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Nonuniqueness of physical solutions to the Lorentz-Dirac equations
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The Lorentz-Dirac equation, with the usual constraint (a l0 as r~ 00) for physical solutions, is shown to
permit two or more solutions to some problems. In particular, we consider a point charge initially at rest a
finite distance s from a bounded region of an attractive, uniform electric field. In one physical solution the
particle remains at rest; in another, it is "pulled" into the field region by preacceleration. The maximum

distance s for which multiple solutions occur is, however, extremely small for reasonable field strengths.

I. INTRODUCTION

a"-0 as v-~ (2)

and implicitly assumes that one and only one such
physical solution exists.

The LD equation has been the subject of numer-
ous studies, ' partly because of the unusual prop-
erties of some solutions and partly in the. hope
that a better understanding of the classical inter-
action of particles and fields would illuminate re-
lated problems in quantum electrodynamics. The
equation has been derived in several mays, 4 and
various alternative equations of motion have been
investigated. '

The unusual properties of some solutions arises
from nonlocal effects in the Lorentz-Dirac equa-
tion, as discussed by Rohrlich. ' Qne such prop-
erty is the existence of preacceleration, where-
by a charged particle can be accelerated by a
field before the field has reached the position of
the particle. Nonlocal effects are generally only
important within a distance of roughly one unit
(i.e., one classical charge radius) of the particle.

The LD equation has nevertheless been shown to
give reasonable and apparently reliable results
for many problems. In particular, for head-on
collisions of like-charged point particles, the

The classical motion of point charges in electro-
magnetic fields F""is usually described by the
Lorentz-Dirac (LD) equation' (we use units with
m=e=c=1)

a" = E"'u„+—', (a" +a'u")

where u" is the proper-time derivative of the posi-
tion x": u" = dx "/dr = x", a—nd a" = u". Here a' is
the Lorentz scalar a"a& ———a,' —a'. For given in-
itial values of x" and u", Eq. (1) has infinitely
many solutions, most of which are unphysical
"runaways" in which the acceleration increases
without bound as 7-. To ensure a physical solu-
tion, one normally imposes the additional con-
straint'

equation, although difficult to solve, has been
probed to very high energies and found to give
reasonable solutions. ' Qn the other hand, prob-
lems have also been found for which no physical
solutions exists. These principally involve situa-
tions in which a singularity lies on the expected
classical trajectory. ' Nonlocality of the LD equa-
tion apparently causes effects of the singularity to
be propagated along the trajectory to much earlier
times, with disastrous effects.

The significance of cases involving singularities
on the trajectory can be questioned by noting that
quantum-mechanical uncertainty forbids such a
precise specification of the trajectory. Failure
of Eq. (1) is then seen as arising from the applica-
tion of a classical theory beyond its range of valid-
ity. Furthermore, the singularity is in itself un-
physical and can be blamed for the difficulties.

It is generally accepted that the LD equation
(1), together with its physical constraint [Eq. (2)],
gives accurate results providing the energy scale
is sufficiently small (s mc') and the distance scale
sufficiently large (~5m 'c '). Moniz and Sharp"
have, in fact, derived a nonrelativistic quantum-
mechanical operator equation which, although it
reduces to the nonrelativistic LD equation in the
classical limit, admits no runaway solutions and
no significant preacceleration. It is not particular-
ly surprising that classical electrodynamics is no
longer accurate when relatively small dimensions
or high energies play an essential role. Neverthe-
less, a study of how and where the theory fails
may be worthwhile. The scope of the present
paper is limited to such a study.

We point out here that in addition to cases for
which no physical solution of Eq. (1) exists, there
are also cases for which Aoo or mo~e physical
solutions exist. Two such solutions are found ex-
plicitly and analytically for the problem of a point
charge initially at rest outside a region of attrac-
tive, uniform electric field. Significantly, the
field here does not need to be singular. Neverthe-
less, we show that for reasonable field strengths
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FIG. 1. A problem for which two physical solutions
exist: A charge is initially at rest a small distance s
from a region of strong uniform field.

the initial separation of the charge from the field
region must be extremely small: It must be less
than a classical charge radius if the field strength
is less than a rest-mass energy per unit charge
per classical charge radius.

A further integration gives

~(v) = ((0)+-',[j(v) —j(0)], v&0.

The values g(0) and F(0) of $(v) and j(v) as the
particle enters the field region depend on the in-
itial separation s as well as on the strength and
extent of the field. Once the charge is in the field
region, it is accelerated along the x axis, only to
emerge at x, at a later time, say vo.

For still later times, v & 7„ the solution has the
form of Eq. (10}:

((v) = ((r,)e'!' "o&/', v & 7, . (12)

j(7,) =0 (13}

in order to satisfy the constraint of Eq. (8).
While the charge is in the field region (0& v«7, )

the solution to Eqs. (3) and (4) which yields Eq.
(13) is readily seen to be

In order to guarantee a physical solution, we must
thus have

II. PROBLEM

Consider a point charge e = 1. initially at rest at
v, & 0, x& = —s, y; = z& = 0, a distance s from the
region of a uniform field E~ (see Fig. 1):

j(v) =E (1 —e ! !/'), 0& T& v .

A further integration gives

)(y) —g(0) ~E ~ 2 E s 3T /2 (0s3 T/2 1')

(14)

E~, 0&x&x,

0, otherwise.

The obvious physical solution of Eqs. (1}and (2)
for the y and z components of the motion is y = z
=0. The equation for motion in the x direction
can then be simplified' to

0&y&y . (15)

(16)

The net increase in ] due to acceleration in the
field region is thus

5(&.) —5(0) =E.[~.--'. (1 —s '"")].
The value of E as the charge enters the field is
[see Eq. (14)]

j(0) =EQ(1 —s "0 '),

where

]= in(y+ u ),
with

u =x=-dxjd7,

(1 + u2)l/2

The physical constraint [Eq. (2)] is

j-0 as v-~.

(4)

(5)

(6)

(7)

(8)

which is essentially E, for any field of macroscop-
ic extent. The distance s is related to ](0) by

0
s= 67Q

s(o)
dt. ( isnhE)/t.

0

Application of Eq. (11) thus gives

sinh]s = —' d(, a—= —' ((0) —$(0) ~0. (19)3 (+a '

The trivial solution to Eqs. (3)-(8) is

x(r) = —s = const. (9)

j(~) = 5(0)e"/', v & 0. (10)

For sufficiently small s, however, there is an
additional physical solution in which the charged
particle is accelerated along the x axis. It moves
into the field region by preacceleration. Let us
call 7=0 the time at which x=0. Then for T&0,
$ =0, so that Eq. (4) gives

The largest value of s for which a physical solu-
tion exists through the field region occurs when

((0) = —', j(0) and is

[~(0)]2n+1

3 Z (2n+1)(2n+1)! '

(20)

where Shi( is the hyperbolic sine integral. "
The time —7; which the particle takes in going
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from x= —s to x=0 is found from Eqs. (10) and
(11) with «(7, ) = 0:

When «(0) = 2~ «(0), 7; = —~.
Equations (10), (11), (14), and (15), together

with

(21)

«(~) = «(~,), (22)

«(~) =0, v&7, (23)

[see Eqs. (12) and (13)], constitute a second physi-
cal solution to the LD equation [Eqs. (4) and (8)].

III. DISCUSSION AND CONCLUSIONS

We have seen above that there are two physical
solutions for the problem of a point charge initial-
ly at rest a small distance from a region of uni-
form electric field. There must be many other
situations in which more than one physical solu-
tion of the LD equation exists. For example,
there was no special reason to take a uniform
electric field, beyond the simplicity of the re-
sulting solution.

Furthermore, there must be problems for which
three or more physical solutions exist. Consider,

for example, a point charge initially at rest in a
field-free corner bounded by three regions of uni-
form fields in the x, y, and z directions, respec-
tively. For initial positions sufficiently close to
the corner, there must be at least four physical
solutions. There appears no rational method of
choosing one solution in preference to the others.

It is important, however, to investigate the
range of s values for which multiple solutions
exist. From Eqs. (20) and (IV)

s & —', Shi«(0)& ~ Shi(&E ). (24)

For electric fields EpR 10, s can be many
de Broglie wavelengths, but for Epa1, s&1
classical-charge radius. An electric field of one
unit is tremendously strong. It corresponds to
one rest mass per unit charge per classical
charge radius (roughly 10"V/cm for an electron).

It is not too surprising that the classical theory
of particle-field interaction breaks down at very
high energies (where pair production must be im-
portant) or at very small separations (where quan-
tum waves are significant). It is nevertheless in-
structive to see how the theory falters. Whereas
in some instances no physical solutions exist, we
have here demonstrated that in others, tzoo or
more may be present.
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