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We report results of Monte Carlo variational calculations for a simple model of neutron matter for three
different internuclear potentials. We have also done exact Monte Carlo calculations for the ground state of
one of these systems. A wave function for the solid phase with full symmetry is proposed. None of the three
systems crystallize. The validity of the Wu-Feenberg expansion and hard-sphere modeling for these systems

are discussed.

I. INTRODUCTION

Because of the interest in the interior of pul-
sars, dense neutron matter has been studied theo-
retically by a variety of approximation techniques.
The review article by Baym and Pethick gives
the background and references on this problem.!
Because of the complexity of the neutron inter-
action, most authors have chosen a simple model
for it, solved the many-body problem approxi-
mately, and thereby obtained the equation of state
and the solidification density (if any). Among the
approximations used have been a generalization
of the law of corresponding states,*® a hard-
sphere model,* and a constrained variational
method based on the hypernetted-chain equation.®
In order to decide which approximations are ac-
curate for this very soft but short-range poten-
tial, we have performed an essentially exact nu-
merical calculation for a system of Bose particles
interacting with a repulsive Yukawa potential, and
the computations have been carried out for a wide
range of densities.

Our model of nuclear matter is a system of bo-
sons with the following Hamiltonian:

P2 exp(-7;,/0)
H= Zw-l- E e——-’}’ij . (1)
i=1 i<Jj

The values of € and ¢ were chosen to agree with
previous work; for the Cochran-Chester® (CC) po-
tential, € =5725 MeV fm and 0"'=4.1/fm, and for
the “homework” (HW) potential,™'® € =9263.14
MeVfm and 0°'=4.9/fm. One can characterize

a Yukawa potential by the dimensionless quantum
parameter A*, just as is done with stiff-core sys-
tems, where :

h

* = .
ovme

This quantum parameter changes little from the

CC to the HW potential (1.08 to 0.93). We expect,
therefore, to find little difference in the physical
properties of systems with these values of A*.

We should also mention that the Yukawa potential
is of considerable interest in itself because it is

a radically different potential as compared with
either the Coulomb potential (long range and soft)
or the hard-core potentials (short range and stiff).
The short range and the soft character of this po-
tential may well lead, quite generally, to different
physical behavior. For densities significantly
above nuclear-matter density (p=0.17 fm™3), a
nonrelativistic Hamiltonian does a very poor job
of representing real neutron matter. There are,
however, three reasons for using such a simple
Yukawa model. First, various approximate meth-
ods have been tried out on this potential, where
the physics is rather simple. The main complica-
tion is the many-body nature of the ground state.
If the approximate methods work well with this
Hamiltonian there is a good chance they will also
do well for a more realistic Hamiltonian. Second,
exact methods exist for computing the ground-
state properties of this Hamiltonian that have
worked well for the hard-sphere boson system.

In order to use this method for a relativistic neu-
tron potential many extensions of the present meth-
od would have to be invented. Third, such a po-
tential is a screened Coulomb potential, and for
sufficiently high densities (op~*/3<<1) the system
should behave as a quantum one-component plasma
with

m 3 \!/3
73—7Z—2€<411p> : (2)

II. THE METHOD OF CALCULATION

A. Variational calculations

Our calculations have two steps. First, a good
variational or trial wave function ¥ ; is found, and
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TABLE I. The potential is given by Eq. (1) and Eq. (18); p is the density in fm™; 4, B, and
D are the variational parameters [see Eq. (4)]; E, T, and E g, (Madelung) are the variational
energy, kinetic energy, and static or classical energy in MeV. AEy is the first term of the
Wu-Feenberg expansion, and N; is the variational condensate fraction. The figures in paren-
theses in the column labeled E show the errors in the quoted energies.

Potential p A B D T E static AEgp Ny
CcC 0.2 24 0.9 0.25 100.4(0.4) 38.1 8.45 19.6  0.57
CcC 0.5 2.2 0.9 0.25 347.0(1.0) 101.7 89.5 23.8 0.41
CcC 1.0 2.2 1.7 0.20 883.0(3.0) 160.0 380.8 7.5 0.40
CC 50 1.9 2.6 0.18 7113.0(9.0) 517.0 5302. -105.8 0.28
CcC 10.0 1.5 3.4 0.4 16273.0(12.0) 1059.0 13484. -336.3 0.26
HW 0.3 2.8 1.0 0.40 137.6(0.7) 61.0 9.09 28.5 0.47
HW 1.0 3.0 1.5 0.20 725.6(1.3) 260.0 214.5 32.9 0.24
HW 2.0 2.5 214 049 1 857.0(5.0) 351.0 886.1 -21.4 0.28

Schiff 1.34 2.5 2.0 0.30 262.0(3) 205.0 —-253.7 53.9 0.40
Schiff 1.96 2.3 2.2 0.30 524.0(6) 259.0 —-246.7 38.9 0.38
Schiff 2.80 2,15 2.5 0.25 969.0(7) 361.0 -117.6 14.6 0.36

second, it is used to importance-sample the ran-
dom walk in the exact calculation. The accuracy
of the ground-state energy and the amount of com-
puter time needed for convergence to the ground
state are directly related to how good the trial
wave function is. For this problem a modification
of the Cochran-Chester® wave function (of the
Jastrow type) is a very good approximation to the
ground state:

¥, (R)= ne-u(r”) II e~X(rg) , (3)
i<j k
where
A -Br
u(r):eT (1-e'P). )

The pseudopotential #(r) reduces to that of Cochran
and Chester for D=0; with D+#0 it allows for s-
wave penetration of the ground state.

The square of this wave function was sampled
using standard Monte Carlo techniques'® to eval-
uate the integrals which arise in the expectation
value of the Hamiltonian, a method that has been
well tested on other boson systems.'®* The density
range extended from a typical nuclear-matter
density to 50 times that. For all but the highest
densities 54 particles were found to be sufficient
to represent the bulk properties. Table I shows
the results of these calculations, some of which
were obtained by Cochran.®

In order to calculate the difference in energy
between expectation values computed from two
nearby Jastrow functions, the technique of cor-
related sampling was used. Configurations from
one variational calculation were saved, and later
the difference in energy for a change in Jastrow
parameters was calculated by weighting the energy
estimator by the ratio of the square of the new

Jastrow function to that of the old. Theoretically
one could find the energy for any set of Jastrow
parameters and thus determine the optimum set
of parameters at once. But for the results to be
reliable the weights must be of the same order of
magnitude, and this limits one to choosing the
new Jastrow parameters in the neighborhood of
the old ones. However, this technique does allow
one to determine the optimum wave function more
quickly and with more precision than a simple
variational search, because the variance of the
energy difference is much smaller than would be
obtained by independent runs.

The function x is a single-particle function which
localizes the particles on lattice sites and hence
describes a solid. The usual choice is a Gaussian
wave function'*

X =CE-R,)?, (5)

where R s is a lattice site and C is a variational
parameter, With this choice of X, the many-body
wave function is not symmetric with respect to
particle interchange. If a crystal state exists

for this repulsive Yukawa potential, it is not un-
likely that the particles will be only weakly tied

to their lattice sites, and exhange effects could be
important. Also if particles are not well localized
in the true ground state we must use a symmetric
trial wave function in the exact method to impor-
tance-sample the random walk; otherwise such
exchange effects could be exceedingly rare and
the convergence exceedingly slow. The simplest
function which has all the proper symmetries for
a bee lattice (except invariance under translation)
is

X = (C/k?)(coskx cosky + coskx coskz + cosky coskz),

(6)
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where k2=2r/a and a=1lattice spacing. This is
normalized to have the same curvature at a lattice
point as X, and will therefore behave the same
as xg for a well-localized bce crystal (large
C). The main disadvantage with this wave function
is that the barriers between lattice points are not
as steep as for the Gaussian wave function, and
thus it does not keep the particles as well sepa-
rated. In the random walk required by the method
of Metropolis et al.’® considerable “diffusion”
through the lattice occurs. One could, of course,
add in more symmetrized combinations of plane
waves but that complicates the variational search,
and the exact method does not need them.

Our variational computations for both the CC
and HW potentials show that the many-body wave
function constructed from X has a lower energy
than that constructed from X for all values of C.
The energy increases monotonically with respect
to C from the liquid values.’® This monotonic in-
crease has been independently verified by calcu-
lating the derivative of the energy with respect to
C using the reweighting procedure described
above. Thus the Monte Carlo calculations show
that X is at least as good a wave function as X,
and that for these two potentials the liquid has a
lower energy than the solid for all densities. For
high densities this system approaches the quantum
one-component plasma. Pollack and Hansen have
published an estimate of the solid-liquid transition
density.'® Since the highest density we have studied
is considerably higher than that density,'” we con-
clude on the basis of their estimate that the boson
ground state for either potential (CC or HW) will
not crystallize at any density.

B. Exact computations

The method for finding the exact ground-state
wave function is a version of a Monte Carlo
Green’s-function algorithm developed and used
by Kalos ef al.'>' for the hard-sphere ground
state. Let R, be a 3N-dimensional coordinate,
where N is the number of particles. The algo-
rithm finds a new_ coordinate R with the probability
density given by G(R R »), where
t\;ja;o—)G(R,Ro) : (7)
and G(R, ﬁo) is the Green’s function for the Hamil-
tonian [Eq. (1)]

HR)G(R,R,)=6"(R-R,). ®)

G[R,R,)=E

Initial coordinates ﬁo are drawn from ¥ ;2 (ﬁo), the
function found from the variational calculation. A
new generatmn of pomts is constructed by sam-

pling GR,R,). I ¥, (R,)¥,(R,) is one generation,

the next generation has a density function

v (R, R) = f ARC®R,R)Y, B )¥,[®). )
The process of constructing a new generation of
points is repeated until all the available averages
above have converged. It is easy to see that the
final configurations will be drawn from <p0(R) (R)
where (pO(R) is the ground state. The Green’s
function can be expanded in terms of the eigen-
functions of the Hamiltonian H; goa(ﬁ). Thus

C®,R)=Y" ﬂz@gﬁ_@g)

and (10)

‘I’J(-R.o)= Z Ca¢a(§o) .

Then,

-T2 w

If E, is adjusted so that the number of output con-
figurations is about the same as the number of
input configurations, then the configurations
should converge exponentially to the ground state.
Typically 40 to 100 iterations of Eq. (9) are nec-
essary to reach the ground state for this system.

Two different estimators are used to find the
ground-state energy. The first is the eigenvalue
of Eq. (9), or the ratio of the number of elements
in successive generations:

[7

Eo=E, [dRv,@¥,® /[ v, ®v,@. 12
The second is the variational energy:
E,- j aie,[®ae,[{) / [ ait,@v, @,
13)

where E; is the ground-state energy since H is
Hermitian. Elsewhere we will publish more de-
tails of the exact method including refinements
which increase the accuracy considerably.

A number of different checks of the method were
used. To be sure of convergence the program was
run many generations beyond the point at which
E appeared constant. The two independent es-
timators of the energy gave the same value within
statistical errors although the second, Eq. (13),
had somewhat less variance. The size of the sys-
tem was increased from 54 to 128 particles, and
the small shift in energy was the same as in the
variational calculation. A bad trial function, one
that was deliberately less restrictive and whose
variational energy was 20% higher, was used. The



13 EXACT CALCULATIONS OF THE GROUND STATE OF MODEL... 3211

final answers should be insensitive to this change.
As expected, the variance of the energy and the
convergence time increased, but the ground- state
energy remained the same within statistical er-
rors.

These tests indicate that the results are reliable.
In Table II the final energies are shown. The
quantities denoted in the table as “mixed” come
from an average over ¥ ¥ .. For example, if
V(R) is the potential energy of the system the
variational potential energy is

V.= JdﬁV(ﬁ)\Ifﬁ(ﬁ) / [arep®. a9
The exact potential energy is

Vor [ dRo 2@V / [dRoe®,  (9)
and the “mixed” potential energy is

Vasa= | RV o2, @® /[ aRoy@¥, @ .

(16)
If the trial wave function is close to the ground
state, the mixed results are the arithmetic means
of the exact values and the variational values.?
Another calculation involving more iterations can
be done if one wants to find the exact ground- state
values of quantities other than the energy, for ex-
ample, the two-particle correlation function, the
kinetic energy, the potential energy, or the single-
particle density matrix.?!

The single-particle density matrix was computed
by the method of McMillan.'®* The variational and
mixed results are shown for the condensate frac-
tion in the zero-momentum state. An improve-
ment of the method described by Kalos?! was em-
ployed to determine this fraction exactly at one
density. It is difficult to make a direct compari-
son of the condensate fractions found in this sys-

TABLE II. The potential is the CC potential of Eq. (1);
p is the density in fm™3, and E, is the exact ground-state
energy in MeV. The figures in parentheses in the column
labeled E show the errors in the quoted energies.
T mix and Nypix are the kinetic energy and the condensate
fraction calculated from the function @y(R)¥ ;(R). Nyex
is the exact value of the condensate fraction (for all but
p=1 this is extrapolated from the variational and mixed
results).?

P E, T mix Ny mix Nyex
0.2 99.7 (0.6) 38.9 0.56 0.57
0.5 341.0(0.4) 102.5 0.41 0.40
1.0 880.0 (2.0) 170.0 0.38 0.38
10.0 16248 (14) 1039.0 0.29 0.33

tem with those found in hard-core systems.'* This
is simply because the potentials are fundamentally
different. If we take no® as the natural way in
which to measure the density for both types of
systems (Yukawa and hard core), then the follow-
ing rough comparison can be made; for the CC
potential the condensate fraction is 33% when no®
=0.15, and for the hard-core potential the conden-
sate fraction is 10% when no®=0.20. This suggests
that there is much freedom of movement in the
ground state and the system is probably more of

a gas than a dense liquid.

The variational energies are less than 1% above
the exact results. The variances in the energies
are also much smaller than in a hard-sphere cal-
culation for a comparable computing time. Clear-
ly the Jastrow function is a very good approxima-
tion to the ground state for this soft-core poten-
tial. The Jastrow function is not as good for es-
timating other quantities, as evidenced by the dif-
ferences between the variational and mixed re-
sults. The mixed two-particle correlation function
g(r) is also very close to the variational g(») with
the mixed g showing about 5% more structure than
the other.

Several papers have used the Wu- Feenberg ex-
pansion approximately to antisymmetrize the wave
function.*?? The first term of this expansion, in-
cluding the ideal Fermi gas energy, is shown in
Table I. For the higher densities it becomes neg-
ative. The sum of the whole series is positive
since Fermi statistics must raise the energy.
This can easily be shown with the aid of the Feyn-
man theorem.?® If ¥ and E, are the ground- state
wave function and the ground-state energy of the
Bose system, and F¥, and E; are the correspond-
ing fermion quantities then

EZ R - —
EF=EB+mde\IfBZIVF|2/ de|F\IfB|2.
(17)

Since the second term on the right-hand side is
positive, E,=E,. If the first term of the series
is negative it is unlikely that the first two terms
of the Wu-Feenberg expansion will be accurate
enough to compute the difference between the lig-
uid and solid phases, particularly since the con-
vergence of the series is likely to be different in
the two phases. Later we will publish the results
of a variational study and an exact study, in which
we use a fully antisymmetric wave function with
the nodes of the ideal- Fermi-gas wave function.
Schiff* has used a quantum perturbation tech-
nique to calculate the equation of state of neutron
matter from the equation of state of hard-sphere
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bosons. The potential he chooses for the neutron
interaction has the repulsive part of the Reid po-
tential with half of the attractive part;

V(r)=(C,e*+C,e”*+Cye™™)/x, x=(0.Tfm ),
where (18)

C,=-5.261 MeV,

C,=-825.8 MeV,

C,=6484.2 MeV.

At high densities an attractive potential will
undergo total collapse if the core is not sufficient-
ly repulsive relative to the depth of the attractive
well (e.g. the soft-core Reid 'S, potential). On the
other hand, if the core is sufficiently repulsive it
will behave like a repulsive Yukawa potential, and
we can make a correspondence by requiring that
the potentials have the same behavior at small ».
In particular, the effective Yukawa parameters
€ and ¢ [see Eq. (1)] can be found by requiring
that the two potentials have the same terms in
r~!and ». With this requirement the Schiff po-
tential has an effective € =8076 MeV fm, ¢™'=5.14
fm™', and A*=1.02. This argument suggests that
the Cochran-Chester wave function will be good
at high densities, and that the equation of state
for Schiff’s potential will be close to that of this
potential.

We have calculated the energy of this system
variationally using the wave function in Eq. (3)
for the same density range as Schiff. We find
that his model seriously overestimates the energy
and pressure (see Table I and Fig. 1). This in-
crease occurs because the kinetic energy in his
model is the kinetic energy of a system of hard-
sphere bosons (with a radius of 0.25 fm), and this
increases very rapidly with increasing density.
The hard spheres must avoid close approaches
because the wave function must vanish when two
particles touch; this gives the wave function a
large curvature at high densities. But for a soft-
core potential the wave function no longer has to
vanish, and there is therefore much more “avail-
able space” between the particles so the wave
function can spread out and lower its curvature.

Another approximation scheme, constrained
variation,® where the many-body Schrédinger
equation is replaced by a two-body equation with
boundary conditions appropriate to a fluid, seems
to work fairly well. The simplest approximation
of this sort, the lowest-order constrained varia-
tion, gives energies about 20% higher than our
variational results for both CC and HW poten-
tials.?* A slightly more complicated method
based on the hypernetted-chain approximation for
a fluid agrees with our result to within approxi-

mately 5%.° These approximations will be fairly
reliable as long as the system resembles a gas
and exhibits no strong correlations. However,
they probably are not accurate for estimating the
liquid-solid phase transition since for soft-core
potentials very small differences in energy may
be important. '®

In conclusion we find three significant differ-
ences between the ground state of a hard-core
quantum liquid and a soft-core quantum liquid.
For a soft core the Jastrow, or product-type,
wave function appears to be an excellent approxi-
mation to the ground state for the purpose of com-
puting the energy. An integral equation technique,
based on the hypernetted chain equation, also
gives rather accurate energies for this system.
For soft cores, the particles can move about much
more freely, and for this reason particle exchange
in the solid is likely to be an important effect near
any solid-liquid phase transition.

In contrast to the hard-core system, the Wu-
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FIG. 1. Energy per neutron versus density for the at-
tractive potential of Eq. (18). A is the kinetic energy of
a hard-sphere liquid with a sphere diameter of 0.5 fm.
B'is the total energy per neutron as calculated by Schiff
using a hard-sphere model. C and D are, respectively,
the kinetic energy and the total energy of this sytem
computed variationally using the wave function of Eq. (3).
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Feenberg expansion is not a quickly convergent
series and an accurate treatment of a completely
antisymmetric wave function must be used. Final-
ly, as Cochran and Chester point out,® a soft-core

GROUND STATE OF MODEL... 3213

potential cannot be treated as a perturbation from
a hard-core potential. It is likely that any treat-
ment which relies on a correspondence between
hard-core and soft-core systems will fail.
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