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Effective Lagrangian and energy-momentum tensor in de Sitter space
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The effective Lagrangian and vacuum energy-momentum tensor ( T"")due to a scalar field in a de Sitter-
space background are calculated using the dimensional-regularization method. For generality the scalar field

equation is chosen in the form ( '+ $R + m ')p = 0. If $ = 1/6 and m = 0, the renormalized (T"') equals

g ""(960m a ') ', where a is the radius of de Sitter space. More formally, a general zeta-function method is

developed. It yields the renormalized effective Lagrangian as the derivative of the zeta function on the curved
space. This method is shown to be virtually identical to a method of dimensional regularization applicable to
any Riemann space.

I. INTRODUCTION

In a previous paper' (to be referred to as I) the
effective Lagrangian g ' due to single-loop dia-
grams of a scalar particle in de Sitter space was
computed. It was shown to be real and was evalu-
ated as a principal-part integral. The regulariza-
tion method used was the proper-time one due to
Schwinger' and others. We now wish to consider
the same problem but using different techniques.
In particular, we wish to make contact with the
work of Candelas and Raine, ' who first discussed
the same problem using dimensional regulariza-
tion.

Some properties of the various regularizations
as applied to the calculation of the vacuum expec-
tation value of the energy-momentum tensor have
been contrasted by DeWitt. 4 We wish to pursue
some of these questions within the context of a
definite situation.

II. GENERAL FORMULAS: REGULARIZATION

METHODS

We use exactly the notation of I, which is more
or less standard, and begin with the expression
for J~' in terms of the quantum-mechanical propa-
gator, K(x",x', v),

Z~"(x')= —2i lim d~v 'K(x", x', v)e ' '+X(x').
x" ~x' p

There are two points regarding this expression
which need some further discussion. Firstly, if
we adopt the proper-time regularization method
so that the infinities appear only when the ~ inte-
gration, which is the final operation, is performed,
then we can take the coincidence limit, x"=x',
through into the integrand. Further, since the
regularized expression is continuous across the
light cone, it does not matter how we let x" ap-

proach x'. Secondly, the term X does not have
to be a constant, but it should integrate to give a
metric-independent contribution to the total action,

The Schwinger-DeWitt procedure is to derive an
expression for K, either in closed form or as a
general expansion to powers of ~, then to effect
the coincidence limit in (1), and finally to perform
the v integration. This was the approach adopted
in I. We proceed now to give a few more details.

We assume that we are working on a Riemann-
ian space, It', , of dimension d. The coincidence
limit K(x, x, v) can be expanded, '

K(x, x, 7) = i (4)Ti v)
' ' Q a„(x)(iv)",

n=p
(2)

The infinite terms are those for which n & d/2
(for d even) or n &(d —1)/2 (for d odd). For d =4,
e.g. space-time, there are three infinite terms.
These terms are removed by renormalization;
the details are given by DeWitt. '

Another popular regularization technique is di-
mensional regularization. In this method the di-
mension, d, is considered to be complex and all
expressions are defined in a region of the d plane
where they converge. The infinities appear when
an analytic continuation to d =4 is performed to
regain the physical quantities. This idea was
originally developed for use in flat-space (i.e.,
Lorentz-invariant) situations for the momentum

where the a„are scalars constructed from the
curvature tensor on Sg and whose functional form
is independent of d. The manifold Sg must not
have boundaries, otherwise other terms appear
in the expansion.

The expansion (2) is substituted into (1) to yield

)' '(x)= —'((4w) 'ga„(x)f (iv)" '' 'e ' "dv.
n 0
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representation. A natural generalization to curved
spaces would be to take the series (2) as our de-
finition of the propagator K(x",x', v, &u) for d = 2&u

complex. Then the integral in (2) can be evaluated
for u & 1 to give

g"(co)=-2(4w) "Q a„,(m') "I'(n-(o),

which has a pole at ~ =2 whose residue involves
a„a„and a„ in agreement with the proper-time
results.

Since this particular variant of dimensional re-
gularization virtualIy coincides with the zeta-func-
tion regularization described later, we shall not
pursue it further.

It should be noted that this method of dimension-
al regularization differs from that employed by
Candelas and Raine. If the manifold 9g has some
symmetry this may suggest a different procedure
from that outlined above. Thus for de Sitter space,
which is essentially a 4-sphere, S,', the natural
thing would be to generalize to 8,' so that the di-
mension, 2&, is explicitly displayed in closed for-
mulas. This is what Candelas and Raine do in
their interesting paper. '

The difference is thatwhereas in (2) and (4) the
coefficients a„are taken to be specific dimension-
independent functions of the curvature, if we ex-
pand the propagator E on a sphere $,' in powers
of 7, the coefficients will be those functions of
2& obtained by substituting the curvature expres-
sion of the sphere into the a„of (2). We would ex-
pect the two methods to produce the same renor-
malized theory after continuation to d = 2w =4.

We now turn to another regularization method-
the zeta-function method. We start from the Feyn-
man Green's function G„(x",x') expressed in prop-
er-time parametric form

sZ"'(x, m')
G „(x",x', m') .

x" ~x
(8)

Then we have generally

(9)

since we assume that S~'„(x,~) is zero.
The zeta-function regularization is effected in

(9) by replacing G'„" by G „"and defining

g(l ) g(v) g(1) lim g(v)

f „(»m') =G„".

Usually, zeta functions are defined for elliptic op-
erators on compact manifolds, and then only for
the heat equation, not Schrodinger's equation. '
Thus if A., are the eigenvalues and 4, the eigen-
functions of the operator in question, the zeta
function is defined by

~ IC'g)&C'gl
Lgv(»~)= ~ (~ )v ~~g, z+Ze

in dyadic notation. The behavior of &~(v, w) as a
function of v is different for the diagonal and off-
diagonal elements. We are more interested in the
coincidence limit, diag/„„(» w). Conventional the-
ory" usually concentrates on the functional trace,
Trt ~z

= J„.diag&~=—g~z, and the term zeta function
often refers to this object.

The regularization consists of using 6„"in place
of 6„. If v is chosen appropriately everything will
converge. The regularization is then relaxed by
letting v tend to unity.

To relate g ' and G„we note, with Schwinger, '
that from (1) and (5)

Q„=i dec ' 'K 7,
0

with

G„(x",x') =(x"iG.lx')

and

K(x",x', &) =(x"IK(&)lx'),

(5)
Z&'& = ——,

' i diag' ~(» p. ')d p'
m2

=, g(v -1) ' diag' (v -1,m') .

Then we have

i i diag(gg (0~ ~ ) ~

(10)

and construct the space-time matrix power Q„'.
Use of the semigroup property, K(o)K(v) =K(o+ 7),
rapidly gives

(8)

where we now consider v to be a complex variable.
If we compare Eq. (6) with one generalization of

the Riemann zeta function' we are led to call
G„"the zeta function for the manifold 9R,

where g'(»m) =(d/dv) g(»xo). The first term in
(11)will have to be removed by an infinite renor-
malization. There may still be finite renormaliza-
tions from the &' term. It is this term only that
is yielded by the method of Salam and Strathdee, '
which consists of noting that lnG = dG "/d v(„0 and
then using the formal result 2(' = —3 i diag lnG„.

In a general space-time we will not know g in
closed form and we must have recourse to the
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proper-time expansion (2). In this way we shall
make contact with the dimensional regularization
given earlier. If (2) is substituted into (6) we find

and we may compare this expression with the di-
mensional-regularization result, (4), for 2&'~(e).
%'e see that the two expressions are basically the
same (e is equivalent to d/2 —v+1, so that the
terms of the summation are the same).

From (11) we see that we need

d2 mad/2
diag&(0, m') = i(4m) 4/', a„. (15)

Thus, for d =4 we have

diag&(0, m ) = i(4v) '(~ a,m4 —a,m'+a, ), (16)

the standard result.
This is probably a good place to discuss some

remarks of Candelas and Raine on the form of the
infinities. They deal with the specific case of
de Sitter space and use dimensional regularization,

diag&(v, m') = i(4m) ' Q a„(m')"/' " "
ff =Q

F(v 2d—+n)
(12)I'(v)

This gives us some of the analytic structure of
diag/(v, m') (cf. Minakshishundaram and PleijeP).
Thus there are poles at v=d/2, d/2 —1, . . . , 1 if d

is even (we ignore the odd-d case from now on).
The residue at v=d/2-P is

I)P-n
i(4w) /'[(-', d -p)!]-' (m')~ "a„.

(P -n)!
(13)

From (10) we find

d/2 oo

g!P) a (m2)d/2 - vn1+I'(v & d+n 1)2I'(v)
(14)

but the points are of general significance. Essen-
tially, Candelas and Raine start from Eq. (8), with
a regularized G„, which is next expanded about
the physical point u=2, or, for us, v=1. G„has
a pole at this point with residue depending on a,
and a, but not on a, . This apparently leads Candelas
and Raine to say that the exact g('~, obtained from
G„by an (indefinite) integration with respect to
m', also has a pole at the physical point with resi-
due depending on only ap and ay However they
then notice that the perturbation expansion, essen-
tially the expansion in powers of 7, produces a
pole in g ' with residue involving also a, . Since
this is independent of m' they can cancel it with
a constant of integration. Or they can say that
the a, pole term in the perturbation form of Z~'

arises as a constant of integration when integrat-
ing the exact form of G„.

Our only quarrel with this is that it implies that
the a, pole should not occur in g ' . In fact, if we
expand G„about the physical point first and then
integrate over m' (the Candelas and Raine proce-
dure), it is not correct to throw away all those
terms in G„of order (&u —2), or (v —1), and high-
er. The Taylor series does not converge after in-
tegrating over m', which just reflects the exis-
tence of the a, pole term in g ". The residue at
the physical point, v = 1, is then given by (15) in
general and by (16) for space-time.

The particular value g(0, m') of the zeta function
appears to be an important one in zeta-function the-
ory"" in that it is related to the Atiyah-Singer in-
dex. It is just the constant term in the expansion
of e ™TK(v.).

In a sense, expression (11) is an exact solution
for the (unrenormalized) effective Lagrangian,
which is thus known insofar as the zeta function
on SK is known. The difficulty is the evaluation of
diag''(0, m'). The expansion (12) yields only an
asymptotic series which we write in the form

8 2
( 2)I/2 n

i dgag'( , 0m)= i(4w) /', , a„(g(2d n+I)+y -—lnm')+ a„l"(n ——,'d)(m')"/' "
(-,' d —n)! n=d 2+1

with

y(z) =I"(z)/I'(z) and y= —q(1).

The first term can be interpreted as a finite renormalization, although in the absence of any infinite part
to Z~'~, as in the Salam-Strathdee method, we would prefer to take the a, term (for d =4) as contributing
to the radiative corrections.

The asymptotic series (17) is not much use if we are interested in investigating what happens in a strong
gravitational field. One would like to have a closed expression for g&'~, and this is one reason for choosing

to be de Sitter space. However, before getting into this, our main topic, we must discuss the energy-
momentum tensor, which is the central physical quantity.
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III. THE ENERGY-MOMENTUM TENSOR

The total action will be S+5 ~', where 8 is the bare action of the gravitational field ignoring any matter
contribution

d x -g &6wGO '8 —Xo+nDR + ORp„A""+yoA„

The g', R „„g"', and B„,~ 8 "~ terms are included in order to counter similar, infinite terms in W ' .
The field equations are

(19)

where T»(y, y) is the energy-momentum tensor of the scalar field, y,

where "H&„, 'H», and 'H» are tensors constructed from the curvature and its derivatives. " On the
right-hand side of (18), the effective energy-momentum tensor (T&,) is given by

,&,
5W~'~ (0 out( T„„(y,y)(0 in)
Pig"" (0 out(0 in)

i/2
~ ~

5g

S~ is the y-field action. In the case that the y-field equations take the form

(g~' V„V„+(g + gpss')y =0,

T„,is given by4

T„„=(1 —2$)V yV, q+(2( ——,')g, g"'V~yV y+ 2g»m'y' —2)yV pV, y
+ 2 (g~„g yVzV ~( —((f~ ~~

—2g p„~)q

&n (20) ( =0 gives the minimal Klein-Gordon equation, while $ = (d —2)/(4d —4) corresponds to the "im-
proved" equation. "

Following Schwinger' and Gibbons" [see also (18)] we can express (T„,) in terms of G,
Q„(x",x') = i(0 out) T(y(x")y(x')) ~0 in) /(0 out~0 in).

Thus,

(T»)= —i lim T„„G„(x,x'),
x'~x

where

Tq„, ——(1 —2$)V~V„, +g~„i[(2$ —2)g V&V, i+ & m']

—((g~ p V V„,+g„,~V V&) + t'g», (V&V + V&,V~ )- 2 f (R & g ~„, R+~ ~, g&&, ) + 2 )Rg», .

(20)

(22)

Here g„,, (x, x') is the standard vector parallel
propagator and the limit is understood to be the
average of the expressions for x, —x,' positive
and negative in turn.

(T„,) will diverge. To investigate how, we can
do several things. We can set x'~ -x"= &" and in-
vestigate c"-0. This is the (covariant) point-
separation method. 4 Alternatively, G„can be re-
gularized, by our favorite method, so allowing
the limit to be taken directly. In this case the
direction of the limit is immaterial. The infinit-
ies are exhibited by relaxing the regularization.
If we write, as usual, G„=G+-,' iG&'~, where G is
the average of the retarded and advanced Green
functions, and is always real, then in place of (22)

we have

(T„„(x))=-,' lim T„„.G~'&(x, x'),
x' ~x

in general agreement with DeWitt' [Eq. (254)].
In the general case, as DeWitt4 indicates, we

can use the proper-time expansion of K(x", x', v)
to calculate (22) and, while there is no difficulty
in principle, the result would be a little compli-
cated and still not useful for strong fields. For
this reason we turn to the special case when 3R
is a de Sitter space. Then, as we shall see, both
(19) and (22) can be evaluated. They are trivially
identical, as expected.
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IV. de SITTER-SPACE FIELD THEORY

The basic equations have been given in I and so
we start straightaway with dimensional regulariza-
tion. %e firstly rederive the results of Candelas
and Raine in, in our opinion, a preferable man-
ner.

The Green's function on 9,' is written in the
form (5) so that we require the quantum-mechani-
cal propagator, K, on 8,' . As explained in I we
obtain this by continuation from that on the Eucli-
dean sphere, 8, . This is not necessary but is
quite convenient.

Qn 8,„the 5 function is given by

negative-definite).
Because of the symmetries of the sphere and

the covariance oi the equations of motion the
propagator on S, , Kx(x", x', 7), will be a func-
tion of x" and x' through p(x", x') and therefore
given by

K~(x",x', 7) =K~(P, v)

= exp(- ~[,'+a-'2 (ur(2' —1)]~]5,

where G,' is the "radial" part of ' =g~'V„V„,

(23) (25)

The I.egendre expansion,

[ 5(x")—5(x')]'
p(x", x') =1+

and E' = —a' (remember that the metric on 8,„is

5(p —1) = g(n+ ,')I „(p),-
n=0

is next used and (23) and (25) are substituted into
(24) to yield

(26)

(27)

This can then be rewritten as a hypergeometric function, and we find

The most rapid way of deriving the Green's function is to insert (26) into (5), integrate over v, and then
use Dougall's formula to obtain the (Euclidean) Green's function G~ as a multiple derivative of
& -1/2+ i)))a( p))

m'a' =- m'a' —((() ——,')'+ 2 g(u(2(u —1) .

1(+——,'+ima)F((d —~ —ima), .—,.— 1+pGz(x", x', (d) = a'(4wa') —, ,J', &u —2+ ima, &u —2 —ima; &u;1"~~)
(28)

The Green's function, t"„, on the pseudo-Eucli-
dean sphere 8,' is easily obtained from Q~ by
multiplying by i and allowing P to become larger
than unity. If we now interpret ~ and P as com-
plex numbers, the hypergeometric function in (28)
has a branch point at p =1. In this case we must
set p-p —i0 (see O, and thus we have derived the
expression of Candelas and Raine. For u =2 we
get Tagirov's" result, which he obtained by eigen-
function summation.

In the region Rem& i there is convergence at
P =1, and the coincidence limit is

x Z'(1 —(u) . (29)

[This value can be derived even more rapidly with-
out in fact going through the step of finding
G„(x",x', &d).]

We may note immediately that G„(x,x, (d) is
pure imaginary (if (d is real), and hence, from
(8), we see that g['& is real. Thus there is no
pair creation, a fact that can be deduced in vari-
ous ways (see I).

From (28) we can also calculate the real part, G„, of G„,

I
—2(2))'a ) "& 2

——,E, —,+ ima, —, —ima; 2 —u;, p&1
(p-1)' .— i . — . . 1-p

G„(x",x', ~) =

0, p&l
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and the commutator function, G, then follows as
G = ——.

' ~(x", x')G.
The further progress of the dimensional-regu-

larization method, as pursued by Candelas and
Raine, consists of expanding G„(x,x, &u) about the
pole at + =2, discarding terms of order (v —2),
and then integrating with respect to m'.

As we have explained earlier this is not, in
principle, a satisfactory procedure. One should
integrate before expanding. However, in practice
one can simply put back the missing terms by
hand, since it can be shown that the only term
lacking is the infinite a, pole.

Thus we do not follow the renormalization pro-
cedure of Candelas and Raine. Rather, our meth-
od corresponds to the more conventional view. "
That is, we include the R', B„„R"',and

terms in the bare gravitational La-
grangian and then renormalize the n„P„adn
yo coefficients.

To do this consistently we define dimension-
dependent renormalized coupling constants t", ~,
n, P, andyby

A.o
= )I. + C o (ld ) y

~(2&@ —1)(8mG, )
' = u(2&v —1)(8mG) ' —C, (&o),

4uP(2(u —1) o.,+ —p, + y,
1 1

2(d (d 2(d —1

(3o)

1 1
=4aP(2(u —1) o. + —p+ y -C.(~),2(d (d (2(d —1 )

where C„(&u) is the coefficient of the term in
2 '~(u&) that goes like (a') ". The important thing
to realize here is that G(tu), A. ((a&), n(&u), p(au),
and y(co) are analytic at ~ =2, which shows that
the unrenormalized constants, G, '(~), etc. ,
have to have poles at au=2 to cancel. those coming
from the C„(e). Equation (4) gives the first three
C„((u) as

C,(u) = —,'(4v) (m') I'(—cu),

C, ((d) = 2(4~) (m') 'I'(I —~)2~(2~ —I)(8 —h),

C, ((o) =-,' (4v) (m') " 'I'(2 —(o) [2((u(3$ —1}(2&@—1)+ —,'((u' —~(g + —,
'

) ]~(2(g I) .

The expressions for the coefficients a„can be found from the expansion of the propagator K, =iKs of (26),
or from the exact formula (29) for G„(x,x, v), or by using the formula given by DeWitt" for a general
Riemann space. This last formula provides a useful check of the algebra.

The total Lagrangian is given by

g(&) = (8wGa') '&o(2m —1) —X+4a 'm'(2&v —1)' o. + P+ y2(u (o(2td —I)

+Bi'~(&u) —C,(cu) —a 'C, (co) —a 'C, (&u), (32)

where BZ~'~/Bm' is given by (8) and G„(x, x) by (29). Everything is now expanded about &v=2. For ex-
ample, we have

G„(x,x, &u) = »{(m'a'+ 12) —2) [(&u —2) '+2 Re)(,'+ima) ——In4ma'+y —1]+12$'+ 14) —3j16'2a 2

+ O((o —2) (33)

[g =—d$/du& and 2 Re/(2+ima) is shorthand for P(~+ima)+ P(2 —ima)], with the asymptotic expansion

Re/( —,'+ima) = —,'lnm'+ (m'a') '(6$ ——,')+ (m'a') '(8$ —36(' —,",)—

In these expansions all quantities that depend on &u such as (, $' are evaluated at the physical point
&v=2. As a cheek of the algebra we can, if we wish, use expressions (34) and (33}to find the values of
the coefficients a„and a„' for & =2 by comparing it with the expansion of the series

G„(x, x, (u) =i(4v) Q a„((g)(m') " 'I'(n —(o+ 1) .
n=0

Continuing Z(ar) to &@ =2 yields the renormalized Lagrangian
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4=6(4aa'6) ' —!,+144a (a+ —,'6+ y)a(!6n') 'I[—,m +a m'(64-l)]ln(m'a')

m'+&a 'm'-a ' dm' m'a'+12 -2 Re —,'+ima

+ —',a '(766' —ll(+'—„)ln(m'a')I, (36)

where, in accordance with our previous remarks,
we have included the effect of the a, pole.

Later, we shall want to set m equal to zero, and
the last term in (36) produces a typical infrared
divergence. We assume that this can be taken
care of by introducing an upper cutoff to the
proper-time integrals, for example. In any case
the divergence does not carry through to the
energy-momentum tensor.

V. ENERGY-MOMENTUM TENSOR IN de SITTER SPACE

We substitute the dimensionally regularized
G„(x",x', (4)) into Eq. (22) and take the limit di-
rectly. Because of the geometrical structure of
de Sitter space all derivatives can be reduced to
the operator d/dp in the foll.owing way. Take the
typical quantity V~f(P). This equals

—v p= — „v g" = -'(( g')v g
dP " dPs(" " & dp'

Then make use of the standard equations'7

(„V[)g"=0,

V]4$ ave g = g[))yy 7

V„v, g
"=a 'g„„g"

to give

llm V~p =0,
x'~x

lim VpVv P =-+ ggv~u' yx'~x

ll m V~ Vy P = 0 g~ p .
x'~x

Whence, from (21),

(T„„(e))= -ia 'g„„(((d—1)G„'(p) + [-,'m'a'+ $(2uP —3(6) + 1)]G„(p))~,,

with G'=dG/dp. It is trivial to calculate G„'(p=1). We find

= ——[((4p ——,')'+m'a']G„(x, x, (d) . (38)

(T"") is then given by (T"')=g"'T(u&) with

T((d) = — G„(x,x, u)) .2' (39)

This also follows more directly by taking the trace of (22).
The intention now is to substitute this (T"') into the field equations, (18), which take the specific form

for 2u-dimensional de Sitter space

(8ma'Go) '(2(4) —1)(1—(d)+ Xo —4a 4(4)(2(d —1)'(u —2) no+ —Po+ yo g""= -(T""(w)). (40)
2 (4) (4) (2 (4) —1)

We note that it is necessary to keep the contributions from ' A'», ' B&„, and '~H». It is true that
these tensors vanish in four dimensions, but we recall that the unrenormalized no, Po and yo have poles
at (d =2 so that the last term on the left-hand side of (40) contributes a finite term of order a

The (T"') of (37) also contains a term. of order a 4 which cancels the similar term on the left of (40).
We give a few details of this mechanism.

Equation (40) can be obtained by varying the total action, the Lagrangian density for which takes the form

2((d) = (8vGO) '(4)(2(d —1)EC —ho+4(4) (2(d —1) no+ —pa+ yo K +2[~]((4))
2(d (4) (2 [d —1
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with K=—a '. The variational principle reduces to

K~' d—(gK ) =0,

finite form. This is achieved by defining the re-
normalized energy-momentum tensor after sub-
tracting "appropriate" terms from &

T"'),

so that we obtain Eq. (40) with (cf. Ref. 2)

T„(u) = T(co) —T,(&o) —a 'T, (oy) —a T, (cy),

(42)

g PV+ lff hi+1 (g(1)ff Id)
cf

dK
(41)

The equivalence of this definition of (T"') [es-
sentially Eq. (19)]with that of (21), i.e. (39), is
easily established. Expansion (4) for g ' is sub-
stituted into (41) and the fact that a„ is proportion-
al to K" is used to perform the differentiation.
The calculation is trivial and Eq. (39) emerges
with G„(x,x, u&) in the form of the series (35).

Equation (40) is next to be written in explicitly

where T„ is the coefficient of (a ')" in the expan-
sion of T(a&). Specifically we have

&0=- Co

Z
g

= co (1 —4)) Cy p

T2 = (0 (2 —CO)C2 ~

The renormalized form of Eq. (40) is then

(8va'G) '(2~ —1)(1—&u)+X-4a 4u(2~ —I)'(e —2) e+ —P+ y =-Ts(&o),
2(u ~(2(u —1)

(43)

with the same definition of renormalized coupling constants as before, Eq. (30).
This equivalence of renormalization can also be shown, of course, after the expansion about m =2 has

been performed. A slight technical point arises here which may be useful to mention. If we try to expand
the middle equation, say, in Eq. (30) we must assume that I/Go(a&) has a pole at v =2 first. Then we find,
near w =2,

3(4gGO) '=3(4wG) '-A((o —2) 'B+„A+ O((—u —2),

where A and B are known constants defined by the expansion of C, (m),

C, ((o) =A((u —2) '+B+O((o —2).
Now we give the expansions of T(&u} and Ts(co):

T(2) = m'(64m'a') '((m'a'+ 12$ —2) [(&o —2) '+ 2 Re)(~+ ima) —In4va'+ y —,']+ 14) + 12$' —3],
Ts(2) = m'(64m'a ') 'f(m'a '+ 12( —2)[2 Re(( ,'+isa)——In(m'a') —1]

4 m'a' ——', —2(m'e') '[(6$ —1)' ——,',]]. (45)

Setting &u equal to 2 in (43) gives the "field equa-
tion" corresponding to the renormalized Lagran-
gian (32). The third term on the left now disap-
pears (o., P, and y are finite) and the final result
is the same as that which we would have got by
dropping terms of order a 4 at the outset, as did
Candelas and Raine.

For certain purposes it is convenient to develop
the arguments for arbitrary co. However, in
order to avoid problems of competing limiting
processes we prefer now to work with the expres-
sions at the physical &o point, such as (44) and
(45).

Particular interest attaches itself to the confor-
mally invariant ("improved") Eq. (20), with

$ =(&o —I)/(4' —2). This means we set $=-,',
$'= —,', , and m'a2=m'a' ——,

' in, (44) and (45). We
would also be interested in the case m =0, when,

independently of the value of g, T(2) vanishes.
For g =-,' and m =0, the massless conformally

invariant case Ts(2) takes the value

T„(2}=(960m'a4) '

Note that this value is the result of subtracting the
T,/a4 term in (42). It should not be confused with
the nonzero vacuum average of T""obta. ined by
Ford" by a Casimir-type calculation for closed
Robertson-Walker metrics.

Ford's nonzero value in de Sitter space is a
consequence of his using a subtraction procedure
which violates de Sitter invariance. Our calcula-
tion is de Sitter-invariant throughout and we
naturally obtain a vanishing vacuum average for
the massless case."

In this connection we note that when g =-, the
pole term in (44), the unrenormalized T, is inde-
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pendent of the geometry and we can then apply
Ford's version of Casimir's argument. This fact
agrees with a remark of Ford's. " However, the
method gives a zero answer for m = 0, as expected.
If m does not vanish we find the value

Tc(2) =m~(64m ') '[2 Re)(2+ ima) —1n(m'a ') ]

for this "Casimir renormalized" T.
It is amusing and probably not significant to

notice that if we set X =0 in Eq. (43), for v = 2,
and then use (46) on the right-hand side, we obtain
a= 10 34 cm. Thus a massless, conformally in-
variant scalar field can support self-consistently
through its vacuum fluctuations a de Sitter uni-
verse of typically quantum geometric dimensions.

VI. DISCUSSION

In view of recent papers ' "'"' "'"'"on the
subject of vacuum energy in curved spaces it
seems unnecessary to give a review of the back-
ground material.

We have considered the coupled Einstein-Klein-
Gordon system for a given (de Sitter) background
gravitational field and have renormalized the
field equations in the traditional fashion. " The
problem, if there is one, seems to be the inter-
pretation of the result. Can we take finite terms
from the left-hand side of Einstein's equations
onto the right and still call this the vacuum stress
tensor of the scalar field? It is our opinion that
we can.

The result is a (T"")„„,which in the massless,
conformally invariant case is not traceless. We

do not view this as a real difficulty. The only
conformal rescalings allowed, if we are to remain
in de Sitter space, are constant rescalings.

At the more technical level, instead of the di-
mensional regularization method it would have
been possible to use the zeta-function approach
outlined in Sec. G. This would have involved a
discussion of zeta functions on spheres, an inter-
esting subject in its own right and probably worth
pursuing from a formal angle. However, the
result for us would have been the same.

The advantage of the particular dimensional
regularization used in this paper (and earlier in
Ref. 3) is that all quantities are displayed as
closed hypergeometric expressions. In I we
sketched an alternative scheme which also leads
to similar results. Briefly, Eq. (26) is written
as a sum over classical paths by using a Mehler-
Dirichlet integral for P„and then a 0-function
transformation. In the resulting equation for G
the integrations can be performed for co & 1 and
we find an expression for G„(x,x, v) which differs
from the Candelas and Raine form (28) but which
produces the same renormalization theory. For
this reason we have not employed it here, al-
though it possesses certain advantages and al-
lows a comparison with the proper-time method
with a minimum of new equations.

An interesting feature of our renormalization
procedure is that the quadratic terms in the bare
gravitational Lagrangian give contributions to the
field equations that do not vanish in the four-di-
mensional limit because the unrenormalized
coupling constants have poles at this point.
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