a simpler proof, well
adapted to this special kind of nonlocal transfor-
mation. For this purpose, we will first transform
(2.5) into an equivalent Lagrangian which is man-
ifestly local:

gian 2,'(y) different from Z, (jo+F). This is in-
spired by the functional analysis of 't Hooft and
Veltman. " The new Lagrangian 2',(p) differs from
Z, (p+ pF) by the introduction of ghosts fields that
interact with the physical fields. This Lagrangian
ls

&'p(y)=&,(q)+s„cs"c- y,'c~~c-pc
6

c,«(m)

(2.5)

where c and c are scalar fields which satisfy Fer-
mi statistics and are quantized with the Wick con-
traction

and t;hen showing the p independence of the matrix
elements

(
S Zp

7' ... , (@,(~,(&))}(x,)
— i=& N, M

J,(y) =So(W,)+ 8 n& ~n —p,'n
~
~n+nG(y)

+ & cs"c—p'c ii c —pc c,6G p)

where

(2.7)

This approach is, in fact, incorrect because of
possible Wick contractions in Eq. (1.13) between
y(y) and the nonlocal object Y(y). The reader
may show that, by applying the techniques of Sec.
I for the Lagrangian (2.3), such contradictions gen-
erate diagrams with loops as shown in Fig. 1, and
that these graphs violate the equivalence between
the Lagrangians 2, and Z, . We may try to fulfill
the rection (1.26) by introducing a new Lagran-

W =p+pn, (2.8)

and where n and n are scalar fields satisfying Bose
statistics. It is a simple task to show that the
Green's functions of normal products not involving
n or n are the same whether for Z,(p) or J,(y).
For any local functions F, C„.. . , 4, of y, n, n,
c, and c the equations of motion for y, n, c, and n
are, respectively,
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T ) d'y
I

' ' +n -pc c Il' (y)X(x)
f 6Z.(W.) 6 G & 6G P

N, M

=*
'

(-))|"-' ") r x,(x,) "x, ,(x, ,), ')I5C.

i~

d4 &0 ~P

5ci(-1)'"""'"' T x, (x, ) x, ,(x, , ) 'YI
i=1

(
I LPT,) d'y -c( + p.'II) —p c l' (y)X(x)
5p N, M

54= p(- )'""'-'"'(- )"'",(,)",,(;,)
i=1 C

LP
(x,)C ...(x...)" e,(x,), (2.9)

N, M

L

(x,)C, ,(x,.„). C,(x,), (2.10)
N, M

(x,)C;.,(x„,)' ' ' C,(x,), (2.11)
N, M

where

»8-~( + p'll}+G)l'j(y)X(x)
N, M

LP
=i Q(-1)' '"o "' T C, (x,) C, ,(x, ,) *Y (x,)4„,(x„,) '''C, (x,), (2.12)

i~ N, M

X(x) = C,(x,)C, (x,) C,(x,),

54/5c = (-1)"&(' ordinary M /5c,

(2.13)

(2.14)

&) =number of permutations of fermions to bring c out of C to its left, and (C, F) =number of permutations
of fermions in the transformation

C Y Y4. (2.15}

Letting 1' be pc, -c, and n in equations (2.9), (2.10), and (2.11), respectively, and adding them, "we have

(Tm(x))„"„=0,

where

(2.16)

~(x) = (-1)' '" ~'"C,(x,) C, ,(x, ,) p
' c- 'c+(-1)' &

'& 'n (x,)e...(x...) e,(x,). (2.1'I)54, 54, (I 54;
i=1 I 0

Meanwhile

sL
p 6&0(g&'~) 6G(p)

8 5' 5y

so that

(2.18)

(2.19)

Letting F be n and n in (2.10) and (2.12), respectively, and combining them with (2.19},

sL„ — " f 6X 6X " t' . G(V)~ 6G(e) P
T d y (y)X(x) =—T n — n (x) + T d'y —c c (y)X(x)

Bp N, M

(2.20)

where

(2.21)5X 5Cn= C, ~ ~ e, , n e,.„~ ~ e
Qn

and similarly for n Letting X. be (1/p)(cG((p))(y)X(x) in (2.16) and combining it with (2.20), together with
the Schwinger principle, we obtain
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8 BX 1 5X gC p i t Lp
(T[X(x)])„&„=T —— n — n (x) + —T I) d'y/cG(y)](y) ~(x)

Bp N, M B N, M

from which we will in Sec. DI show the invariance of the scattering matrix.
Let the C's be functions of W, (q&) and its derivatives. Then

B 5X 1 gX 5X 5X
(T[X(x)])„I'„= T —— n (x) +—T d'y(cG(p) j(y) p — c (x)

Bp N, M pe N, M

Since 5X/5n = p6X/5W, and 5X/5@ =6X/6W, this becomes

(T[X(x)l &g,'z = o
Bp

(2.22)

(2.23)

(2.24)

completely analogous to (1.25) for local transformations since the external legs )p(x)+ pn(x) are equivalent
by (2.12) to the external legs

w(~)+ p f&') & (~-); v)(G(v)H~)

in a T product which does not contain any external legs n. Consequently, the introduction of the Faddeev-
Popov ghosts into the Lagrangian does indeed allow us to maintain the equivalence theorem.

III. INVARIANCE OF THE S MATRIX

A. Local transformation

The relation (1.25) for the two-point function means

(3.2)

(3.6)

&T[(P+PF(P)]( )(I+PF(P)f(o)]& ', =(T[P( )0'(o)]) ' (3.1)

Let the Lagrangian Z, be such that its two-point function has a simple pole at p'=rn' with residue i. Then
the above equation tells us that

(P'- m') &TRP+ PF(9 )f(p) (P+ PF(v))(-P)] &N', ~ I p .2 = f

where the tilde denotes the Fourier transform of the fields. Let D(p, p') be the (one-particle irreducible)
vertex function of E(p) and y at momentum p for the Lagrangian 2,. Then

&T[F(&)(p)P(-p)]& ', =(D(p p')(Tl&(p)«-p))&"3, . (3 3)

Let E(p, p') be the (one-particle irreducible) vertex function of E(p) and F(y) atmomentump for the La-
grangian Z, . Then

&T[I(&)(p)F(v')(-P)l) M)=))E(P P )N, br+aD (P P )(T[9'(P)9'(-P)]) fN, ))). (3.4)

The spectral properties of the functions D( p, p ) and E(p, p') ensure their reality and continuity at p' =m'.
Then (3.2), (3.3), and (3.4), give

(P'- m')l[I+pD( p, m')]'(Tl ~(P)P(-P)]) ']s, ~ I; .2 =f. (3.5)

Let us define Z( p) to be the inverse of [1+pD(p, m')] in the sense of formal power series in p and in the
coupling constants. Then (3.5) reads

(P' —m'), (T[P(p) P(-P)]) ' =i,Z (p) NMP=m

which means that the counterterms in Z, obtained from these in 2, by replacing y by y+ pE, guarantee
for any p the presence of a simple pole for the propagator at p'=m . However, since its residue is not i
anymore, the definition of the S matrix necessitates the introduction of a wave-function renormalization
constant Z(p). The S-matrix elements for a total number s of incoming and outgoing particles are

8 g-- v(p, )S„)))(p,p„. . . ,p,)-, , (p) ™) T j
g=l N, M P.a=fft2t

(3.'I)

We will now show that S„z(p,p„... , p, ) is in fact p independent. By differentiating (3.6), with respect to
p, we obtain
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(T* ~ )IT. , '—(TIP(d)T(-d)})', , =(d'-~') T, —, (T(T(d)T(-d)})Z p Bp ((},v-). () =))) P P N,N-l '

p =nP

which, together with (1.20), gives

(p —m') (T[j(p)y(-p)]& ' =-(p' —m')(T[B(p)P(-p)]&))('„, I~2„2 ~

Z (V) E N-1

In (3.9)
n-

d(T)=Z (-d, ) T(T),

(3.9)

(3.10)

(3.3')

where n) M. Let V(p, p') be the (one-particle irreducible) vertex function of B(y) and y at momentum p
for the Lagrangian 2,. Then, similarly to (8.3),

(T[II(p)(P)P(-P)l&';, =(V(p, p')&7'[P(p)P(-P)])"),

Using this and (3.9) we obtain

[I/Z(p)] ZB(p)/ pB= —V(p, m ),

in the sense of formal power series. Also,

(3.11)

$ g

, P(p;)
S

=- p &T[P(p, ) ' ' ' P(p;, )&(p;)P(pg.,)' "P(p, )]&", (3.12)

(T(T(P ) ' ' ' P(T )d('T )T(P ) ' ' -' T(d,)}4', - = )T (T ~ ~ T,)«-+ IT(d Tl ) T, T(T )
g=1 g, M-1

(3.13)
Consequently,

8

(p,. —m) T
i=j

S

( T,.
' —m') s

I
T (d, m')

)=1

Zp

N, M-1 II)) 2=m

Sp

... P(p;)
S

... ,4 (p;)&
j=1

(3.14)

Then, from (3.7), (3.11), and (3.14) we have

Each of the matrix elements on the right-hand side of (3.12) can be decomposed into two parts: a term
W,.(p„.. .p, ) which has no pole at p,.'=m', and another which has one. Thus

(3.15)

Hence the S matrix is invariant under the local transformation (1.2).

B. Nonlocal transformation

The proof of the invariance of the 8 matrix under nonlocal transformations follows closely from that un-
der local transformations. The relation (2.24) for the two-point function is

&7'[(V+ pn](~)4 +(on)(y)]&~; ~= &7'[W(~) V(y)]&~', (3.16)

and consequently from the normalization used in f,o (or in Zo)

(P'- ~')&7'[(v +P }(»Q'+P ](-»j]&',.I p z =f. (3.17)

Let D(p, p') denote the one-p-particle irreducible vertex function of n and p at momentum p for the La-
grangian I,„and let E(P,p') denote the one-p-particie irreducible vertex function of n and n at momentum
p for the Lagrangian I, Then the relations (3.5) and (3.6) and the definition (3.7) of the S matrix (between
physical states) are still valid (with 2, replaced by I,) if, again,

Z(p) = [1+pD(p, m')] '

in the sense of a formal power series. Now from (2.22), the analog of (8.9) is

(3.18)

(P —m ) T &
(T((t(P)P(-P)}) P =((P —m )( T jd z(dG}(z)d(P)dt( —P)

1 BZ(p) ~d'}

Z(P) BP, ar. j)( ). P=N(~ -E — ~ d ))(, |(-|' (,2=~2

(3.19)
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Then let us denote by V(p, P') the one-y-particle irreducible vertex function for Jd'z(cGi(z), c(p), rp( p-)

in the Lagrangain L,

(T d 8 QG 8 C P P = P P~P T P P N
N, M-1

Consequently

[1/Z(p)]sZ(p)/sp=i V(p, m'),

in the sense of a formal power series. On the other hand,
s - Lp s Lp

T {i(p,.) =i+ T Jd z{eG)(e)((Pi) P(('j )c( g() ((PiI ) P(P )
P )=3. N, M N, M-1

(3.20)

(3.21)

(3.22)

Then the argument follows from what was done in
the local case with the normal product 8(p, ) re-
placed by the two-legged object Jd'z{cG](z)c(p,)
The result is again the independence of the S ma-
trix on p (3.15).

Hence S,(y) [that is, 1.0(y)] and 2f(p) [that is,
f.,(y)] have the same S matrices between physical
states.

to a vector field will be an important tool for
studying gauge invariance.
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IV. CONCLUSION
APPENDIX

An algebraic proof of the equivalencetheoremin
all orders of perturbation, for local transforma-
tions, in the normal-product algorithm, has been
developed in Sec. I and Sec. III A..

This elegant proof does not require a tedious
manipulation of Feynman diagrams, since the
equations of motion and the Schwinger principle
have already extracted the relevant properties
from them. The invariance of the S matrix under
the transformation is also obtained rigorously in
all orders of perturbation without recourse to the
Haag-Ruelle construction, ' as opposed to Refs. 2
and 3. Although this proof applies to a polynomial
transformation of the fields, it can be easily ex-
tended to cover transformations that are power
series in the fields p at @=0.

This proof breaks down for the nonlocal trans-
formations. The nonlocal transformations gener-
ate a set of unwanted diagrams reminiscent of
those described by 't Hooft in gauge field theory and
which were canceled there, by the contribution
from Faddeev-Popov ghosts. '

Incorporating a ghost part into the transformed
Lagrangian to cancel these unwanted diagrams, we
then restore the equivalence between the Green's
functions of the original Lagrangian and those of
the resulting Lagrangian, and also the equality of
their S-matrix elements between physical states.

An extension of these nonlocal transformation

(&) Proof of Eq. (2.10). The content of (1.10)
can be stated as follows: Given a function y of
X and its space-time derivatives, and a function
X of y and its space-time derivatives, then

5Q[X(y)] 6X 5Q
Gap 5y 5X ' (A1)

where the notations (&/Gap) and (5/Gap) are de-
fined in (1.8) and (1.9), respectively. In this
proof we shall use Einstein's notation X

& .. .
&

to stand for sX(x)/sx„~ sx„, and dummy in-
dices are ahvays summed over from 0 to 3. From
the identity

~ ~ O (A2)

we get

8X p

QQ7 , Vy ' Vyg

8 8X
8+ 8+

9X
+ p$- ~P, V ~ ~ ~ V ' ~ VS m

The second sum on the right-hand side of (A3)
is zero for m=0; v, means that this index is
omitted. Introducing another function Y and using
(A3), we have
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(y effBX

I) a ~ ~ I)], lg p ~ ~ ~ p

BQ ~ 1 8Q
~! BX

BX,u 1 uff

''"m

(A5)

+m
B

t I ~ ~ ~ ~~ ~
~

I ~ ~P, V~ ~ ' I) Ifi I II) j. "m-lu

Given the function Q [X(y)], we can write

and using the definition (1.9) we get

5Q g (- 1) sQ BXp ~ ~ ~ y„
5y ff ~ 0 Ã0 m P BX p Q ~ ~ u By I) ~ ~ ~ I) I) ~ ~ ~ I)t n s yf ~ j, ''~m

(A6)

By a simple application of (A4) with Y replaced
by sQ/sX „...„,X by X „,.. . „„,and p by
p.„(A6) becomes

5Q ~ (- 1) 8Q BX,p2 ~ ~ ~ p„

~ ~ ~ ~

BQ BX u e ~ ~

+ m
*up un P&vl ~ vm-1 ~vl ~ um-yu1

After application of the p, , derivative in the second bracket [ ] of (A7), and after simplification of the first
bracket [ ], we obtain

/

5Q ~ (- 1)""' sQ BX&u2 e ~ o p+

In (AB), we may substitute (A4) again with Y replaced by (&Q/BX „,. . . ~ ) ~, X' by X ~ . . . ~, and p by p,
In the result of the above, we may again apply (A4) repeatedly with p, replaced by p, „p.„.. . , p, „; we finally
obtain

6Q + ( I)"'~ sQ BX

5y — se me BX ~ ~ a u e e a u By p e e o I) I) e ~ o p
(A9)

which by (1.8) and (1.9) proves (Al).
(2) Proof of Eq. (1.2Za). Multiplying (AS) by the function Y and using (A2), we obtain

BX „
By I) ~ ~ 'v

1 m

From the definition (1.7),

5Q g 1 sQ
5q 0 nl BXu . . . u

X.u.
6y

(A10)

(A11)

Choosing in (A10) Y, X, and p, to be Y, . . . , , X
&

. ..„, and p„ this can be rewritten as

5y nl BXu . . .„-,m! By

that is,

(A12)

By reiteration of the above procedure choosing p. successively to be p~, . . . , p, „, we obtain
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