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Magnetic moments of charmed baryons. II
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Assuming that the magnetic moment operator is a tensor transforming as the (15, 3) mem-
ber of a 63 representation of U(8) or SU(8), we have compared the magnetic moments of a11
the baryons belonging to the 120 representation. The moments of the conventional particles
like the SU{3) decuplets or octets stay unchanged. The charmed-baryon moments are ex-
pressed in terms of the magnetic moment of the proton.

I. INTRODUCTION

In a recent paper' the authors calculated the
magnetic moments of the charmed baryons assum-
ing that the magnetic-moment operator transforms
as the charge operator in U(4) symmetry. There
we have suppressed the intrinsic spin of the parti-
cles as a first step. However, a more realistic
approach would be to incorporate the intrinsic spin
of the particles.

It is well known that similar extensions have
been achieved earlier, when Gursey and Radicati
and, independently, Sakita'first proposed to ex-
tend SU(3), the internal symmetry group, into
SU(6) to give every particle in this classification
a definite st.n. It has been found by Pais' that
SU(6) gives the correct D/F ratio for the baryon
current. Taking this group as the basis of the
baryon classification, Beg, Lee, and Pais' calcu-
lated the magnetic moments of the basic baryons
belonging to the 56 representation. They conjec-
tured there that the magnetic-moment operator
transforms as the (8, 3) member of a 35 represen-
tation, and obtained in the effective low-frequency
limit the electromagnetic moments of all the par-
ticles in terms of the magnetic moment of the pro-
ton.

Since the discovery of g particles, ' many phys-
icists are hoping that more charmed particles are
about to emerge. The enlarged group SU(4), ' with
a fourth quark c, it is hoped, should enable us to
answer many previously unanswered questions and
understand all the recent particles showering in as
new discoveries.

There have already been suggestions' put forward
to extend SU(4) symmetry to SU(8), to incorporate
the intrinsic spin of the particles. This group has
been used to deduce spin-dependent mass equations
to predict the masses of the charmed baryons.

In our work, we have assumed that the classifi-
cation is given by U(8) representation. As an ex-

tension of the work of Beg, Lee, and Pais, ' we
have assumed that the magnetic-moment operator
transforms as the (15,3) member of a 63 repre-
sentation [Young tableaux specification (2111111)J.
The magnetic moments are finally expressed in
terms of the magnetic moment of the proton.

In Sec. II, we have constructed a tensor B„~~
which should represent the group of particles
given by the 20 representation of U(4) with spin —,

'
and the 20' representation with spin —,'. In Sec. II,
we have constructed the most general currents.
We have evaluated the magnetic moments in Sec.
IV. In Sec. V we have discussedour results.

II. U{8)OR SU(8) CLASSIFICATIONS OF THE BARYONS

Tne enlargement from U(4) to U(8) group permits
us to place both 20 and 20'representations of U(4)
into the same irreducible representation 120 of
U(8). The representation 120 is totally symmetric
in terms of the tensor indices. If we now express
120 in terms of the U(4) SU(2) indices, where
SU(2) should be the group of the intrinsic spin of
the particles, we find

120= (20, 4)+ (20', 2).

The symbol (m, n) now stands for a m dimensional
multiplet under U(4) or SU(4) classification, and
simultaneously the multiplet is also an n-dimen-
sional representation of SU(2). Thus the 120 multi-
plet stands for 20 U(4) totally symmetric spin —,

'
and 20' spin s with U(4) mixed-symmetry particles.

We are aware of the fact that the totally sym-
metric representation as that of Etl. (1) has the in-
trinsic problem of statistics. To improve the situ-
ation we have to introduce different colored quarks
as suggested by Gell-Mann. ' However, we will not
concern ourselves with such questions. This may
be considered in a future extension of the calcula-
tion where one will also include the colored quarks.
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The totally symmetric tensor which represents
the 120 multiplet is given by B»c, where A. , B,
and C stand for' the pairs (p, , a), (v, |1) and (p, c),
respectively. The Greek indices stand for the
U(4) labeling, where all of them run from 1 through
4, whereas g, b, c, etc. are used to express the
SU(2) labeling, which runs from 1 to 2. We use for
U(3) or SU(3) the labeling i,j,k, etc. , which runs
from 1 through 3. The baryon multiplets are now

given by

BABc Bpv p; abc

~20
Bp v pXgbc

lg 20t mO' 20+ 2( abxcB(p vip+ bcXd~(vpl 2+ ~ csx11B(pp)v)

In Eq. (2) we have put for the 20 representation,

(2)

Bp„p= 525t5pd))2+ (525~6p+ 525'„5/p+ 5p5„'5p)$)g '~ + (5„'5„l'+5„5t5 + 5„6„5')T,*~'l + 5p5„Ops~'~.

The detailed explanation of the symbols in Eq. (3) can be found in paper I of the present work. ' The quan-
tity B'„'„ is the baryon mixed tensor and is given by

1
Bfpplu

= 5I151 5@(12)y+~(5I15u5p 5p51 52)Sly + ~(25'5'5'+ 5'5'„5' —5 5'5 )TI) I+ ~(6'6' 5' —5'5'5') T)' ~ (4)

X222 N-3/2 7

(5)

where u,. —s are the ith spin states. The symbol
X, stands for spin- —,

' states, and is also normalized
to the value 2, the total number of the states. We
set

X,g
= vg//2 and X2 = v 1//2 ~ (8)

Again, for the detailed explanation of the symbols
see the preceding paper CJ I.' In Eq. (2) the states
X„,stand for the totally symmetric SU(2) tensor
representing —,

' —spin states normalized to 4, the
dimension of the representation (see also Beg
et al. '). We can write

1 1
X ill 3/21 X 112 ~ 1/21 X122 ~ -1/2

J"'=J"'(20, 2o) +J"'(2o, 20')

+J'" (20', 20)+4„" (20', 20'), (8)

where J"„'(m,n) means terms in which B B„ap-
pears with m and n being the dimensionality of the
representations of U(4). The first term comes
straightforwardly as

J~ (2o 20) = 25'& XX&2/2(&oB2o'B'K:p+ 2go5".& BB&2o)

+l~: &x~x& /.~.Bl."'Bl',.
To obtain the final form of the equation (9), we
have used the abbreviations

gAP gp gg
A K g

Substituting the expression of the tensor B from
Eq. (2) into Eq. (7), we obtain

Again v, —s are the ith spin states. In Eq. (4) e„
is the Levi-Civita symbol in two dimensions.

The SU(8) classification is similar and keeps
everything discussed until now unchanged. We have
just to remember that in contrast to U(8), the
mixed tensors T"„have to be traceless in SU(8).

&XX&2/. =X "X.2c

&X+X& / X ~ X

(lo)

(11)

(12)

III. CURRENT TENSOR

We can now construct the most general mixed
tensor, which we would call the current tensor, by
contracting just a pair of B and B. We find, due to
the symmetry of the indices of B, it is given by

A~ AtBC Ai DBC
~A AB @ABC+ go~A B BDBC &

where

They have been introduced by using the following
identity:

(13)

in actuality we have expressed J"„(20,20) in terms
of two terms, the first part being the (15+1,1)
member of a 63 representation and the second be-
ing the (15,3) member of the same.

Using the symmetry relation mentioned in CJ I
[Eqs. (14)-(lV) there], we find
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J"'(»', 0'}=-'5;& XX&„.[~(B(»'"B(")—B p."»B'") )+2g 6 (B(V) B-' „-B(p;)-g„"„,)]

i & X X&, .[B,.»)"B(".).+5B(.'")"B('„' „],

where V=J"„(co/6~+moo", n)Q„", (2o)

&XX&,/. =X X. an«X~X& /. =X ~.'X,.
We should notice that the second term jn (14) does
not have any g, dependence. Such a term vanishes
because of the tracelessness of cr.

For the cross currents we find

(14')

A( } 3 / / & Ro B(( o)p (15)

In the equations (15) and (16), we have used the
abbreviations

-obc ~C
x X3)2O'Xy)2i = X &g&gyXc (17)

( X1/2 +X3/2& ~ X ~CXdoo (18)

It is worthwhile to notice that both J'"„'(20,20')
and J"„(20',20) are traceless. On the other hand,
only the second terms of the currents J„"(20,20)
and J„"'(20',20') are traceless. We should not be
surprised by this outcome because we are express-
ing U(8) multiplets in terms of the U(4) and the
SU(2) contents and since expressions like o are
traceless, we are automatically led to such re-
sults. More generally, however, out of Eq. (7) we

get the condition of tracelessness as

++ 8go= 0

It is worth mentioning at this stage that in
J„"(20',20') [Eq. (14)] the first term, which in-
cludes the (15, 1}member of a 63 representation,
contains only +-type current, whereas the second
term, which is a (15,3) member, contains both D
and E types of currents for the baryon octets [in
SU(3) sense] whose ratio is —,'. This follows direct-
ly from the expansion of the terms within the
square brackets.

M(20', 20) = 3POmo ( Xl/2o'Xl/2&B20 B pgp ~

(24)

Let us now write, for the expectation values of
the magnetic moment of a particle Xbetween the
maximum z component of the spin, p(X); that is,

q(x) =(x;J,J.=JIMlx'J J.=J&. (25a)

For the transition magnetic moment between X and

P, assuming X belongs to the 20' representation,
and Yto the 20 representation, we write

(ylqlx& =(I;—,', —,'lMlx; —,', —,'&. (25b)

Then we can find all the magnetic moments and the
transition moments by using Eqs. (21)-(24).

A. 20 representation

We find, for the (10,0) members,

o~(&*")= V(~') =u(I'*') = V(N* ) = --u(I'* )

where e, and m, are two arbitrary constants and
n=Qxe, Q being the momentum of the baryon and
e is a polarization vector perpendicular to Q. We
have intentionally kept the constants e„m„p,
and go (the last two appearing in J"„)arbitrary. In

Eq. (20), P is the electrostatic potential.
If we write the component of Eq. (20) which con-

tributes to the magnetic moments as M(m, n) be-
tween the n- and m-dimensional representations
belonging to U(4), we find

M(20, 20}=p m,n (XoX&,/, B(oPB'„o, Q„', (21)

M(20', 20') = - vp, mon. ( XoX&,/,

x (B(»)ohio' 5B(po)pro' )qK

(22)

M(20, 2o') = opomon & Xo/oo'Xl/o& oo JK&)p@p&

(23)

IV. MAGNETIC MOMENTS
=-V(="' )=-u(II )=V(P) (26a)

As Beg, Lee, and Pais'have done, we make the
assumption that the magnetic-moment operator
transforms like the (15,3) member of a 63 repre-
sentation of U(8). Under this assumption, the ef-
fective low-frequency limit of the electromagnetic
vertex of the baryons may be written as

For the sextuplet (6, 1) members, we get

o p(C f ') = p(Ci ) = p(S' ) = g(P )

(26b)

(27a)
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v(ci') = v(s*') = v(T*'& =o .
For the triplet (3, 2) particles, we find

~v(x„" ') =v(2P„+)= v(x,"+&=v(P).

Finally, for the singlet (1,3), we have

2 v(ft*")= v(P).

(28)

We can easily see that the magnetic moments sat-
isfy the relation

v~(x )=Qx'v(P). (30)

B. 20'representation

For the baryon octets (8, 0), we get

—lv(n) = v(z') = —-', v(=') = —3v(z-) = —3v,(=-)

= -v(&') = 3v(~') = v(P).

We find for the sextuplet (6, 1) particles

sv(cl ') = 2v(c—'1&- 2v(s'-) = 2v(~—') = v(P)

(31)

(32a)

v(ci) =v(s ) =0 (32b)

For the contragredient triplet (3, 1), the moments
are given by

v(c:)= v(&') = v(&') = sv(P).

For the triplet (3, 2), we have

2v(x.")= v(x;) = v(x.') = v(P).

(33)

(34)

C. Transition moments between 20'and 20 representations

The transition moments between the (8, 0) and
(10,0) members are given by'

&N" lvlP& = -&I'*'lvl&'& =&~'I vis& = 2&1'*'lvl&'&

It also comes out very easily, as in (35'), that

(36)

Finally, the nonvanishing transition moments with-
in this multiplet, with spin states J, = —,, are

&z'lull'& =-&cilvlc:& =&s'lvl4'&

= sv(P).

For the above transition moments the following re-
lation is also satisfied:

&xlvl» =&I'lvlx&

&I lvlx& =&xlvl».

All other transition moments between the (8, 0) and
the (10,0) members are zero.

The only nonvanishing moments between the trip-
let, (3, 1), of the 20' representation and the sex-
tuplet, (6, 1), of the 20 representation are

&c*'lvlc.'& =-&s*'lvla'& = lv(P&. (38)

Equation (3'I) is also valid for such transitions.

V. CONCLUDING REMARKS

We have started with a general group U(8) and
classified the particles in terms of U(4) 8SU(2)
specifications, where U(4) gives us the internal
symmetry and SU(2) incorporates the intrinsic spin
of the particles. Then, assuming that the magne-
tic-moment operator transforms as the (15,3)
member of a 63 representation, we obtained the
magnetic moments of all the baryons in terms of
the magnetic moments of proton V,(P). The SU(3)
decouplet and octet magnetic moments come out in
the present case to be the same as those of the
SU(6) calculation of Bbg, Lee, and Pais. ' We have
also determined the magnetic moments of the
charmed baryons. These moments would be useful
if such particles exist.

It is worthwhile to mention that the transition
from U(8& to SU(8) can be achieved by replacing g,
from the moment expressions with Eq. (19). A
glance through Eqs. (21)-(24) reveals that the M
operators do not depend on g, at all. Hence the
results obtained are also valid for SU(8).

It would be quite interesting to see whether the
introduction of colored quarks will have any in-
fluence on the magnetic moments. This would be
something worth studying, because in the real
world we need to introduce them to incorporate
the correct statistics for the baryons. This point
is now being pursued by the authors.
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