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Static sourceless gauge field
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A static sourceless gauge field, coupled only to itself, is exhibited for the group SL(2, C).
Its field strength is O(r 2) as r-~. It is also a static sourceless gauge field for SO(3, 1),
the orthochronous Lorentz group without inversion. A conjecture is made that such solution
does not exist for compact groups.

I. INTRODUCTION

A number of years ago we searched' for a static
sourceless gauge field for SU(2). All the solutions
obtained at that time had, however, a singularity
at the origin r =0 at which the field is not a gauge
field. ' We want now to report on an explicit so-
lution of a static sourceless gauge field for the
group SL(2, C) with field strengths that go to
zero as O(1/r') as r-~ and are everywhere
analytic.

The solution is obtained in the following way.
Hsu has found' a static sourceless comPlex so-
lution for the group SU(2) by taking the following
ansatz4:

b,"=e, xf(r)/. r, .

b,"=ix g(r)/r,
p—= 1+rf, G=rg.

[r = (x,'+x,'+x,')'I'], (1)

The condition of sourcelessness is

r2G~~ =2$2G
(2)

G =i(Pr cothPr —1),

where

P is any complex number with real part & 0.

We have underlined p and G to indicate that they
are not real. '

The "electric" and "magnetic" fields for (3) are

(where a prime denotes differentiation with respect
to r), as can be seen by direct substitution of (1)
into the equations for sourcelessness. Hsu pointed
out' that (2) is satisfied by

complex. However, if we follow the rules dis-
cussed in Ref. 6, these complex gauge fields for
the group SU(2) can be converted into real gauge
fields for the group SL(2,C), which has six gen-
erators which can be represented as X„X„X3„
iX~, iX„ iX3, whereX~, X2, X3 are the genera-
tors of SU(2). According to a theorem of Ref. 6,
this (real) gauge field for SL(2, C) is static and
sourceless It w.ill be called gauge field A.

The Lagrangian and Hamiltonian of gauge field
A will be evaluated in Sec. IV.

II,"= ,'e t,„f;~= 6~„$—'—r ' -x,. x„(rg' —g + 1)r ~ .

As r -~, the complex sourceless solution (3) ap-
proaches

g-2pre 8", G-i[pe —1+O(re 's")].
Substitution into (5) leads to

Z- ix~x &, H- -x x

(6)

Ass- P',

(independently of P). (7)

b,. = —e,-«P x~/6+- ~ -,
b~ = -P x„/3+- ~ ~,

LI,'=II', =II,'= --', p'+O(r),

E, E2=ES = -—,
' ip +O(r),

and other components of E and H go to zero.

II. FIELD STRENGTHS

The field strengths for the SU(2) group if ansatz
(1) is satisfied (for f and g complex or real) are

E",. -=if' 4=6)~ @Gr +x, x~(rG' —G —QQ)r
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These field strengths for the group SU(2) are
complex. Their real and imaginary parts are'
the six (real) components of the field strengths of
gauge fields for SL(2,C):

(9)E,' = (E,'. )„+Z (E4)„etc.
It is obvious from the above that gauge field A for
SL(2, C) is everywhere analytic and has field
strengths that are O(r ') as x- ~.

C,.8+8C,- =0. (12)

Thus, conditions on the group metric 9 are (12),
together with

adjoint representation with generators C,- so that

(g I c, I a& = c,.„
are the structure constants. The invariance of (10)
thus meansa

8 = real symmetrical and det8~ 0. (13)
III. LAGRANGIAN AND HAMILTONIAN

Given a Lie group, the definitions of f» and the
current J„ in terms of 5"„are unambiguous. Hence
the definition' of sourcelessness is unambiguous.
However, the definitions of the Lagrangian and the
Hamiltonian require the definition of a group met-
ric 8;& since contraction of the group indices i, j,
etc. is necessary. For example, the metric must
be chosen so that such expressions as

f]i.9;;fns

are gauge invariant. Under an infinitesimal gauge
transformation, f '„„ transforms according to the

Not all Lie groups' allow the existence of such
a metric. For a semisimple Lie group, such a
8 always exists. However, for the choice of 8,
besides the trivial freedom of a multiplicative
constant, there are often-times additional free-
doms. Such is the case for SL(2, C). By examin-
ing the structure constants one can prove without
difficulty the following.

Theorem I. For SU(2), choosing C,, =c,-l~, (12)
and (13) determine 9 uniquely, to a real multi-
plicative constant, as the unit matrix.

Theorem 2. For SL(2, C), take the structure
constants so that

where

(c,. 0'I

(0 c,'i

(00 0)
0 0 -1

(0 2 0

t o -c,'. t

(c,' o i

0 0 fi
C2= 0 0 0

0 0

i=12 3

0 -1 0

C3=~ 1 0 0'
4 ~ ~

(14)

There are exactly two linearly independent solu-
tions for 9 from (12) and (13):

t'I 0),, (0 ii
0 -1 1 0

(9' is proportional to the Cartan-Killing form which
is often the choice of 9.)

For SU(2), we shall thus choose

8 =unit matrix.

For SL(2,C), we shall choose (8 = real)

9 =(cos 8)9'+(sin 8)9'.

The Lagrangian density is

lfi 9 fi]ill

For SU(2) and SL(2, C) this is

(IS)

(19)

L = - ,'f „'„f'""-=-,' Q [(Ei)' —(e!)']for SU(2), (20)

3
L= —', oo88 g [(Ef)*—(H')*] —P [(E,'.+')' —(H,")*]if —,'8(88 2 g ['E. ]EJ+' H'H,'"'I for EL(2,E). . —

&Ii=& f, j=l &&i=&

(21)

Theo~em 3. Consider a complex gauge potential
b for SU(2). Let its Lagrangian (20) be L. It is, in
general, complex. It has a corresponding' real
gauge potential for SL(2,C), with Lagrangian L'

given by (21). Then

(22)L' = real part of (e 'eL) .
Proof Using (9) in (20), .one obtains (22) im-
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mediately.
For the Hamiltonian density we use Eqs. (39),

(17), and (18):

ae =-,' g [(E,'.)'+(H,'.)'] for SU(2),
fbi

ac=same as right-hand side of (21) but with
signs of all terms quadratic in
H changed, for SL(2, C) .

(23)

Thus we have the following.
Theorem 4. Using similar notations as in The-

orem 3,

3." = real part of (e 'e3.') . (25)

IV. EVALUATION OF LAGRANGIAN AND HAMILTONIAN
FOR STATIC SOURCELESS GAUGE FIELD FOR SL(2,C)

+2@'6'+2@"r'+(I g')2]r —'dr .
(27)

Now (3) leads to the following identities:

xG' —G =i(1 —
Q ), xg' =i@G .

Thus

(28)

Xd'x =0,

—J(Ld'x=4m [2g"r (21+g)']r -'dr

(30)

Equations (22) and (25) now show that fox the
sourceless static gauge field A for SL(2, C) the
Iota/ Lagrangian and Hamil tonian axe

L„d'x =4m real part of e 'e (31)

We shall first evaluate f L d'x and J 3.'d'x for
the complex gauge field (5). Integrating over a
sphere first, we obtain by substituting (5) into
(20) and (23)

JLd x = -2r —rG' -G
0

2@G2 +2@/2y 2 ~ (1 @2)2]+ 2dy

(28)

V. REMARKS

(A) The group SL(2,C) is locally the same as the
orthochronous inversion-free Lorentz group
SO(3, 1). Globally, two elements of SL(2, C) are
mappable into one element of the latter group. Ac-
cording to the definition of gauge fields, 7 gauge
field A is also a gauge field for SO(3, 1).

(B} The metric (18) is indefinite for any value of
8, that is, it has both positive and negative eigen-
values. This is related to the fact that SL(2,C) is
semisimple and noncomyact, and is an illustration
of a general theorem.

Theo~em 5. For a semisimple grouy, i.e., for
a grouy for which

det 9'e 0, 9' =[[ —Trace C,.C,. [I,
if any choice of metric 9 satisfying (12} and (13) is
positive (or negative) definite, then the group is
compact.

Proof If 9 is. positive definite, there exists a
real matrix M so that

MQM =I = unit matrix.

Equation (12) then shows that MC, M ~ is antisym-
metrical. Any linear combination of C, is there-
fore also antisymmetrical. Use M as a tensor
transformation on the generators X,- of the grouy.
Then the new structure constants form matrices
(C, )"'"that are antisymmetrical. This antisymme-
trization shows that (9')"'"=

[~
—Trace (C, )"'"(C,)"'"(j

is positive definite. Hence the group is compact.
(C) Gauge fieldA is static, sourceless, and

O(x ') as r-~. We conjecture that static source-
less gauge fields that vanish as x- ~ exists only
for noncompact groups. If this conjecture is cor-
rect, theorem 5 shows that for any semisimple
group for which the Hamiltonian can be chosen
positive definite there does not exist a static
sourceless gauge field that vanishes as ~- ~.

(D) For any value of p, the total Lagrangian

fL d'x is stationary with respect to any variation
of the gauge yotential. This seems to suggest that

fL d'x is independent of P, which contradicts (30).
To resolve this puzzle, we emphasize that fL d'x
is stationary if 6b~& =0 at large r Since (e.vf/ap)6p
does not vanish at larger, fLd'x is not neces-
sarily stationary against such variations. In fact,
5fsLd'x has a "surface term":

5 Ld x = —2m -2 &G &O'-G z +4

K~ d'x =O. (32)

The former can have any value between 4w
~ p ~

and -4v
~ p ~ by a suitable choice of e. The total

Hamiltonian is, hourever, zero for any values of
the parameters p and 8.

Using (3), this goes to 4w5P asR-~, confirming
(30).

(E) Is there a possible physical meaning to a
gauge theory with a group that is semisimple and
noncompact, since the energy for such a theory is
necessarily not positive definite according to the-
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orem 5? We do not know the answer to this ques-
tion. A simple negative answer suggests itself,
but we do not believe such an answer is neces-
sarily right.

where
Tot' fk f »»n 6nf

and

-AD!=(fk +Ck f»f»)f»»a (Ikf»»n)

(35)

(36)

APPENDIX: ENERGY-MOMENTUM TENSOR

Starting from the Lagrnagina density (19), we
want to find the Hamiltonian density for any group.
We shall in this appendix use the notation of Ref.
7. In particular, x" =(x„x„xk,x, ) and 9,0= —1,
93$ 922 933 1. Latin indices ref er to the group,
and Greek indices refer to space-time. Equation
(19) can be written as

'f'u -f» . (33)

T =&~ —5 L8 p, 8 8~@ 8
p, n

= —
bV 8 fk" —

6»» L,

According to Ref. 9, the energy-momentum tensor
is

where we have used the condition of sourceless-
ness. It is easy to see that

A. =08,n

and A. 8 is the 3-divergence (37)

Thus

A 8 d'x = surface integral. (38)

Equations (37) and (38) justify taking T&~ to be the
energy-momentum tensor. Notice that

T„'»»= Tjf

The Hamiltonian density is

pe pe~ g Ot,

8 8 8r (34)

where we have used the notation F& for 8F/ex~.
We write

fk f»»0

3
=2 Q(E'»9k»&i+&» 9k»&t). (39)
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