PHYSICAL REVIEW D

VOLUME 13, NUMBER 2

15 JANUARY 1976

Charge screening and mass spectrum

J. A. Swieca*
Department of Physics, New York University, New York, New York 10003 1
(Received 19 May 1975)

A general connection between the existence of charge sectors and the mass spectrum is established in Abelian
gauge theories in a space-time of dimension larger than two. The exceptional role of two-dimensional space-

time is related to Coleman’s “quantum soliton.”

Currently a great deal of interest is being
devoted to solutions of nonlinear field theories
in their classical,’*” semiclassical?®*® and fully
quantized?*"® aspects. A typical feature of those
solutions is the appearance of sectors associated
with identically conserved currents, i.e., of
charges that are not zero only because of the
existence of long-range states. In this paper
we show that in a space-time of dimension larger
than two identically conserved currents lead to
zero charge (no charge sectors) unless there are
zero-mass states in the theory. This result gen-
eralizes what has been known as the charge-
screening effect® in connection with the Higgs®
and the Schwinger'® models.

The failure of the general proof in two dimen-
sions allows for the existence of sectors as-
sociated with identically conserved currents in
theories without zero-mass states as in the Gold-
stone-Jackiw® and Coleman® recent proposals.
The peculiar feature of two-dimensional space-
tiine arises from the fact that in this case any
conserved current can be derived from a local
potential, as long as there is a mass gap, being
in this way identically conserved.

Consider an identically conserved current

jh=9,F" (1)
where in two dimensions we have
F By _ €“v¢ . (2)

We wish to know under which conditions will there
be sectors corresponding to nonzero values of the
charge formally given by

Q=[ fax. 3)

From Gauss’s law we know'! that the charge
sectors, if they exist, will correspond to long-
range states, i.e., states that cannot be obtained
by applying local charge-raising operators to the
vacuum. What we can show is that the existence
of charge sectors is incompatible with the as-
sumption of a mass gap in the theory. In other

13

words, a long-range charged states imply the exis-
tence of massless photons. Conversely, whenever
the “photons” acquire a mass (via a Higgs mech-
anism or any other) the charge is screened.

The proof goes as follows: Suppose there were
charged states in a theory with a mass gap and
which is asymptotically complete where (1) holds.
Consider a charged one-particle state |p). For
simplicity we take spin-0 states, the generaliza-
tion to higher spin being straightforward. With

(pli* ) p"=(p+p')G(1), t=(p-p')* (4)
(PIF*)[p")y =[(p=p W (p+p")"
—-(p+p)(p=p)1F(t), (5)
we get from (1)

(=i €8, (6)
The existence of a nonzero charge implies there-
fore that the form factor of F*” develops a pole at
the origin. Although this could be taken as an in-
dication for the presence of zero-mass particles
in the theory, we should remember that the usual
analyticity structure of the form factors depends
on the locality of the interpolating charge field
(with respect to F,,), an assumption one cannot
make here.

A more detailed investigation of the connection
between the pole in (6) and the mass spectrum of
the theory is required: We show that in space-
time of dimension larger than two the pole violates
the locality of the F*” field if there is a mass gap.

To see that let us take the commutator

(p=0l[F%(x,0),j'(g)]lp=0)=C(x), ("

where there is no summation over ¢, and in a
more rigorous treatment we would have taken nor-
malized states with momentum centered around
zero instead of the improper states 12=0> . Inan
asymptotically complete theory without zero-mass
particles there is necessarily a mass gap between
the one-particle hyperboloid and the continuum of
states in the charge-one sector. We choose our
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test function g to be of the Schwartz class with its
Fourier transform having the following properties:

g(p)=0, |p,/>06, 6<massgap, (8a)
g(p)=g(-p, (8b)
g(0)=1. (8¢c)

Locality of the F*” implies that C(x) goes to zero
faster than any inverse power of |x|, since gis of
the Schwartz class

IC(x)|< I%‘F for any k. (9)

Because of support property (8a) of g only the one-
particle intermediate states contribute to the com-
mutator (7) so that

. ipey G

xg(p, (_p_2+m2)‘/2—m)p‘2, (10)

where m is the mass of the charged particle.
The asymptotic behavior of (10) for large |x| is
given by

i2
C({)”iGZ(O)fdgeie'z.?pT

7m0 (n/2)

= ~iG*0) |x|n+2 (nxiz - I£|2)’ (11)
where n+1 is the space-time dimension. It is
clear that for any space-time dimension larger
than two (11) is only compatible with (9) if G(0)
=0, that is, if there are no charge sectors.

A few remarks are now in order. Our proof is
geared to Abelian gauge theories where F*¥ can
be safely taken as a local field. In the non-Abe-
lian case the F"” carry charge (color) themselves
and will in general be nonlocal in the physical Hil-
bert space. However, even in a non-Abelian gauge
theory some conclusions can be drawn: A quantum
analog of ’t Hooft’s magnetic monopole solution’
will lead to sectors labeled by a magnetic charge
associated to the current

kF=0,efVOPFIP e

where a is the color label and ¢ the Higgs field.
Since it is color neutral €”"?°F?%$® should be a local
field, and therefore the existence of magnetic sec-
tors implies necessarily the presence of massless
“photons.”

We believe that by exploiting the locality of
color-neutral composite fields a more general
connection between the existence of color sectors
and the mass spectrum of theory should follow.
This would be of some relevance for gauge theor-
ies of “quark confinement.”'?

The reason we could not obtain any result in two

dimensions is clear: In this case in any massive
theory with a conserved current we can always
introduce a local (with respect to itself) field

—p(x)= %’ f J (ko )], (12)

which acts as a potential for the current,'® i.e.,
with (2), Eq. (1) is satisfied. The existence of
(12) as an operator-valued distribution follows by
using arguments parallel to those which establish
the existence of charges in local theories with a
mass gap.'* The crucial point is that
(0| o(f)o(f)|0) is finite, what follows immedi-
ately from the current-current two-point function.
If the massive theory has a scale-invariant high-
energy asymptote the Schwinger term will be fi-
nite (as in the Thirring model), and therefore by
an appropriate choice of 8 in (12), ¢(x) will satis-
fy canonical equal-time commutation relations.
In this case, assuming the charge is the only in-
ternal degree of freedom in the theory (the cur-
rent is irreducible in every charge sector), we
expect

O¢=F(¢), (13)

with F(¢) defining a superrenormalizable inter-
action. If, furthermore, there exists a charge-
raising field in the theory, local with respect to

j * (although of course not with respect to ¢) im-
plying a conventional additive charge sector struc-
ture,' the validity of (13) in any charge sector
leads to

F(¢+Z—7T):F(¢). (14)

In this way we are heuristically led to Coleman’s
relation between the sine-Gordon and massive
Thirring models* and its trivial generalizations:
For the superrenormalizability of the theory re-
quiring the highest Fourier component of (14) to
have an angular frequency less than V87 we may
for B< V' 87/n introduce besides the basic sinB¢
interaction some higher harmonics corresponding
to the existence of asymptotically vanishing per-
turbations other than the mass term, such as,
for instance,

%i_g(l)s'ﬁz/‘”[: P+ €)Pp(x+ €) : : Px)P(x):

=Pl + €l + €) :  P(x)Plx) )]
(15)
It should be clear from the preceding remarks
the exceptional role played by two-dimensional
field theories in the construction of charge sec-
tors associated with identically conserved cur-
rents in theories with a mass gap. One also real-
izes that in the Schwinger model'° the screening
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occurs not because of Gauss’s law [Eq. (1)], which
is always trivial in two dimensions, but through
the coupling of the electric potential to the “elec-
tron” field. The absence of such a nonlocal cou-
pling in the massive Thirring model allows for
the locality of the Thirring field with respect to

itself as well as for the existence of charge sec-
tors.
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