
PH YS IC A L REVIE W 0 VOLUME 13, NUMBER 12 15 JUNE 1976

Geometrical packing and the solidification of neutron-star matter~
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%'e examine the role, if any, of geometrical packing or "caging" of the neutron repulsive
cores in the solidification of neutron matter at neutron-star densities. A search for a stable
solid phase retaining only the repulsive part of the Reid So potential and Bose statistics
shows that this model system cannot sustain a solid core until densities much beyond 2 fm 3.
This indicates that the n-n repulsive core is too soft to induce solidification at neutron-star
densities. Using the analogy of helium it is argued that including the intermediate-range
attractive well of the n-n potential would not lower the solidification density significantly.
In support of this, a second search was conducted with a potential which was a density-de-
pendent average of the So and D2 Reid potentials (including the attractive part). Again no

stable solid solution was found.

I. INTRODUCTION

Recently we presented a new variational pro-
cedure for dealing with quantum crystals' which
successfully predicts both the solidification den-
sity and correlation energy of He. ' In this paper
we apply the same method to examine whether
neutron matter solidifies at the high densities
found in the interior of neutron stars (0.5 (p
«2.0 fm '). Apart from the existence of such a
solid core having its own fundamental interest, it
has been proposed as a possible cause of the
speed-up in the period of the Vela pulsar, ' and the
on-off cycle of the x-ray source Her X-1.4

At the densities characteristic of neutron-star
interiors the average spacing between the neutrons
is comparable to the radius of the g-n potential's
repulsive core. An analogous situation is found in
liquid 'He and 4He where the average interparticle
spacing at equilibrium density is comparable to the
repulsive core radius of the He-He potential. This
similarity was exploited by Anderson and Palmer, '
who assumed that the g. -yg potential has a form sim-
ilar to the potential between two atoms, and then
used the law of corresponding states to estimate
that the solidification density of neutron matter
was about 0.24 fm '. Clark and Chao' independent-
ly obtained a similar value for the solidification
density also using this law but with a different po-
tential which fitted the g-~ potential better. More
recently Miller, Nosanow, and Parish' have ex-
amined in considerable detail the application of
the law of corresponding states in the general phe-
nomena of melting.

However, having pointed out this similarity, we
must hasten to add that the He-He potential is much
the more singular potential at short distances. For
small r the He-He potential goes as x ", 8 ~ n ( 16,
whereas the z-z potential goes roughly as r to

Accordingly the He-He potential should in-
duce far stronger short-range correlations.

The primary mechanism in the solidification of
'He and 4He is known to be "geometrical caging"
caused by the repulsive cores. The attractive
part of the potential (and exchange effects in the
case of 'He) have little effect in determining the

solidification density. Hansen and Pollock, ' for
example, found in their Monte Carlo calculation
for He that they could completely remove the at-
tractive well of the Lennard- Jones potential with-
out altering their calculated solidification density.
Since the relative volumes occupied by the repul-
sive cores for helium and neutron-star matter are
so close, it is of interest to see whether the softer
z-z potential core is still sufficiently repulsive to
cause solidification by the same caging mechanism.

With this limited aim in mind, we only consider
the most repulsive components of the short-range
e-n potential. This permits us to work with cen-
tral, state-independent potentials. The repulsive
part of the 'So Reid potential is

7 Qf'

g, (x) =46.78 Kc, a =0.7 fm '.
This state-independent potential is used in the so-
called "homework model"" "which was devised
at the 1973 Urbana workshop on dense matter pri-
marily as a test of different many-body techniques.
A second reason for using n, (w) for the interaction
between all two-nucleon states is that it permits
us to determine whether geometrical caging by

itself can cause solidification at neutron-star den-
sities. For the same reason we use Bose rather
than Fermi statistics for "homework model" neu-
trons (recalling the relative unimportance of ex-
change effects in 'He solidification).

To check the effect of including at least part of
the attractive region of the g-z potential, we also
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carried out the calculation with a second potential
which is a density-dependent average over the 'S,
and 'D, Reid potentials"
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+46.78

(2)

where a =0.7 fm ', o. '=(bp)', b =0.94 fm'.
Using either potential we came to identical con-

clusions about the absence of solidification within
the relevant densii. y range (up to 2.0 fm '). This
suggests that a calculation which realistically
treats the noncentral and state-dependent attrac-
tive part of the n-g potential would likewise reach
a similar negative conclusion. Pion condensation
as a possible alternate solidification mechanism"
is outside the realm of this discussion and we do
not consider it.

In Sec. II we describe how we applied our vari-
ational method to search for stable solid solutions
in neutron-star matter, and in Sec. III we present
our results for the potentials v, (r) and v«(r).
Finally, in the Appendix we discuss briefly Feen-
berg's arguments that a translationally invariant
wave function is quite capable of completely des-
cribing the internal structure of a solid, and Clark
and Sandier's" subsequent search for a "floating
so]jd" in the solutions of Shen et al. ' for liquid neu-
tron matter.

II. VARIATIONAL CALCULATION

In this section we apply the variational procedure
outlined in Ref. 1 to the problem of solid neutron-
star matter. The Hamiltonian for the system is

H = — V, '+ v(r„),
=1 4& =1

(3)

&s(r rN) =
~ ~ "9's(r )

N

eu s (ry y)/2

g &0=1
(4)

Note that g~ will have the same crystal symmetry
as the single-particle wave function q~(r).

We define

where the state-independent, central potential is
either v, (r) or v„(r).

Since Shen et al."have shown that the three-par-
ticle factors in the translationally invariant wave
function g~ contribute only negligibly to the energy,
we may justifiably neglect these factors in the
solid wave function iI~z, since their contribution to

gz should be even smaller We ma.y accordingly
restrict our class of variational wave functions
for the solid to

and

(7)

and denote the minimum values of the expecta-
tion values by El and Fs, respectively. The re-
striction

follows from the discussion in the Appendix since
the three-particle and higher correlations in the
wave functions gz, and gz are negligible. If the
ground state is crystalline, there must exist some
nonconstant y~ (r) with the symmetry of the crys-
tal for which the equality in Eq. (8) is satisfied.
If no such ya( r) exists, the liquid is the stable
phase.

We may write the exact expressions for the en-
e gies I an ~s as

&~ =k
J

dFdF2~&(r»)P~&i(F„F2),

Ez =—
2 dr,P~'(Fi)V, 'Inyz( r,)

(9)

+ a d F,d F,v~ (r„)Pz' (F„F,),

where

v~(r) = v(r) ——,
' V'u~(r),

v~(r) =v(r) --,' Vu~(r)

(10)

P~~)(r„. . ., r„) and P~~~(r„. . ., r„) are the n-parti-
cle distribution functions for the liquid and solid,
respectively.

From the symmetry of gz, Pz,'i(r, ) is a constant
equal to the avera. ge density p, and P~2l( r„rg is a
function only of x». We may obtain an expression
for Pg (r„) by differentiating it with respect to r, :

V, N(N —1)f d r; ~ ~ d r„exp 5 uz (r;& )
V +2)(r )

— i(j

fdr, ~ ~ dr„exp Z ul(r„)
-i ($

=6'&(r„)V,u (r„)

+ dr3 ~ F12~ 13 23 +1 g 13 (12)

Defining the pair correlation function g~(r),

Pp (r) = p'gl. (r), (13)

and using Kirkwood s superposition approximation"

P~~i(r», r», r») = p'g~ (r»)g (r»)g~ (r»), (14)

Eq. (12) reduces to the Bogoliubov-Born-Green-
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Kirkwood- Yvon equation"

V, lng (r„)=V,u (r„)

dr~~ g, ~. (18)

Differentiating P~~ '(r, } and P~~ '(r„r,) with re-
spect to r, we obtain2'

VP,"'(ri) =Ps"'(r, )i +q'~'(r, )

+ dr, Ps" r»r, , s (17)

The energy E~ may then be expressed in terms of
the resultant g~(r):

where we have used Eq. (21) to eliminate the term
V, Inye2(r, ) from Eq. (22).

In principle these two coupled equations can be
solved by initially guessing a form for Pe"'(r),
solving Eq. (22) for g~(r„r, ), then solving Eq.
(21) for Pe' '(r}, and so on, until the two functions
simultaneously satisfy both equations. This in-
volves pr ohibitively long computation times. In
practice, we simply solved each equation once.
The initial form we chose for P~~ '(r) was a con-
stant. In this case Eq. (22) reduces to the BBGKY
equation (15) for the liquid and gz (r„r2) becomes
a function of &» only. Any other approximation
for Pz"'(r) leads to a ge (r„r~) which is explicitly
a function of r, and r, separately, so that should
we for convenience wish to approximate gs by a
function of &» then

and g, (r„r.) = g&(r,.) (23)
V, P~~ '(r„r,) =P&'2'(r„r, ) [ V~ 1ny~'(r, ) + V,uz (r»)]

+ dr3Ps» r2 r3 ~lQs 13 ~

(18)

Kirkwood's superposition approximation cannot be
used directly with a function such as P~ (r„r„r,)
which has long-range order. However, since the
long-range order in Ps ' arises solely from the
periodic nature of the solid wave function (~, we
may factor it out before applying a generalized
Kirkwood superposition approximation to the re-
mainder, '

would be the only approximation consistent with

Eq. (22). Just how good an approximation this is
is currently under investigation. It should be
pointed out that in previous quantum crystal cal-
culations g~(r„r, ) corresponds either to g~(r»}
or, worse yet, e"I'"»'.

Having solved Eq. (15) for g~ (r} [equal to g~ (r)]
we must solve Eq. (21) for P~u'(r) Using . the
property that both Pz"'(r) and the ground state
q~ (r) are non-negative and also that P~"'(r) has
the same crystal symmetry as y~(r), we may
make Fourier expansions as follows:

xg~ (r„r,}g~ (r„r,)ge (r„r,),
(19)

where the pair correlation function for the solid
g~(r„r,} is defined as

(20)

and

Inyz(r) =g toe'
G

P&' (r) = Q s - eia'
G

InXP,"'(r) =Q q oe'G',
G

(24}

(25)

(28)

and

+ dr, Ps' r, gs r„r, V, s

(21)

V Ingz(r„r, ) =V,uz(r„)

+ dr, Ps" r3 gs r1 3

&& [gz(r„r,) —1]V,uz(r„),

Equations (17) and (18) then reduce to coupled
integro-differential equations for the functions
P,"' (r) and g, (r„r,),

V, inPe' '(r, ) =V, Incp~'(r, }

where the summations are over the reciprocal
vectors G of the lattice with the symmetry of
yz(r), the coefficients t G are the variational
parameters for y, (r) within the selected lattice
structure [they determine the shape of ye(r} about
each lattice site], and & is a constant which is
determined by the normalization

(27)

The coefficients s G or q G specify Pz"'(r) and it is
these we must determine.

Using these expansions we may reduce Eq. (21)
to a set of algebraic equations relating p G and
s G to the variational parameters t G,

(22) O'
G

—ass G+2t G, (28)
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where

1
no= dr G i e~G''gg'(~)g (~) (29) M~(r)=-( ) . (34)

sG y
dre ' ' exp qG'e (30)

Equations (28) and (30) together determine the
coefficients so or qo in terms of g~(r) and the
variational parameters t G.

Having determined Pz' (r) and Ps2~(r„r, ) for
a given form of the variational functions y~(r)
and uz(x), we may calculate the corresponding
energy Ez using Eq. (9). Alternatively we may
express E~ directly in terms of t G and sG as

(3i)

where

A second relation between s G and q G may be ob-
tained by combining Eqs. (25} and (26):

For the potential v, (r) we determined the optimal
liquid energy E~ by taking the best energy ob-
tainable from (33) and then subtracting the paired-
phonon analysis (PPA) energy correction term. "
For v«(r) we simply equated E~ to the minimum

energy for the form(33).
In Figs. 1 and 2 we show representative results

from our variational search using the potentials
vq(r) and v„(r), respectively. Since the solid
energies were lower for an fcc crystal structure
than for a bcc, these results are all for fcc. We
searched through values of b~ encompassing the
minimizing value of br, which +as approximately
0.7 fm for v, (r) and 0.5 fm for v» (r). Each curve
is for a fixed b~ plotted as a function of t(y) The
parameter t(» was freely varied, although we
found it invariably to be small compared to t(».

yo = —,'p dr v (r) g~(r) e'o (32)
~ l000—

u (r)= —
(
—) (33}

III. RESULTS OF CALCULATION AND CONCLUSION

Our variational search divides rather naturally
into two parts. The first concerns the choice
of functional form for the two-body Jastrow wave
function u~(r). For the potential v, (r), Shen et
al."have calculated the optimized Jastrow form
for the liquid u~(x), and while this serves as a
convenient starting point, our experience with
solid 'He indicates that the best u~(r) for the solid
is somewhat less localized than the best u~(r)
for the liquid at the same density. ' The second
part of the search concerns the variational pa-
rameters t G which determine the functional form
of the single-particle wave function q&~(r). Again
from our experience with solid 'He, where we
found that the minimizing values of t G fell off
rapidly with increasing Q so that the dominating
coefficient invariably was for the smallest non-
zero [ G [, we retained only the two leading co-
efficients t(]) and t(, ). These are the values of
t G for

~
G

~
equal to the nearest and second near-

est neighbor distance in the reciprocal lattice.
(We note that tG is a function only of [G [ if [ G (

is less than the fifth nearest neighbor distance. )
Fixing the r origin on a lattice site, t(]) must
be positive if y~(r) is to be maximized on each
site.

We took for u~(r} and uz(r) the parametrized
forms

500—

os=

1000—

500—

0.2 0.3

FIG. 1. Energy of the solid relative to the minimum

liquid energy as a function of the variational parameter
The potential used is v ~ (r), the repulsive part of

the So Beid potential. Each curve is for a fixed value
of the parameter b z. The parameter t(2) is allowed to
vary freely. The two densities are labeled by p. Note

that each energy curve monotonically increases with

t(& ) (increasing 1.ocalization). The solid configurations
characterized by nonzero t(& ) all have energies above
the minimum liquid energy. This implies a stable liquid
phase up to 2 fm, 3. The crossing of the curves has no

particular significance in the present context.
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The energy scale is relative to E~. Other values
of b~ above and below the best b~ gave qualitative-
ly similar curves. For the potential vq(r), we
also tried using the optimized liquid form uz(r)
for us(r) T. he curves we obtained were again
similar to those shown. Note that the energy
curves all monotonical. ly increase with increasing

We found that the solid energy E~ only equal-
ed &z, when us(r) was identical to the best liquid
u~(r) and

Our results thus indicate that for either potential
all solid configurations have energies higher than
the liquid. We conclude that the repulsive core
of the Reid potential is too soft to induce solidifica-
tion of neutron matter below 2 fm '. Our cal.-
culations with v»(r) suggest that, as with 'He,
the central attractive potential is not the key
mechanism for inducing solidification.

Qualitatively the results look similar to our
previously calculated results for 4He well below
the solidification density. ' For the sake of com-
parison, Fig. 3 shows the results for 'He about
the solidification density. Above the solidification
density we see the energy curve dipping quite
dramatically down to E~, indicating a stable solid

0.8— O-3

04

solution. A numerical comparison of the two
sets of results suggests that even 2.0 fm 3 is not
close to the solidification density, and so it would

appear likely that a more refined calculation
using realistic state-dependent and noncentral
potentials would still find no solidification up to
2fm '.

There remain two mechanisms which could
possibly induce a solid neutron-star core. They
are first, an enhancement of the tensor component
of the n-n interaction by a n condensate or
second, a more repulsive neutron core due to
size effects: If neutrons should be treated as
extended composite objects, "when two neutron

IOOO
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0 0.04 0.08

O. l 0,2

FIG. 2. Energy of the solid for the potential vq~ (~), a
density-dependent average over the complete So and
-D2 Reid potentials, plotted as a function of t(&). The
labels are described in Fig. 1. The results again imply
a stable liquid phase up to 2 fm 3 for this potential.

FIG. 3. Energy of solid 4He calculated in Ref. 2 as a
function of t(&) at two densities near the predicted solid-
ification density. The labels are analogous to those in
Fig. 1. The parametrized form used for uz(r) was
-(b ~/r) . Note that above the solidification density
(0.030 A 3}, the solid energy for certain nonzero values
of t(& ) dips down to the liquid energy, implying a stable
solid phase. In the present calculation no similar dip
was observed. The calculated solidification density for
He was within 10% of the observed solidification den-

sity.



3206 N. I ONY AND CHIA-%EI %00 13

surfaces touch the repulsive effects of exchange
at the surfaces could be very large. The solid-
ification density would be sensitive to any ap-
preciable hardening of the core.
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to be insignificant (s leap) throughout the range of
densities considered (0.5 (p & 2.0 fm s). This in-
dicates that higher-order correlations can all be
neglected, and the Jastrow apyroximation is valid
for neutron liquids.

Feenberg~' has pointed out that a translationally
invariant wave function of the general form

APPENDIX: FLOATING SOLID X' e ~&&or ~ rr ~, rmrf)~& ~ ~ .

For the "homework model" potential v, (r), Shen

et a/. " have obtained accurate ground-state wave
functions and energies for liquid neutron-star
matter. Starting with a parametrized Jastrow
function

N
I

(Al)

they first minimized the energy expectation value
with respect to the variational parameters in

zn(r). Next, they subjected the resultant wave
function to a paired-phonon analysis, ' which was
shown by Campbell and Feenberg" to lead to the

optimized Jastrow function. This is the Jastrow
function which minimizes the energy irrespective
of the yarticular parametrized form initially se-
lected for u~(r). Finally, corrections due to three-
yarticle correlations as they appeared in the im-
yroved trial wave function

E
(~ ~ ) cup(r;~)/2

&&i=&

were perturbatively estimated. They were found

(A3)

completely describes a "floating solid. " This is
a solid which has been averaged over all positions
of its lattice sites and over all orientations of its
crystal axes relative to a fixed frame. Clark and
Sandier" argued that the results of the Shen et al.
liquid calculation consequently remain valid at
densities for which the solid is the stable phase.
Inthis sense the minimum energy of the "liquid"
calculation must equal the ground-state energy of
the system. If the energy is always calculated
assuming a single phase, then the liquid-solid
phase transition region should make its appear-
ance by displaying an unphysical inflection in the
energy-density curve. Clark and Sandier con-
cluded from the fact that no such inflection is ob-
served in the Shen et al. energy curve that no li-
quid-solid transition occurs below 2.0 fm '. Al-
though in principle we believe this inference, a
valid objection is that the densities Shen et al.
considered were rather widely spaced, up to
0.6 fm ' apart, and consequently an inflection
could have escaped detection. Also, the inflection
itself may be small, as is the case in 4He. ' The
procedure presented in this paper directly deter-
mines whether the stable phase at any given den-
sity is solid or litluid and thus overcomes this ob-
jection.

*Work supported in part by the National. Science Founda-
tion under Grant No. GP-41557.

D. ¹ Lorry and C.-W. Woo, Phys. Lett. (to be pub-
l.ished) .

D. N. Lay and C.-W. Woo, Phys. Bev. 8 13, 3790
(1976).

3D. Pines, J. Shaham, and M. Ruderman, Nat. Phys. Sci.
237, 83 (1972).

4D. Pines, C. Pethick, and F. Lam'b, Ann. N. Y. Acad.
Sci. 224, 237 (1973).

p. W. Anderson and R. G. Palmer, Mat. Phys. Sci. 231,
145 (1971).
J. W. Clark and N. C. Chao, Nat Phys. Sci. 236, 37
(1972).

M. D. Miller, L. H. Nosanow, and L. J. Parish, Phys.
Rev. Lett. 35, 581 (1975).
J. P. Hanaen and E. L. Pollock, Phys. Rev. A 5, 2651
(1972).

9B. V. Beid, Ann. Phys. (¹Y.) 50, 411 (1968).
V. Canuto, S. M. Chitre, and J. Lodenc[uai, Nuel. Phys.
A233, 521 (1974).

~~S. Cochran and C. V. Chester, report (unpublished).
V. R. Pandharipande, Nucl. . Phys. A248, 524 (1975).

~3S. Chakravarty, M. Miller, and C.-W. Woo, Nucl.
Phys. A220, 233 (1974).
L. Shen and C.-W. Woo, Phys. Rev. D 10, 371 (1974).

~5L. Shen, H. R. Sim, and C.-W. Woo, Phys. Rev. D 10,
3925 (1974).



QE ONE TRICAL PACKING AND THE SOLIDIFICATION OF. . . 3207

M. T. Takemori and B. A. Guyer, Phys. Bev. 9 11,
2696 (1975).
J. W. Clark and D. G. Sandier, Phys. Rev. D 11, 3365
(1975).

~ M. Miller, C.-W. Woo, J. W. Clark, and W. J. Ter
Louw, Nucl. Phys. A184, 1 (1972).

9R. F. Sawyer, Phys. Bev. Lett. 29, 382 (1972); D. J.
Scalapino, Bid. 29, 386 (1972).

2 V. R. Pandharipande and R. A. Smith, Nucl. Phys.
A237, 507 (1975).
E. Feenberg, J. Low. Temp. Phys. 16, 125 (1974).

+J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
23M. Born and H. S. Green, Proc. R. Soc. London A188,

10 (1946).
C.-W. Woo and W. E. Massey, Phys. Rev. 177, 272
(1969); C.-W. Woo, in Physics of Liquid and Solid
Helium, edited by R. K. Bennemann and J. B. Ketter-
son (Wiley-Interscience, New York, 1976); H. W.
Lai, C.-W. Woo, and F. Y. Wu, J. Low Temp. Phys.
5, 499 (1971).
A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and
V. F. Weisskopf, Phys. Bev. D 9, 3471 (1974).
H. W. Jackson and E. Feenberg, Ann. Phys. (N. Y.) 15,
266 (1961)

TC. E. Campbell and E. Feenberg, Phys. Bev. 188, 396
(1969).


