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Gordon Shaw has argued from duality that exchange forces contribute a null term to the mm I' wave, hence
that the traditional p bootstrap must fail in any model consistent with duality. Shaw's argument rests, however,
on use of an infinite series in a region where it diverges. The contribution of exchange forces is computed here
for the Veneziano model, and is shown to be nonzero. Although Shaw's argument is not valid, X/D
calculations nevertheless indicate that exchange forces in the mm channel are too weak to generate the p.

Shaw has argued that exchange forces in the mm

channel are incapable of generating the p reso-
nance if the left cut of the I' wave is consistent
with duality and p-f, exchange degeneracy. ' While
I share Shaw's skepticism that the p is bound in
the mm channel, "Shaw's argument is flawed, and
deserves comment.

Consider the standard decomposition of the mm

P wave A. ~'&' into a sum of terms A.~ and A„re-
sulting from the left and right cuts, respectively:

Ai'&'( ) —'
I ds'+ ds'

)t .„, (s' —4)(s' —s)

E r(1 —~(x)) r(1 —~(y))
I' (1 —a (x) —n (y))

(2)

where P denotes a normalization constant, and
a(x) = a+bx denotes the exchange-degenerate p-f,

=—A~(s) +A„(s),

where s denotes the center-of-mass energy
squared, and m = 5 = c =1. The term A, ~ embod-
ies the exchange forces, and Shaw argued that
A.~ is zero.

I.et A denote the mm amplitude with isospin "I"
in the s (direct) channel. In dual resonance mod-
els, it is customary to express the three A. in
terms of a single function E(x, y) = E(y, x). A' is
then given by

A'(s, cos8) = E(s,u) -E(s, t),
where t and u denote the usual Mandelstam vari-
ables:

t -=- -', (s —4)(1 —cos8),

u -=- —,'(s -4)(1+cos8) .
In the single-term Veneziano model, F is given

by~

Regge trajectory.
In its most explicit form, Shaw's argument pro-

ceeds as follows. The E(x, y) of Etl. (2) can be ex-
pressed as'

Tn(tr(y))
(Z —1)! a(x) -Z '

where

T)t($) = (((+1)($+ 2) ' ' ' [h + (If —1)]

denotes the Kth-order Pochhammer polynomial.
The series (2) converges for Re[ts(y)]&0.

Shaw notes that Eq. (2) can be used to expand
E(s, t) and E(s,u) as series of s-channel poles,
hence it can be used to expand A.' as a series of
s-channel poles:

1 ~ TE(o'(u))- Ptt(ot(f))
(K —1)! n(s) - IC

(4)

If {as assumed by Shaw) Etl. (4) were valid through-
out the s-channel physical region, it would follow
that Re[A'] is dual to direct-channel resonances,
hence that A~ =0.

It is readily seen that Shaw's argument is not
valid, because the series (4) diverges when ct(t)
&0 and/or cs(u)&0.' Since n(0)&0 for the p-f,
trajectory, the series (4) cannot be used to ex-
press A' near the forward (t =0) or backward
(u =0) directions, where A. ' is largest. [In fact,
Eq. (4) is only valid for t and u such that A' tends
asymptotically to zero ]Thus pa. rtial waves of
A' cannot be expressed as projections of this se-
ries containing only direct-channel poles.

A series representation for A' which is valid
throughout the s-channel physical region may be
obtained from'

(-1)x 1 1
r(& )= )Q()(«))) rd) +(+) +(/))

( ) «+ ( ) «)K=1
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which converges when Re(n(x) + n(y)) & 0. Equations (1) and (5) yield

s)'(s, c csC) ()Q=) S' (( —c(s) —c(s)) + )
( ])E

IC =l

1 1—S' ( —c(s) —c(t)) ( ( )
+ -( )

which converges for Re(s) & —2a/t) when ( cos8~ & 1.
Hence Eq. (6) is valid throughout the s-channel
physical region, but contains crossed-channel
poles as well as direct-channel poles. The
crossed-channel contributions do not cancel each
other completely, ' for I find by direct computa-
tion that the resulting A~ is given within a neigh-
borhood of threshold by

Ai(s) =—0.0030(s- 4),
with A. ~' ' normalized such that elastic unitarity
would imply

A i'~'(s) = (1 —4/s) '~' exp(i6) sin5 .

The above result for A~(s) might be regarded as
small, ' but it is not zero. Whether it is too small
to generate a p must be tested by computations.
The N/D calculation in Ref. 2 is based in part on
the Veneziano A~, with negative results. The
N/D calculation of Ref. 3 is based on a more
rigorous model for the left cut, and includes in-
elasticity, but again fails to generate a p. Hence
it appears unlikely that the p is generated by
forces in the wn channel.

The author is indebted to Gordon Shaw for stimu-
lating discussions.
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