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Feynman and Wilson have proposed an analogy between the physics of multiparticle production and the

description of a gas of molecules in statistical mechanics. The zeros of the grand partition function are known

to play an essential role in the thermodynamic description of a gas. Motivated by the Feynman-Wilson gas

analogy, Khuri has recently shown that the zeros of the multiparticle generating function play an equally

important role in hadronic scattering. In particular, Khuri has shown that hadronic theories satisfying

unitarity and the Froissart bound and having a nonshrinking nearest zero of the multiparticle generating
function will have an improved Froissart bound on the total hadronic cross section. The improvement of the

bound resulting from a nonshrinking nearest zero is essentially from [ln(s/g)] to ln(s/g). This work

applies a number of mathematical techniques of statistical mechanics to study the behavior of the nearest zero
of the multiparticle generating function in a general class of hadronic production models. Suf5cient conditions
are found which control the shrinkage of the nearest zero in production models with general, multibody

interactions. The reduction of the conditions to the simpler case of two-body interactions and the physical
interpretation of the sufhcient conditions are discussed. Multiperipheral models are shown to be a small

subclass of the two-body interaction models.

I. INTRODUCTION

Feynman' and Wilson' have conjectured that
the physical description of multiparticle produc-
tion may be analogous to the physics of gas mole-
cules in statistical mechanics. The description
of multiparticle production begins by defining
the multiparticle generating function,

N s)
Q(z, s) =1+ o„(s)z"

n-

with a form analogous to the grand partition func-
tion in statistical mechanics. The n-particle
hadronic production cross sections, c„(s), are
assumed to be analogous to the n-particle par-
tition functions of a gas, while some increasing
function of the center-of-mass energy squared,
s, is analogous to the volume of the gas system.
The expansion parameter z is in general unspeci-
fied, though in certain hadronic models it may
have a clear physical interpretation. For example,
in multiperipheral model. s z is the square of the
strong-coupling constant.

As the collision energy s increases, the num-
ber of produced particl. es may increase in princi-
ple as fast as Ws, and is observed experimentally'
to increase roughly like lns. For s sufficiently
large, one does not seek a description of multi-
particle production which entails the position and
momentum of each outgoing particle, but rather
a collective description of the multiparticle sys-
tem. From the multiparticl. e generating function
one can define collective parameters in the same

way one obtains thermodynamic parameters from
the grand partition function. The hope of the
Feynman-Wilson gas analogy is that these col-
lective parameters will be meaningful in describ-
ing multiparticle production.

Several authors' have studied the mathematical
relation between field theory models of hadronic
scattering and the statistical-mechanical descrip-
tion of a gas of molecules. Chang, Yan, Yao,
and Campbell have used the cluster decomposition
techniques of statistical mechanics to study in-
clusive and exclusive multiparticle spectra in a
number of simpl. e hadronic models. Lee has put
the Feynman-Wilson gas analogy on a firmer
footing by explicitly demonstrating the correspon-
dence between the qP multiperipheral production
model' and a one-dimensional ring of gas mole-
cules.

Zeros of the grand partition function are known

to play an important role in statistical mechanics.
Yang and Lee' pointed out that zeros accumulating
on the positive real fugacity axis in the infinite-
volume l.imit provide a mathematical mechanism
for phase transitions. Bogoliubov and Khatset, '
Groeneveld, ' Ruelle, ' and Penrose" have studied
the behavior of zeros in the complex fugacity
plane to prove the existence of a zero-free region
around the origin and thus, the existence of the
gas phase, in the limit of infinite volume.

Recently, Khuri" pointed out that zeros of the
multiparticle generating function play an equally
important rol.e in hadronic scattering. In par-
ticular, Khuri showed for theories satisfying
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unitarity and the Froissart bound that if the near-
est zero to the origin in the complex z plane does
not collapse to the origin in the limit of infinite
energy, then one has the bound

o„,(s) ~„Cln(s/s, ) ln In(s/s, }.
This is essentially an improvement of the Frois-
sart bound by a factor of ln(s/so). It is important
to emphasize that Khuri's result is independent
of the validity of the gas analogy. One can start
with Eq. (I) defining the multiparticle generating
function and study the relation between its zeros
and the Froissart bound without any reference
to statistical mechanics.

This paper studies the conditions insuring a
nonshrinking nearest zero of the multiparticle
generating function in the limit of infinite energy.
Whil. e formally the existence of the gas analogy
is unnecessary, the mathematical techniques de-
veloped to study zeros of the grand partition func-
tion are valuabl. e in studying the zeros of the
multiparticle generating function. Using some
methods of statistical mechanics, a set of suf-
ficient conditions is found insuring a nonshrinking
nearest zero for production models having gen-
eral, multibody interactions. Unfortunately, as
in statistical. mechanics, when working with multi-
body interactions the conditions giving a zero-
free region are not physically simple. Such con-
ditions constitute only a first step toward under-
standing the properties of general theories with
nonshrinking zeros, and define a class of models
which may be useful in the study of the gas anal-

It is essential that the sufficient conditions for
nonshrinking zeros do not trivially restrict the
growth of the elastic cross section with energy.
A simple example shows that this does not neces-
sarily happen. Consider the ansatz

a nonshrinking nearest zero in more realistic
production models as well. In the simple ansatz
above, Eq. (4) can be found without studying the
zeros of the generating function, using the re-
lation Q(l, s)-o„,(s) and the Froissart bound.
However, in more complicated production the-
ories the study of zeros provides a general and
powerful technique limiting the growth of the total
cross section.

Section II of this paper reviews the connection
between the zeros of the generating function and
the Froissart bound shown by Khuri. It also con-
tains a simple theorem giving sufficient conditions
to relate nearest zeros of models or approximate
theories to the nearest zero of the true multi-
particle generating function. Section III describes
conditions sufficient to control the nearest zero
of the multiparticle generating function for multi-
body interaction models and proves that those
conditions restrict the shrinkage of zeros. Section
III 8 discusses alternative conditions on the po-
tentials leading to a nonshrinking nearest zero,
and Sec. III C describes the conditions sufficient
to guarantee a nonshrinking nearest zero in the
simpler case of strictly two-body interactions.

II. ZEROS OF THE MULTIPARTICLE
GENERATING FUNCTION

This chapter contains two theorems on zeros
of the multiparticle generating function. The first
theorem reviews the work of Khuri showing the
connection between the shrinkage of the nearest
zero and the bound on the total cross section.
The second theorem points out the essential fea-
tures which tie together the shrinkage of the near-
est zero in some approximate theory and the near-
est zero of the true multiparticle generating func-
tion.

[2o„(s}j" '
(2)

A. Nearest zeros and the Froissart bound

From Eq. (I) it is clear that the multiparticle
generating function has a nonshrinking zero-free
region for lar ge s, s ince

Q(~ s) esl2a, i(s)l i 12

Thus, Khuri's theorem guarantees that

(r„, (s) ~C ln(s/so) ln ln(s/so).

This bound results from the n dependence of the
n-particle production cross sections, seithout

any initial restriction on the s dePendence of o„
or the n-particle cross sections. It is this re-
striction on the n dependence of the production
amplitudes which will be essential in obtaining

(4)

For simplicity, consider a theory in which only
one kind of particle is present, having mass m.
Then o,(s) =o„(s). o,(s) appearing in Eq. (I) is a
free parameter corresponding to the phase-space
volume, and has been included to allow a more
general class of models in which o„(s) is non-
trivial. The upper limit on N(s), the number of
produced particles, may grow like Ws/m, so
there may be at most vs/m zeros of Q(z, s) for
fixed s. Since ail the coefficients cr„(s) are positive
no zeros wil. l lie on the positive real axis for
finite s; and since Q(0, s) = I, Q(z, s) will have
no zeros at the origin for finite values of s. Only
in the limit of infinite values of s may zeros col-
lapse to the z-plane origin.

For fixed s the zeros of Q(z, s) in the complex
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~ plane may be ordered according to their dis-
tance from the origin:

I z,(s)l -I z, (s)l - ' ' -
I z.(s)I. (6)

s, and using the Froissart bound

g... (s) &„C[ln(s/s, )]' (12)

g„(s) &

[ (
"}]„[lnln(s/s, )]",

C
g„,(s) & ln(s/so) in ln(s/so).R s

(6)

(7)

Proof of theorem I makes use of the derivative
form of Caratheodory's inequality":

Consider the function f(z) analytic for I zI&R(s)
with f(0) =0. Define A(r) to be the maximum of
Ref(z) on I zI =r, and assume A(R(s)}& 0. Then,

The circle around the origin in which Q(z, s) is
free of zeros has a radius R(s) =

I z,(s)I. R(s)
is shown by the following generalization of Khuri's
work to determine the bound on the total cross
section.

Theorem I": Theories or models satisfying
unitarity and the Froissart bound, and having
a multiparticle generating function free of zeros
inside a circle of radius R(s), satisfy the following
bounds for s sufficiently large:

on the right-hand side leads to the following bound

for n =1:

g, (s) &„' ln ln(s/s, ).C, (13)

where the Froissart bound has again been used
on the right-hand side. Use of Eq. (13) giving
an upper bound on g, (s) results in the bound

There is no physical content to the bound, since
it relates the unphysical free phase-space param-
eter to the radius of the zero-free region. More
interesting results are obtained for higher values
of n.

For n =2, double differentiation on the left-hand
side and application of the inequality on the circle
I zl =r= I/s~, p& 0, give the inequality

4

I 2g2(s) —g, '(s)+O(1/s~)I &

[ ]2 lnln(s/so),

(14)

2"+2n |R(s)
max „f(z) &, ', „+,A(R(s)). (8)

g, (s) &„[ '], [in ln(s/s, )]'.

For the case at hand, let f (z) = inQ(z, s). From
the definition of Q(z, s), f(z) satisfies the con-
ditions of Caratheodory's inequality inside I zI
=R(s). Thus

yn
max „ InQ(z, s)

„„In[ max I Q(R(s)e' ~, s) I ] . (9)
2"nn! R(s)

For a theory with only one particle type g2(s)
=g„(s}; for theories with more than one kind of
hadron, g, , (s)& g'2(s), so in either case, Eq. (15)
gives a bound on the elastic cross section in terms
of R(s).

For n& 2, application of Eq. (9) for higher val-
ues of n on a circle of shrinking radius r = I/s~
and use of the Froissart bound results in upper
bounds on all n-body production cross sections
in terms of R(s):

The inequality takes a simpler form for specific
values of n.

For n =1,
gs(s) ng (s)zn c-

m~ n=1 n

Q(z, s)

, in[max I
Q(R(s)e'~, s}I]. (10)

2'R(s)

g„(s),&„[ "]„[lnln(s/so)]". (6)

(i6)

The bound on the total cross section in terms
of R(s) follows easily from the bound obtained
in Eq. (15) on g„(s). Using only unitarity, Mar-
tin" has obtained the following inequality:

g, „., (s) & C ln(s/s, )[g„(s)]' '.
Consider the case R(s)& 1, applying the inequal-

ity on the circle I zI =r = I/s~, p& 0, a circle
shrinking to zero in the l.imit of large s. In that
limit the inequality becomes

23
I g, (s)+O(1/s~)I & In[ l+g, (s)+g„,(s)].

Choosing the phase-space parameter g, (s) so that
it does not increase as fast as g„,(s) for large

inequalities (15) and (16) together yield

C ln(s/s, }in In(s/s, )
tot s~m R(s)

These results conclude the proof of theorem
I, and emphasize the importance of nearest zero
of the multiparticle generating function. Inequal-
ities (6) and (7) follow strictly from the assump-
tions of unitarity and the Froissart bound. From
Eq. (7) one can see that a nonshrinking zero-free
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region in the large-s limit leads to the bound on

the total cross section

v„, (s) - C in(s/so) ln ln(s/so). (17)

This is essentially an improvement of ln(s/so)
over the Froissart bound. Even in the case of
R(s) shrinking slowly such that

R(s) & C[ln(s/s, )]' ', (18)

with e& 0 but arbitrarily small, Eq. (7) yields an
improvement of the Froissart bound.

B. Connection between zeros of approximate theories

and zeros of the true generating function

In the next chapter, a number of models will
be shown to have nonshrinking nearest zeros of
their multiparticle generating functions under
conditions on the interactions. According to
theorem I, such a property can lead to an im-
proved Froissart bound for the total cross section
in those models. However, one is interested in
improving the Froissart bound on the true total
cross section rather than the cross section in

some model of hadronic scattering.
This section gives a simple theorem explaining

how closely an approximate theory having non-
shrinking zeros must come to the true hadronic
production theory in order to restrict the shrink-
age of zeros for the ture multiparticle generating
function, such that the true total cross section
has an improved Froissart bound.

Consider Eq. (1}to define the true multiparticle
generating function with v„(s) the true n-particle
production cross sections. Let

N s)
Q(z, s) =1+ z"v„(s)

n=
(19)

define the multiparticle generating function for
some approximate theory, v„(s) being the approxi-
mate n-particle production cross sections.

Theorem II: If Q(z, s) has a nonshrinking zero-
free region with constant radius R in the l.imit
of large s, and if

(i) I v„(s) —v„(s)l - C[ln(s/so)]' '

(ii) ) v„(s)l - C' [ in(s/s )]
"~' ' ', n -3,

N s'.}

I Q(z, s) —Q(z, s)l = z" [v„(s)—v„(s)]

- R'(s)
I v„(s) —v„(s) I

N s)
+ R"(s)l v„(s) —v„(s)l .

n—

(21)
A lower bound for

~ Q(z, s)l on the circle R(s)
is found by applying the maximum-modulus principle
to the inverse of Q(z, s). Q(z, s) has no zeros
inside or on the circle

I zl =A, so

I
Q(Ze'~, s)l &&, &&0. (22)

Thus, [Q(z, s)] ' is analytic inside and on I zl =R,
having the upper bound 1/&. Applying the maxi-
mum-modulus principle to this quantity and in-
verting yields

appears on the left-hand side of condition (ii) by
use of the Froissart bound to restrict the growth
of the physical n-particle production cross sec-
tions, v„(s) & C[ln(s/'s, )]'.

The following proof of theorem II uses Rouche's
theorem's

If two functions, Q(z, s) and Q(z, s) are analytic
inside and on a closed contour C in the z plane
for fixed s, and I Q(z, s) —Q(z, s)l &I Q(z, s)l on C,
then Q(z, s) and Q(z, s) have the same number of
zeros inside C.

The generating functions defined by Eqs. (1)
and (19) are polynomials in z for fixed s, and are
thus analytic inside and on any closed circle about
the ~-plane origin. The contour C is chosen to
be the circle I zl =A(s), R(s)& A&1. R is the con-
sta.nt radius within which Q(z, s) has no zeros.
If it can be established that

I Q(z, s) —0'(z, s}l &I Q(z, s)I onl zl =A(s), (20)

then Rouche's theorem will guarantee that Q(z, s)
is free of zeros inside a circle of radius R(s).

Conditions sufficient to guarantee inequality
(20) are established by finding an upper bound
for the left-hand side of the inequality and a lower
bound for the right-hand side. The free phase-
space parameter, v, (s), may be chosen to be
identical for the approximate and true theories.
Using the definitions of the generating functions,
the upper bound on the circle I zl =A(s) is

A(s) & C[ ln(s/s, )]' ', (18)

e positive but arbitrarily small, then Q(z, s) has
a zero-free region with radius Q(R(s)e'~, s) &5, for R(s)&R.

Thus, if it can be esta.blished that

(23)

giving an improved Froissart bound for the true
total cross section.

The term I v„( s)l, rather than I v„(s) —v„(s)l,

N s)
[R(s)]'I v, , (s) —v„(s)l+ A"(s)l v.(s) -v.(s)l «,

n-

(24)
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(18)

Assuming Eq. (18), inequality (24) is minimally
satisfied under conditions (i) and (ii) of theorem
II. Thus, Rouche's theorem is satisfied within
a circle of radius R(s) & C[ln(s/s, )]' '. Since
Q(z, s) has no zeros inside this region, Q(z, s)
will also be free of zeros in the region. This
yields an improved Froissart bound on the true
total cross section.

Use has been made of the Froissart bound to
restrict the growth of the true n-particle cross
sections

g„(s) & o„,(s) & C[in(s/so)]', n &3, (26)

so that inclusion of cr„(s) in the left-hand side of
condition (ii) is unnecessary. In fact, if v„(s)
is known to satisfy the Froissart bound, then con-
dition (ii) of theorem II is completely unnecessary.

The proof of theorem II assumes that A(z, s)
has a nonshrinking region free of zeros as s- ~.
The same theorem can be proved under the weaker
condition that 0(z, s) has a slowly shrinking zero-
free region, such that

R(s) & C[ln(s/so)]' ', R(s)&R(s). (26)

The nearest zero of the true generating function
and the nearest zero of the approximate model.
can be tied together by conditions (i) and (ii) even
when the nearest zero in the model shrinks slowly
to the origin.

The proof with R(s) shrinking proceeds in the
same way as above, the only change being that
the lower bound on

~ Q(z, s)( is found on a circle
of shrinking radius. Conditions (i) and (ii) are
again sufficient to insure an improved Froissart
bound on the true total cross section.

Theorem II recovers a well-known result of
unitarity'~: If the Froissart bound is saturated
by a [In(s/so)]~ energy dependence, then the elastic
cross section must grow like [In(s/so)]'. This
follows strictly from unitarity using Eq. (16). The
result can also be seen from the conditions of
theorem II. If o„(s)~C[ln(s/so)]2 ' ", then a
trivial model with constant n-particle cross sec-
tions can be found satisfying conditions (i) and
(ii), insuring an improved bound on the true total
cross section. Thus, the only way the total cross
section can saturate the Froissart bound is with

then the conditions of Rouche's theorem will be
satisfied, giving Q(z, s) a zero-free region inside
~ z~ =R(s). R(s) determines the bound on the true
total cross section, and as pointed out in the
previous section, the Froissart bound is improved
as long as

R(s) & „C[in(s/so)]' ', e&0 but arbitrarily small.

the elastic cross section also saturating the bound.
There is no stipulation in theorem II that the

approximate theories must satisfy unitarity or
the Froissart bound. It is only necessary that
the approximate theories have elastic cross sec-
tions which roughly correspond to the true elastic
cross section asymptotically and have well-be-
haved n-particle production cross sections. This
opens up the investigation of nearest zeros to a
much wider class of hadronic theories which may
lead to an improved Froissart bound on the true
total cross section.

III. CONDITIONS FOR A NONSHRINKING

NEAREST ZERO

In this chapter, conditions are found on hadronic
scattering models guaranteeing a nonshrinking
nearest zero of the multiparticle generating func-
tion in the limit of large s. A general class of
multibody interaction models is discussed. The
sufficient conditions for multibody interaction
models are complicated, so to better understand
the sufficient conditions reduction to the case of
two-body interactions is studied.

A. Multibody interaction models

The study of zeros in systems having multibody
interactions is new to both statistical mechanics
and particle physics. " In a gas of molecules the
assumption of two-body interactions is physicall. y
justifiable. As the gas becomes sufficiently dilute
the effect of a third particle on the interaction
between any pair of particles should become small.
There is no such compelling physical justification
for strictly two-body interactions in hadronic
production. The study of zeros in systems having
multibody interactions is essential in dealing
with hadronic production models. The goal of this
work is to set up the mathematical tools to study
zeros in production models with general n-body
interactions.

First, one must define what is meant by an
interaction in multiparticle production. The def-
inition chosen here is motivated by the require-
ment that the interparticle potentials have pro-
perties similar to the intermolecular potentials
of a gas system. A reasonable procedure for
defining the potentials corresponding to a fII)'

multiperipheral model has been given by Lee.4

A generalization of his procedure will be used
here to define the interactions of general hadronic
production models.

The phase-space integral for the n-particle
production cross section is defined to be
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6f d~ n

o„(s}=2,2, 2
'' ', 2, 2

-(2&) 6 p, +p() —Q q; I &,(q„~,q, )l, (2 "I)

where 7.'„ is the production amplitude for two hadrons to scatter into n hadrons. The potentials are de-
fined by the production amplitudes integrated over transverse-momentum variables:

x(x } .x(» )e "'"~' ' '*"'= —
I 6 p +p -g q I

T' (q, . . . , q.)l .x x ~ ~ ql~ 4 qn 2
1 2s ~ (2wP (2x)' (28)

The variables x„.. . , x„are continuous, increasing functions of the longitudinal momenta, q, , . . . , q„.
For example, x„.. . , x„may be the rapidities of the produced particles. The factors y(x, ), . . . , y(x„) are
characteristic single-particle functions which have been included to al. low for a general phase-space shape.
The n-particle production cross sections are now given by a one-dimensional (longitudinal) phase-space
integral:

x.tx)= jg*, g*.g(g(*„,*.), )x(*,) x(x.)x """ (29)

By analogy to statistical mechanics, the n-body potential, U„, is defined to include general, multibody
interactions:

(20)

(p, (x, , x, , x, )+q),(x, , x, )+q),(x, , x, )+q), (x, , x, ).

The strictly three-body potential is found by subtracting the two-body potentials which were found ex-
plicitly above. Continuing this method, one can find by induction all k-body potentials. In principle, any
production amplitude may be reduced to multiparticle potentials in this way. In practice, we will be re-
stricted to a general class of amplitudes which lead to potentials satisfying reasonable boundedness and
falloff properties.

The one-dimensional 6 function remaining in Eq. (29} carries the s dependence of the n-particle pro-
duction cross sections. The presence of the ~ function poses a minor obstruction to the general proof
of a nonshrinking nearest zero. At this stage we must restrict the class of hadronic models to those
models in which the energy dependence of the & function can be transferred directly to the phase-space
integrals. For example, in a hadronic production model in which the produced particles are ordered in
energy or rapidity, it is convenient to choose x„.. . , x„ to be the rapidities of the outgoing particles.
Then, the n-particle production cross sections are given by"

n

Un(x, . .)x xn) = Q 9'( ("(,x ~ x x(g)
=2 1—il«' ' ' iP —n

The k-body interactions may be found by induction. " The two-body potential between particles with lon-
gitudina1. momenta x, and x, is found from U„, n»2, by letting all longitudinal variables other than x,.
and x, go to infinity. The remaining quantity is Q,(x, , x, ). The three-body potential among particles with
momenta x;, x, , and x„ is found from U„, n»3, by letting all other variables go to infinity. The re-
maining quantity is

""n x2

o„(s)= dx„, dx„, . dx, g(x, } g(x„)6(x, -a, )6(x„—Y+a„)e o""
0 0 0

where Y- lns. The s dependence of the n-particle cross sections can be transferred directly to the limits
of integration

ft ( x2

o„(s) = ' dx„ dx„ , ~ ~ ~ dx~g(x, ) ~ ~ ~ y(x„)e o" *&

0 0

Y Y

dx dx g(x ) ~ ~ ~ g(x )ent n 1 1
~ 0 Jp

(22)

using the symmetry of the potential U„under the interchange of particles and the fact that a„ is small
compared to Y. Such a simplification relaxes strict energy-momentum conservation, but will not alter
the s dependence of the production cross sections for potentials with reasonable asymptotic properties.
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The dynamics of the production models is contained in the interparticle potentials, U„.
Equations (1) and (32) define the multiparticle generating function for hadronic scattering. The potential

U„ is composed of multibody interactions, as shown in Eq. (30). The following theorem gives a set of
conditions on the potentials sufficient to guarantee a zero-free region in the limit of infinite energy.

Theorem III: For multibody potentials satisfying the boundedness condition

m

dx„, ' ' ' dx„g (-1) '" exp[ —U„„(x„.. . , x,+„)+U„„,(x„.... , xk, „)]
n=Q n (33)

where C and D are independent of s, and (ii) ) X(x)j -1 for all values of x, the multiparticle generating
function has a nonshrinking zero-free region around the origin in the complex z plane in the limit of large
s.

Proof of theorem III proceeds by defining distribution functions and deriving Kirkwood-Salsburg equa-
tions" in the presence of multibody interactions. The Kirkwood-Salsburg equations are used to verify
that the conditions of theorem III are sufficient to give a zero-free region, following the methods used
by Penrose to study zeros of two-body interaction models in statistical mechanics. "

The multiparticle generating function and the 4-particle distribution functions are defined by

~n Y Y

Q(z, s) = 1+g — dx, ~ ~ ~ dx„X(x,) ~ X(x„)e
"Q

'
Q

(34)

mY

dx ..X(x,)" X(», )e "'"'*'&n+ k

Pk( Xy e''e»kl ) I xQ k+1Q(Z SJ -Q fI1 4Q

with U„composed of multibody interactions according to Eq. (30). The Kirkwood-Salsburg equations are
derived using the relation

n 0, m~1, integer,
(-1)"

(36)

to write down the expression
(kn m

e "'" '"= g d* ' d* X(e) X(e )e """'"'"""'' (-()"
( )m=0 n-

Using the identity

dxk+, ' d~k+n -1"
1

X ~ t dXk+n+g
m=0 m

xk+n+m 1X(X ) ~ ~ ~ X(X )e k+n+m(xl . ~ xk+n+m)
k+n+ m

(37)

(- 1)" g
" (-z)" z

O
nlm1 „, nt m!

and Eq. (35) defining the distribution functions gives the identity

(39)

(39)

Equation (35) defining the distribution functions can be rewritten as

1
"

1e.t*„.. . , *.I *) = —, d*.„ Id»...x (*,) x(*...)

Xe -Uk+n X(xk ~ ~ ~ *k+n)(e -Uken(xk ~. . . , xk+n) Uk+n-1(xk ~ ~ ~ ' 'xk+n)X

(40)

Using definition (39) in place of e "n-"*k ' ' ' *k'" ' yields recursion relations among the distribution func-
tions,
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p (x„.. . , x, l )

1 1
d „, d*„„—dx„„„'f '*„„,(-() X(*,)'''X( *)d,, ; (x *+, )

n=0 ma=0
" ml

X (S-Uk+x(xk, . . . , xk+x ) Ukd, k(xk, . . . , xk+x))

1
k+1 k+m~k+fft-]. ~2& ' '

& A+at
m-0

I W I1»+m I i. .. i- Uk+ff(&gk ~ ~ ~ k&k+ff~+Uk+rl l~ 2k ~ ~ k k+n&

N-O

k=1, 2, . . . ,

P0=1, k=0. (41)

These are the Kirkwood-Salsburg equations for multibody interactions.
We are now prepared to prove theorem III, following the method of Penrose. '0 First, expand the log-

arithm of the generating function and each of the k-particle distribution functions in power series in z:

lnQ(z, s) = g z' b, (s),
1

Vs 1=0
(42)

p,(x„.. . , x, ( z) = Q n, ,(x„.. . , x,)z"'.
1=0

V(s) is the phase-space volume,

Y

V(s) = dx X(x).
0

The definitions of the generating function and distribution functions yield the relation

(44)

dx, p, (x, i z) =z —LnQ(z, s), (45)

and use of the power series expansions for p, and lnQ gives

(46)

The radius of convergence of the power series in Eq. (42) is

R(s) = lim inf j b, (s)~ (4 f)

The multiparticle generating function is free of zeros inside a circle about the origin with radius R(s).
A lower bound on R(s) for s large is established by finding upper bounds on the coefficients b, (s), or on
the coefficient functions n. . .(x,).

From Eqs. (34), (35), and (43), the values of the lowest coefficient functions are found:

n, k(x, ) =g(x, ),

n, =5

The higher coefficient functions are found from these lower ones by writing the multibody Kirkwood-
Salsburg equations in terms of the coefficient functions using Eq. (43):

(48)

l

X, ,(*„.. . , *,)= P —, d*.„ f dd„d„, , „(X„.. . , *„„)
m=0 mt

mfa

)(X ''')(X e k "&' ''' k+ ~ k+0-1 2' '' k+k+n
~-n=

(49)
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Conditions are sought under which there are upper bounds on the coefficient functions of the form

k,d-k ( 1 ' ' ' «(()! Bk,((-k

Such bounds hold for k =0 and for k= 1, d =1 from Eq. (48) and condition (ii) of theorem III with

&l.o=»

BO ) 5O

(50)

(51)

This establishes the bounds for all nonvanishing coefficient functions with d=1. By induction, the bounds
of Eq. (50) can be established by assuming for fixed k = 1, 2, . . . that bounds exist for d= M —1, and proving
their existence for d=M. If the bounds of Eq. (50) hold for fixed k and d=M —1, then

n (g ~ )I ~a! m+k-l. N-k-m~ 1& ' ' ' s "m+4-l&~ m+k-l, hf-k-m' (52)

Letting I =M —k in the Kirkwood-Salsburg equations for the coefficient functions and using Eq. (52) gives
the bound

-k

I a. ,. .(x„.. . , *.)(l-, d* fd .B*„
m=0

(- 1) e k+n("1 ' "((+n~+e((+„-z(&z ~ ~ ~ .*((+„) (52)
n

Condition (i) of theorem III l.eads to the upper bound (58)

Ck Dm
~(Ina, e, («„.. . , «, )I k+ m-l, N-k-m

m=0

(54}
In deriving the multibody Kirkwood-Salsburg equa-
tions the variable x, has been singled out for spe-
cial treatment. By singling out x„.. . , xk in the
same manner, k inequalities such as Eq. (54}
can be derived. !n», ! is less than the geo-
metric mean of the k different right-hand sides,
resul. ting in the bound

Using Eqs. (46) and (4'I) yields the lower bound

on the zero-free region;

R(s) = lim inf! b, (s)! ' '~ (eCD) '

Note that as long as C and D appearing in con-
«tton (i) of theorem III are independent of s, the
radius of the zero-free region has a lower bound
independent of s:

k D
Isa s k( jt '«'', «k)l C B~,m, s,

m-O m'
R =lim R(s)~(eCD) ', (60)

Af -k Dm
& AC p ( ((+ m-l. e-k-m ((,Jl (('-

m= 0 mf,
(56)

The bounds of Eq. (52) follow by induction if the
bounds B» satisfy Eq. (56) for all other positive
values of k and I. These conditions can be satis-
fied, and the best solutions to the conditions are
the upper bounds

(55)

Thus, the bounds of Eq. (52) hold for d=M if the
upper bounds satisfy the inequality

1
e C(s)D(s) ' (61)

and theorem III is proved.
The proof of the theorem also shows how a

slowly shrinking nearest zero may occur. If in-
stead of being constant in s, C, or D appearing
in condition (i) of theorem III is an increasing
function of s, then R(s) will be bounded below by
the decreasing function

k(k+1)' ', C', k=0, 1
kg )) gk+l-l y)2 (57)

The lower bound on the radius of convergence
is established using the particular set of upper
bounds

B. Alternative conditions on the potentials

The crux of the proof of a zero-free region in
theorem III is condition (i) on the multibody po-
tentials. Unless the multibody potentials have a
particularly simpl. e form, the content of con-
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dition (i) is not transparent. In this section, phys-
ically clearer conditions sufficient to guarantee
a nonshrinking nearest zero are discussed.

Condition (i) contains implicitly the conditions
of stability and regularity" of the potentials for

multibody interactions. Mu ltibody stability and

regularity conditions can be individually separated
out of condition (i) by factoring all potentials which
are not functions of the integration variables
+0+].) ' ' ' y +0+n '

X(x ) ''X(x )& ''''' '"~ ~ ~ 2'''' '*~ dx ''' dx1 k &+1 k+ m

—1 g xp+~
''' g xg „exp p hazy S &'0 62m+n m

ft= 0 SC(x2 ~ . ' ' +k+0

where, in the sum over S, S must contain one or more elements of (x~„, . . . , x~+„j. The expression in

the first set of brackets occurs in all terms of the series and involves interactions solely among the first
k particles. The remaining potentials inside the integrals include all possible choices of variables
x„.. . , &„„containing at least one element of the set x„„.. . , x„,„.

The finiteness of the expression in brackets in Eq. (62) for all values of the variables x„.. . , x, is the
multibody extension of the stability condition. Using the condition that the characteristic functions, X(x),
have bounded moduli, a sufficient condition for multibody stability is

U, (x„.. . , x~) —U, ,(x„.. . , x, „x„„.. . x~)o- —kB (62)

for all values of x„.. . , x, , 1 ~i ~k, with B independent of s.
The finiteness of the integral in Eq. (62) leads to the multibody regularity condition. Greenberg" has

derived a set of conditions sufficient to guarantee the convergence of the integral, one of which is inter-
preted to be the multibody regularity condition:

(i) the n-particle potentials, Q„, are continuous and bounded below for all values of their arguments,
(ii) 4,(x)-~ as x-0,
(iii) multibody regularity:

lim sup g —, l dx~„~ ~ ~ dxz, „exp- rp(x, , S, x„„.. . , x„„)—1 &~,
v() ] y ~ ~ ~ y $ $7 f+ ] ~ ~ ~ I

(64)

assuming as before that the characteristic functions have bounded moduli. Note that Greenberg has suc-
ceeded in rewriting the regularity condition in a form which is similar to the two-body regularity con-
dition. In particular, every integration variable appears in the potential, and the validity of the regularity
condition depends on the falloff of the n-particle potentials at infinity.

To illustrate the content of Eq. (64), consider the case where the set of variables x„.. . , x„consists
only of x, . Further, assume that the example has only two-, three-, and four-body interactions. Then,
Eq. (64) requires that

) 1
sup dx [e ~2 "~ *a —I[+—' dx dx (e "3 *&'*3'*3~—I(+ — dx dx dx I

e ~4i*l'*2'"3'"4 —I[ &
2 2f 2 3 3f 2

1

This simplified example makes it clear that multi-
body regularity requires the potentials to go to
zero sufficiently fast as each variable becomes
large. This kind of fast decrease of multibody
potentials is precisely what Lee found for poten-
tials corresponding to the Q' model, and is not

an unreasonable condition for- the potentials of
hadronic production models.

It is not difficult to construct multibody inter-
action models which satisfy the regularity con-
dition. A simple example is a model with multi-
body interactions which decrease exponentially
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as any of its variables becomes large:

Pk(x~, . . . , xk)=fke & k (66)

the model has the apparent behavior

gk(s) s Y k = [ C In(s/so)]'. (68}
One can also establish that such models do not

have a trivially improved Froissart bound, or
more precisely, that o,(s) has a sufficiently gen-
eral behavior in such models. ok(s} is given by

(O'I)o,(s) = —, dx, dx, g(x, )g(x, )e
~ OI

If the variabl. es x, and x2 are the rapidities of
the elastically scattered particles, the character-
istic functions are constants, and the two-body
potential satisfies the regularity condition, then

Such an apparent bound is general enough to allow
saturation of the Froissart bound. It is only when
one studies the detailed behavior of the nearest
zero of the multiparticle generating function that
one finds the apparent bound on the cross section
can be improved.

To summarize the supplementary conditions
giving a nonshrinking nearest zero in a system
with multibody interactions, we state the following
theorem.

Theorem IV: The multiparticle generating function has a nonshrinking zero-free region around the z-
plane origin given the following conditions:

(i) ~X(x) ~& 1 for all values of x;
(ii) the n-particle potentials, iti„, are bounded below and continuous for all values of their arguments;
(iii} pk(x)-~ as x-0;
(iv) multibody stability:

Uk(xi, . . . , xk) —Uk 1(xi( ~ . . t xi k, xiii, . . . , xk} —kB

for all values of x„.. . , xk, 1~i ~k;
(v) multibody regularity:

1
lim sup

&(S) ~ f«i ~ ~ ~ . , «k) n=X +t dgk+~ ' dxk+~ exP
t«l ' ' «$ -g «)+i ~ ~ ~ ~ «k)

It is possible that a weaker set of sufficient con-
ditions may be found insuring a nonshrinking zero-
free region. Theorems III and IV constitute a
first attempt to give a set of reasonable conditions
constraining the nearest zero of the multiparticle
generating function for models having multibody
interactions.

C. Simplified interaction models '

To clarify the physical content of the sufficient
conditions for a nonshrinking nearest zero, it is
helpful to consider the above conditions in the
case of strictly two-body interactions. In that
case, Eq. (30) is replaced by the definition

U„(x„.. . , x„)= Q (pk(x, , x,). (69)

In production models with the n-particle production
amplitudes independent of transverse momenta,
the two-body assumption corresponds to nonplanar

production diagrams with propagators between
all outgoing particles of the form

K(x, , x, ) =e ( I0)

Hadronic models having this general two-body
factorization of the longitudinal production am-
plitudes have recently been studied by Arnold
and Thomas. "

In the case of two-body interactions, condition
(i) of theorem III reduces to the condition

g+

x [ ( K(x„x;)—1~ +O'D . ("Il)
i=k+1

This condition immediately reduces to the well-
known stability and regularity conditions for two-
body interactions, giving the following theorem.

Theorem V: The multiparticle generating func-
tion
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S
R( )-C(1

So

(74)

Theorem V can also be proved directly using
the two-body Kirkwood-Salsburg equations and
either the Banach space proof of Ruelle' or the
induction proof of Penrose. "

An even more intuitive production model results
from the further restriction to nearest-neighbor
two-body interactions. The nearest-neighbor
assumption requires that the longitudinal produc-
tion amplitudes factorize in the form

1 2
—T„(x„.. . , x„)
S

=g'"K(x, -x,)K(x, —x, ) K(x„,—x„) .

(75)

Q(z, s)
nz

= 1+ — dx ~ dx K x, , x))
n= 1 4

x X(x,) ~ ~ II(x„)

(72)
has a nonshrinking zero-free region in the limit
of infinite s under the following conditions:

(I) I X(x)l -I,
(ii) two-body stability:

[K(x)I =C(s)& ~, for all values of x,

(iii) two-body regularity:

r I K(x) —1 i
dx = D(s) & ~.

Conditions (ii) and (iii) guarantee the va. lidity
of condition (i) of theorem III" in the case of two-
body interactions. As in theorem III, if conditions
(ii) and (iii) are weakened to the condition

C(s)D(s) & C ln— (73)
0

&-~ but arbitrarily small. , then the zero-free
region has the slowly shrinking lower bound

~ ~ ~
'JJ

FIG. 1. The top figure shows a chainlike multiperi-
pheral production mechanism with the exchanged quan-
tities unspecified. The produced particles have ordered
rapidities y&, . . . , y„, shown schematically by the
length of the outgoing lines. The lower figure is the
analogous one-dimensional gas model, the positions of
the gas molecules on the line being analogous to the
rapidities of the produced particles.

Such an assumption corresponds to the simple
multiperipheral production model shown in Fig.
1, with the propagators of the exchanged objects,
K(x), unspecified. This corresponds precisely
to the generalized Chew-Pignotti model studied
by DeTar."

The conditions for a nonshrinking nearest zero
in the nearest-neignbor model are even simpler
than those for a general two-body model. In the
nearest neighbor case, the Kirkwood-Salsburg
equations can be replaced by simple recursion
relations among the distribution functions:

p, (x„.. . , x~I z)

=zlzz(x, )K(x, —x,)p, ,(x„.. . , x, I z), k~2.

(76)

Applying the induction method of Penrose leads
to a final theorem. "

Theorem VI: The multiparticle generating function

n Y

Q(z, s) = I+ g —, J dx, ~ ~ dx„g(x, ) II(x„)K(x, —x ) ~ ~ ~ K(x„„—x„)
0

has a nonshrinking zero-free region in the limit
of infinite s given the conditions

(I) I x(x)l - I,

(ii) I K(x)I = C& ~, for all values of x.

The models discussed above do not exhaust the

list of models in which the multiparticle gen-
erating function can be shown to have a nonshrink-
ing zero-free region. Any of the proofs given
above can be extended to include cluster production
models. " All that is needed is to consider a pro-
duction mechanism in which g, (s) has the same
form as above. That is, clusters are not pro-
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duced at the elastic vertices, but may be produced
at any internal vertex. In such cluster models
the production amplitudes should factorize into
kernels which depend on the rapidity differences
between produced clusters. With conditions on
the kernels identical to those on models already
studied, the cluster models can be shown to have
multiparticle generating functions with nonshrink-
ing zero-free regions.

IV. CONCLUSIONS

Conditions have been investigated leading to a
nonshrinking zero-free region for the multipar-
ticle generating function around the ~-plane origin
in the limit of infinite energy. Such conditions
have been shown to hold in a number of nontrivial
hadronic production models. Equally important,
the mathematical techniques of statistical. mechan-
ics have been shown to provide powerful tools for
the study of properties of hadronic scattering.
While this work has concentrated on the induction
method of Penrose, "the Banach space techniques
of Ruelle' can be used with equal effectiveness.

The importance of a nonshrinking nearest zero
has been pointed out by Khuri": In theories sat-
isfying unitarity and the Froissart bound, this
property leads to an improved Froissart bound,
as well as bounds on all. n-particle production

cross sections. It is also pointed out that a theory
which roughly approximates the true elastic scat-
tering and has a nonshrinking nearest zero can
lead to an improved bound on the true total cross
section.

The sufficient conditions for a nonshrinking
nearest zero in multibody interaction theories
are not physically simple. It is only in the re-
duction to two-body interactions that the physics
is apparent. However, such multibody conditions
constitute a first step toward understanding gen-
eral theories with nonshrinking zeros, and define
a class of models which may be useful in studying
the gas analogy. The ultimate goal of this ap-
proach would be to derive the sufficient conditions
for a nonshrinking nearest zero directly from the
axioms of field theory. This is clearly a difficult
problem, which must await further study.
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