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Fermion loops in gauge models with 75 couplings cannot be regularized in a gauge-invariant manner either by
the method of auxiliary fields or by dimensional continuation. It is shown that in the absence of a gauge-
invariant regularization procedure, the method of auxiliary fields can be employed in such a way that non-
gauge-invariance is confined to the renormalization constants. It is thus possible to obtain gauge-invariant
renormalized results as well as resolve anomalies without the use of Ward’s identities. Explicit calculations are
carried out for the self-energy and triangle diagrams with fermion loops in the Appelquist-Quinn model. The
present treatment is also compared with naive dimensional regularization for the s couplings.

I. INTRODUCTION

Regularization by auxiliary fields'or by dimen-
sional continuation® is widely used for the evalua-
tion of divergent integrals in quantum field theory,
and usually one or both of these methods can be
employed successfully for this purpose. However,
the regularization of fermion loops in gauge mod -
els presents a special difficulty, because the aux-
iliary fields cannot preserve the symmetry of the
system, while dimensional continuation cannot be
applied to the y, couplings. The aim of the pre-
sent paper is to show a way out of this difficulty
with the use of the method of auxiliary fields, and
also examine the situation with the use of dimen-
sional regularization.

Our approach is based on the observation that it
is possible to carry out regularization without
imposing symmetry constraints on the auxiliary -
field couplings, provided that it is ensured that
the contributions of the auxiliary fields to a given
physical process appear only in renormalization
constants. This requirement will be referred to
as the regularizability condition. The renormali-
zation constants, of course, are to be dropped
wherever they occur in the results obtained by
our regularization procedure.

One might think that a regularization procedure
that generates non-gauge-invariant renormaliza-
tion constants will prove inconvenient in practice.
However, as we shall show by applications to the
self-energy and triangle diagrams arising from
fermion loops in the Appelquist-Quinn gauge mod-
el,® our treatment is quite straightforward. It is
especially worthwhile to explore the present ap-
proach in view of the fact that different prescrip-
tions® %% suggested for dimensional continuation
of the y, couplings are found to yield different re-
sults for loops involving such couplings.

Although the treatment given in this paper is
recommended for fermion loops in gauge models
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with y, couplings, it can on occasion be applied
to other systems of interacting fields with sym-
metries.® Our treatment can also be used in con-
junction with dimensional regularization in phy-
sical applications.

After a discussion of the regularizability con-
dition for the auxiliary fields in Sec. II, regulari-
zation and renormalization of self-energies re-
sulting from fermion loops in the Appelquist-Quinn
model will be carried out in Sec. III. We shall then
regularize the triangle diagrams in Sec. IV, apply
the regularizability condition, and thus demon-
strate the well -known necessity”® of another fer-
mion field without the use of Ward’s identities.

The treatment of fermion loops with dimensional
regularization will be examined in Sec. V.

Our notation is such that x, = (x,, x,, %,, x,) with
x,=1%y, and €,,,, is completely antisymmetrical
with €,,,,=1.

II. REGULARIZABILITY CONDITION

It will be useful to discuss briefly the method
of regularization by auxiliary fields' and the ver-
ification of the regularizability condition.

Let us consider a fermion loop that gives risetoa
divergent intergral of the form

F(e®; M%) =C, f dqR(g, B M?), (2.1)

where %(*) are the momentum four-vectors of lines
attached to the fermion loop, and C, is a constant
which may involve the fermion mass M. By intro-
ducing an arbitrary number of normal and abnor-
mal auxiliary fields with appropriate couplings,

it is possible to replace (2.1) by

[F ;M%)

reg

=C, qul:R(q, B9 M2) +E 7@ R(q, kD M(a)z)]’
[+

(2.2)
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where 1‘*? equals 1 or -1, and M‘* is an auxiliary

mass ultimately tending to infinity. With the use
of only one auxiliary field, (2.2) can be converted
into

2
E s
[F(k(i); Mz)]reg= —Cof dz f dqR'(q, k(l);Mz-q»-z),
0

(2.3)

while the use of three auxiliary fields leads to

[F(®; M%)

reg

£2 £ .
=C0f dzlf dzzquR”(q,k‘”;M2+zl+zz),
o 0

(2.4)

where primes denote differentiations with respect
to M?, and &® tends to infinity. This procedure,
of course, can be extended to higher derivatives,
if necessary. In practice, it is always advisable
to choose the M dependence of the constant G, in
(2.1) in such a way that R(gq, 2‘*’; M?) is a rational
algebraic function of M* and requires as few dif -
ferentiations as possible for convergence over the
g space.

In order to achieve maximum freedom in the
regularization procedure, we shall adopt the view-
point that the auxiliary-field couplings required to
obtain a result of the form (2.2) need not preserve
the symmetry of the system. We can also choose
different auxiliary-field couplings for different
fermion loops or leave a fermion loop unregular-

J

ized if regularization is not necessary. However,
as mentioned in the preceding section, the regular-
ization procedure must satisfy the regularizability
condition, which requires that the contributions of
the auxiliary fields appear only in renormalization
constants.

It is easy to ascertain whether the regularizabil -
ity condition is fulfilled in the treatment of the
fermion loop. For, let us separate the contribu-
tion generated by the auxiliary fields in (2.2), and
after dropping the renormalization terms let us
denote this contribution as

COZU(“)quRc(q,k(“;M(“)?‘), (2.5)
@

where R°(q, k‘"’; M‘*?) is obtained from

R(q, k¥; M‘®)?) by carrying out the usual expansion
in powers of the 2*) and dropping the renormaliza-
tion terms. Then the criterion for the fulfillment
of the regularizability condition can be stated as
follows: When M‘® —o, the integrand in (2.5)
should vanish for finite values of ¢ and converge
more rapidly than ¢™ for infinitely large values

of ¢, so that the integral will vanish altogether.
Note that when both M‘*? and ¢ tend to infinity,

we must treat M'®) as equivalent to ¢ for power-
counting purposes.

Thus, possible violations of the regularizability
condition can be detected by a power-counting pro-
cedure. Indeed, the regularizability condition is
violated only in exceptional cases, and then the
anomalous situation must be remedied.

III. SELF-ENERGY DIAGRAMS

With the use of the gauge-compensating formalism, the Lagrangian density for the Appelquist-Quinn mod-

el can be expressed as

L==3(8,a,f —3m*a,” ~5(3,0)* —2m°b* ~3(3,s)* — 5u°s* = P(y,d, + M) —8,C*8,C —m>*C*C
-2gma,’s+2ga,(bd,s —s8,b) - (gu/m)s(b*+ s?) _zgzauz@2+ s%) = (g2 1%/ 2m2)(b% + s%)?
—igPy,vda, + (2igh/m)Pypb — 2gM/m)Pps — 2gmsC*C, (3.1)

where C is the gauge-compensating field. In general, the model involves two coupling constants f and g,
but since we are mainly interested in the y, couplings of the fermion field 3, we have put f=0 to achieve

some simplification in calculations.

We shall first investigate the second-order boson self-energy diagrams with fermion loops resulting
from the interaction in (3.1). All such diagrams with nonvanishing contributions are shown in Fig. 1.

A. Regularization

The contributions of the scattering operator for the self -energy diagrams 1(a) and 1(a’) are

Siay = 0k —k")a;, (B )a3 (B g jdq Tr[Se(q)y,vsSrld =Ry, 7s], (3.2)

Suerr= 00k =)@ 125 [ dg Tl 4(a))

(3.3)
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with

Sr(q)=(iq v -M)/(q* + M?). (3.4)
The contribution (3.2), which appears to be quadratically divergent, can be evaluated by regularizing in
accordance with (2.4), while it is really unnecessary to regularize or evaluate S, ,., because it evidently
contributes only to a renormalization constant. We thus obtain

Saa=S1tar*+S1(an

=ik — k' )a, (")a, (k)N A,5,,+B,(k%6,, —k,k,)+ C, (B> +m?®)5,,+ 115 (k)], (3.5)

where A, B), and C, are renormalization constants, while the physical term II¢ (%) is given by

e, (k)= 8n%g* Ll du {u(l -u)(¥?5,, - kuk,,)ln(l + %)

(B2 + m®)u(l —u)> %%+ m®)u(l - u)]
2
+6,, M [1n<1+ W~ —w)) I —mm )l ( (3.6)
Similarly, the contributions for the remaining diagrams in Fig. 1 are
- vy 48°MP
Sis =0(k -k')o7(R')b" (k) é:ﬂz ]dq Tr[sF(Q)YssF(q —-Rk)ys),
- e 48°M
Suan = 6l =26~ 25 [ aqTals ;)
+ + 2 2M
Suer= 00 B )a (61)0° () ~ b (R)a (N5 [ dg T[S plahy,vsS i ~ M),
" (3.7)
4g°M
Sy(ery=0(k — R ay(k)b* (k) - b™(k")ai, ()] mgiz f dq ik, Tr[Sp(q)],
e 28°MP
Syay= ~0(k —k")s™(R")s" (k) gnjz qu Tr(Sp(@)Spla -R)],
12g°M
Sy @y =0k —k")s™(k")s* (k) ,f;’i f dq Tx(Sx(q)],
which yield upon regularization results of the form
Sp5=S15)+S16m
=46(k — k)b~ (R7)b* (R)[A, + B, (R + m?) + II°(R)], (3.8)
Sa5=S1(er +S1(en
=i6(k — k') a;, (k")b" (k) - b™ (k" )a;, (R)][iAgk,, + 15, (R)] , (3.9)
Sss =Sl(d) +Sl(d’)
=i6(k —k')s™(k")s* () A, + B,(* + u2)+ II’° (k)] , (3.10)

where the physical terms MI°(g), II¢(k), and II’°(k) are given by

e 8TEME (1T ERemPu(l —w)\ | (e mPu(l —u)
me(e) = ~Er— | dulk 1n<1+ e _u)>+ e ], (3.11)

8 2a72 1 2 2 _
e (k):j%%ikufo duln (1+%‘;%(111_—;‘))) , (3.12)

r1'°(k)=4—8-%%2%2 fldu [[M2+k2u(1 —u)] 1n<1+ (& + w)u(l ““)) — (B2 + pPu(l —-u)]. (3.13)

M? - pPu(l —u)
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(@) (&) (b) )

____O----

(c) () (d) (d)

FIG. 1. Self-energy diagrams. Solid lines represent
the fermion field 3, while wavy, dotted, and broken
lines represent the boson fields ay, b, and s, respec-
tively.

B. Regularizability condition

It will now be verified that our regularization
procedure satisfies the regularizability condition.
Regularization of (3.2) in accordance with (2.4)
corresponds to the introduction of three auxiliary
fields, whose contribution is given by

81ar= 8k k"), (R (k) g f dqR,,(k, ),
(3.14)

where
By @) =2 T[S p(q; M)y, v,
[+7

XSplg —k; M) y,7.],

(3.15)
with
iqy —M@
SF(q;M‘“’)=—Mm—‘flzz — - (3.16)

We can decompose R,,,(k, ¢) as
R, (%, q)=Ru,,(0, Q)+%kak5 [_Ea o :Q)]
ko 9kg uo
+sz(k) Q)y (317)

and it follows from the power-counting argument
given in Sec. II that, for M‘®) —co,

quf‘tiu(k, q)=0. (3.18)

In view of (3.17) and (3.18), the contribution (3.14)
affects only the renormalization constants in (3.5).
Similarly, it is easy to see that the regulariza-
bility condition is satisfied for the other self-ener-

gy diagrams.

C. Renormalization

According to our treatment, renormalization
of the regularized self-energy contributions can
be achieved simply by dropping the renormaliza-

tion constants, and the fulfillment of the regular-
izability condition ensures the gauge invariance

of our renormalized results. It should, however,
be pointed out that we have identified the renor-
malization terms in (3.5), (3.8), (3.9), and (3.10)
in such a way that they have the same form as the
counterterms in the gauge-invariant renormaliza-
tion procedure of Appelquist, Carazzone, Goldman,
and Quinn.’ Note that although Appelquist et al.

do not provide a direct counterterm corresponding
to the C, term in (3.5), this term represents a
finite wave-function renormalization, and it can
be eliminated by an additional renormalization of
the a, couplings carried out by these authors.

IV. TRIANGLE DIAGRAMS

The triangle diagrams resulting from the in-
teraction in (3.1) are shown in Fig. 2. We shall
apply the regularization procedure to the contri-
butions of all the triangle diagrams, and then dis -
cuss. the complication caused by the violation of
the regularizability condition for the diagram 2(a).

A. Regularization
The contribution of the scattering operator for
the triangle diagram 2(a) is

Saa) = 80(p — k= k") a, (k") a3 (k) ay () (28 °)F s (R, R)

@.1)
where
ilg-Fk)vy-M ig-y-M
Fu”)\s(k,k’)=quTr[ @ -RP Mz TRV Tz e
i@ +R) y-M
YIIYE, (q +k)2 +M2 7)\}/5] .
4.2)
[: K ]. K ]. K Q.....k'
@ W @ w

<E: ¥ v K e ¥
k Lk ﬂ. Kk

(e) (f) (g)

-->K S
(h) (i)
— K
_.-‘Q—-bk
()
FIG. 2. Triangle diagrams. Corresponding to each

diagram there exists another with the direction of the
¥ lines reversed.
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Since (4.2) appears to be linearly divergent, it is
sufficient to regularize it with one auxiliary field
in accordance with (2.3), which leads to the finite
result

Funs(k, k') =i[ A, (k' R)ee — A, (R, k"o ] € yun
+i[A, (R, k)R, + Ay (R, R)e, ] kLR g€ o g 0
- i[Ay(k, k'), +A,(k, k') kLR GE 4o
+80m2M 3 [Loo (k' B) = 21, (k' )] Rir€ on
= 8imM2[Log(k, k') = 21, (R, k') R o€ oy

=42k~ koo » @.3)
where
A (R, R')=k -k Ay(R, k') +R"2A (R, k'),
A,(k, k') =8121,,(kR, k), 4.4)
Ak, B")=8n2[I, (R, k") -1, (k, k)],
with

Ist(k’kl)=lts(klyk)
1 1-u
=f duf dv vt [u(l —u)k® +v (1 —v)k’2
o 0
+2uvk- R +M2]7Y,

4.5)

For the diagram 2(b), the contribution of the
scattering operator is convergent after trace
evaluation, and therefore regularization is not
necessary. Moreover, the contributions for the
diagrams 2(c), 2(d), 2(h), and 2(i) can be shown
to vanish,

It is quite straightforward to regularize the con-
tributions for the remaining diagrams 2(e), 2(f),
2(g), and 2(j) by the application of (2.3). We have
performed these calculations, and the results are
found to be of the form

Saer=0(p =k —k")ay (k") a3 (k) s™ (p)dg*M?/m)

me,(k,k’),
Sap ==0(p =k =k")b™ (k') a3 (k) s™ () (8g*M?/m?)
X F(k,k"), 4.6)
Spe)=0(p =k =E)O™(R")D™ (R)s™ (p)(16g°M*/m?)
XF(k,k"),
Say ==0(p —k=Fk')s™ (k") s™ (k) s™ (p)(16g°M*/m?)
XF'(k, k'),

AND SURAJ N. GUPTA 13

with
F;w(k; k') = 7;Aoépv +Fﬁ,}(k, k") ’

F,(k, k') =B,(k, +2k,) +FS(k, k'),
4.7
F(k,k')=iCy+F°(k, k),

F(, k') =iCl+ F'*(k, '),

where A,, B,, C,, and C; are renormalization
constants for the a,’s, a,(d,s - saub), b%s, and
s® couplings, respectively. As in the case of the
self-energies, the renormalization terms here
have the same form as the counterterms of Appel-
quist et al.,’ who have also discussed the separa-
tion of renormalization terms for the three-point
functions.

It is now necessary to examine the regulariza-
bility condition to see whether we can justify our
regularization procedure and achieve renormaliza-
tion by dropping the renormalization constants.

B. Violation of regularizability condition

Verification of the regularizability condition for
the triangle diagrams can be carried out by a
treatment analogous to that used for the self-
energy contributions in Sec. III. It is then easy
to see that the regularizability condition is satis-
fied for all triangle diagrams except possibly
the diagram 2(a). The difficulty in the case of
the diagram 2(a) arises from the fact that the
integral F,, (k, k'; M') resulting from the auxiliary
field appears to be linearly divergent. Therefore,
by expunding this integral in powers of % and %/,
and by applying the power-counting and covariance
arguments, one finds that Fy,,(k, &’; M’) could
give rise to nonvanishing terms proportional to
the first power of & or k’. Such terms cannot be
absorbed by renormalization because there is
no coupling term in (3.1) involving the product of
three ay’s

We shall now demonstrate by direct calculations
that Fy,, (%, k'; M') indeed gives rise to a nonvan-
ishing contribution as expected from general con-
siderations. By expanding the integral

i(g=k")v-M' ige v — M

5

(q_kl)2+M12

g+ k) -y-M'
Y5 (g B A7 yxys] (4.8)
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in powers of 2 and k'’ with the use of the relation

1 - 1 Zluqu
(q:l:l)2+M’2 q2+M'2 (q +M12)

+oeee, (4.9)

dropping terms that vanish for M’ -, and simpli-
fying by symmetrization over the g space and
trace evaluation, we obtain

F#v)\s(k’ kl; M') = (ka - k&)eaﬂv)\
f dq 2¢°-4M"* 24" - 6M'2q2]
(q +M'2 3 (q2+M'2)4

=21 (ky — RL)€ qumns (4.10)

which confirms the violation of the regularizabil-
ity condition for the triangle diagram 2(a).

C. Regularizability condition with two fermion fields

From an examination of the Ward identities
relating the contributions of different triangle
diagrams, it was concluded by Gross and Jackiw’
that the gauge model requires another fermion
field y with opposite y; coupling to the a, field.
The approach of Gross and Jackiw is similar to
that used by earlier authors'® for the treatment
of triangle anomalies. We shall here demonstrate
the necessity for this additional field solely on
the basis of the regularizability condition.

With the introduction of the fermion field x, the
Lagrangian density (3.1) acquires the additional
terms

= =X(ypdp + K)X + 88X 7u VsX Oy
(2gk/m)XxX S 5

where the y couplings have been obtained from the
i couplings in (3.1) by the replacement

- (2igk/m)Xvsxb - (4.11)

=X, M—-K, §—-=8, S==—S5, (412)

and it isto be noted that the boson-boson couplings
in (3.1) remain unchanged under (4.12).
In order to show that the additional field pro-

J

1 2 2
Alz—a—ﬁ+8ﬂ2g2M2f du1n<1- ()
(0]

vides a solution to the violation of the regulariza-
bility condition for the diagram 2(a), let us con-
sider the diagram 2(a) and a similar diagram in-
volving the y fermion field. The contribution of
the scattering operator for these two diagrams is
given by

S ) (M) + Sy (k) =i8(p = ke = k' )ap (R")ar, (R)a 5 (p)(22°)

X[Fuv)\s(k’ k's M) = Fuys(k, k5 x)] ,
(4.13)

while the contribution resulting from the auxiliary
fields required for the regularization of (4.13)
is

i6(p -k - Eag (k"a; (R)ai(p)(2g°)
X[ =Fyupslks k'3 M) + Fps(k, B, k7)1

which vanishes in view of (4.10), and therefore
the regularizability condition is satisfied.

V. COMPARISON WITH DIMENSIONAL REGULARIZATION

Although various suggestions®:*° have been made
for dimensional regularization of fermion loops
with y, couplings, the usual treatment essentially
involves the following two operations.

(1) The contributions of fermion loops are evalu-
ated by excluding the y matrices from dimensional
continuation, which we shall refer to as naive
dimensional regularization.

(2) Since this procedure is not manifestly gauge
invariant, it becomes necessary to verify that the
results obtained for the fermion loops satisfy the
Ward identities.

We have evaluated the self-energy contributions,
given by (3.2), (3.3), and (3.7), also by naive
dimensional regularization, and the physical
terms in all the self-energy contributions are
found to be identical to those obtained in Sec. III.
Further, the renormalization constants appearing
in (3.5), (3.8), (3.9), and (3.10) are given by

m a t m2(u —u?
D), =g 87t [ dutu-u (1 -2 d),

1 2 1 m(u —u?)
C,=8n? zsz S ek = A,=a —81% zszd 1n<1—————>,
1 g | du M- —d) 2 g A U e
__a  8wgiMt ot [ m3(u —u?) m*(u —u?) ]
Bo= =t Tm? f du[ln(l === T M -m*(u-u?)] "’ (5.1)
o .1
a i 812022 m A —u?
A3——7—£—2m —Jg—-—fduln< —1(1/12 u)>,
a 2 16.”2 2M2 6M2_ 2 481]» 2M2 2 2 —y2
A4=#' + g 37(,12 = ) L f du(u - 2u2)1n< *—L——(-uM—é-—u—)-> s

16,”2 2 2 48 2 _2px2 1
B4=——a2-+ gzM + T8 M f du(u—uz)ln<
0

m 3m m?

1-& (L;u)>’
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where

LT20(2 =n/2) g =

32g2M% /201 -n/2)

— 3 2 T s oNomml o
(1—3;1_?'14 8g M (Mz)z—n/Z ’ n"l;l:li {J.z

Instead of examining the regularizability con-
dition, it is now necessary to derive and verify
the Ward identities for fermion loops appearing
in the self-energy contributions. These identities
are expressible as'

ik, Iy k) =m (k) , (5.3)

- ik Ty(k) =m[II (k) - (2g/m)T (k)] ,

where I1,,(k), IL(k), and II(k) represent the contri-
butions of fermion loops in the self-energy dia-
grams 1(a), 1(c), and 1(b), while T(k) represents
the contribution of the tadpole fermion loop ap-
pearing in some accompanying diagrams. We
have verified that the relations (5.3) are satisfied
by the results obtained by naive dimensional

(M2)1~n/2

(5.2)

T

regularization, so that the physical self-energy
terms obtained by this procedure are gauge in-
variant.

The triangle diagrams in Fig. 2 can also be

evaluated by naive dimensional regularization.
It is then again necessary to derive and verify
the Ward identities for the triangle diagrams,
and any anomaly found in this manner must be
resolved.

The treatment described in the preceding sec-
tions appears to be simpler than that outlined in
this section, because an examination of the regu-
larizability condition is much easier than the
derivation and verification of Ward’s identities.
In any event, our treatment with auxiliary fields
provides a practical alternative procedure for
the evaluation of fermion loops with vy, couplings.
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