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The magnetic moments of all baryons belonging to the totally symmetric 20 representation, the mixed

symmetry 20' representation, and the totally antisymmetric 4 representation have been compared under U(4)

symmetry. For the 20' representation the usua1 results of SU(3) symmetry remain unchanged except the

relation p,(dP) = —p,(X ). This result is not valid in U(4). The magnetic moments of all charmed particles have

been expressed in terms of the moments of proton, neutron, and A partic1es in the case of U(4) symmetry. .

I. INTRODUCTION

The recent discovery of the P particles' has lead
to renewed interest in introducing a new quark c
with charmed quantum number 1, in addition to the
three quarks: a pair u and d, an isotopic-spin
doublet, and s, an isotopic-spin singlet with
charm assignment zero. The P particle is as-
sumed to be the quark-antiquark, cc combination
and a vector meson with associated quantum num-
bers, J~~= 1" . The introduction of c as an ad-
ditional quark, with isotopic spin I = 0, and hyper-
charge F= —3, has lead to renewed interest in
extending the SU(3) symmetry classification to
U(4) or SU(4), a theory in which four quarks have
to play the fundamental role in the reproduction of
the other particles that appear in nature.

The SU(4) group' for the classification of the
fundamental particles has been suggested earlier
by Glashow, Iliopoulos, and Maiani, ' to eliminate
the strangeness nonconserving neutral currents. In
this model, a large number of new charmed par-
ticles show up, in addition to the usual noncharmed
particles. In strong interaction, the charm quan-
tum number is supposed to be strictly conserved.
As soon as the discovery of the g particle was
announced, a large number of explanations on the
nature of the particle were proposed. ' Based on
the SU(4) model Borchardt, Mathur, and Qkubo'
proposed that the P particle is cc state and sug-
gested an extension of the Gell-Mann-Nishijima
formula as follows:

Q =I,+ 2Y+C. — '

The q antum number C in (1) stands for the
charm of the particles, which is assumed to be
zero for all particles known until now. In the
quark model, for the u, d, and s quarks we as-
sume C = 0, and we assume that the C value of the
fourth quark is 1. The assignment of the other

quantum numbers is to be done according to the
fractional scheme of Glashow, Iliopoulos, and
Maiani. "%e also assume here that all the bary-
ons are obtained by the combination of qqq, where

q is a quark.
A large number of experimental and theoretical

works since then have been carried out. Assum-
ing that the U(4) classification has a promising
future, we have decided to calculate the magnetic
moments of the baryons in light of U(4) symmetry.

The calculation of the magnetic moments for the
SU(3) baryon octets has been done by Glashow and
Coleman. ' Okubo' has also shown that the same
results can be reproduced from a very general
consideration of the transformation property of
the charge operator. Afterwards, Okubo' indica-
ted how the higher-order correction to the mo-
ments, assuming a more complex magnetic-mo-
ment operator, could be obtained. A more gener-
al formulation can also be found in the paper by
Rosen, "who gave a closed form of the magnetic-
moment operator in terms of the U spin and the
charge of the particles.

All these calculations have been very much im-
proved by extending the symmetry group to SU(6),
with the inclusion of intrinsic spin of the particles.
Bd'g, Lee, and Pais" assumed that the baryon oc-
tets and the decouplets belong to ihe 56-dimension-
al representation of SU(6) and the magnetic-mo-
ment operator transforms like a (8, 3) number of
the 35 representation. Their results gave the ratio
p, (p)/p(n) = ——', . Thirring" also obtained the same
results straightforwardly from the quark model
by vectorially adding the magnetic moments of the
quarks which constitute the particle concerned.

In a sequence of two papers we would like first
to extend the calculations of SU(3) to that of U(4).
Then, enlarging the group to U(8) or SU(8), we
would like to find the magnetic moments of the
charmed particles. In this paper, we restrict our-
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selves to the smaller group U(4). In Sec. II, we
discuss the U(4) classification and introduce the
conventional nomenclatures. We also write down
the corresponding baryon states with the help of
a tensor Bppp In Sec. III, we construct very
general currents, ' which appear in a magnetic-
moment tensor. In Sec. IV, we obtain the mag-
netic moments, assuming U(4) symmetry. In Sec.
V, we discuss the general aspects of the results
obtained.

II. U(4) CLASSIFICATION OF BARYONS

The baryons are to be obtained by the combina-
tion of three quarks qqq. In terms of the irreduc-
ible representation of U(4), we know

4@4@4=20+. 2 x 20'+4,

where 20 is the dimension of the completely sym-
metric representation, 20' is the dimension of the
representation of mixed symmetry, and 4 is the
dimension of the totally antisymmetric representa-

tion.
On the other hand, if we express the 20 multi-

plet in terms of SU(3)S U, indices, we find

(3)20 = (10, 0) + (8, 1)+ (3, 2) + (1, 3),

where (m, n) indicates the m-dimensional SU(3)
multiplet with a charm quantum number n. Sim-
ilarly for 20', we get

20' = (8, 0) + (6, 1)+ (3, 1)+ (3, 2)

In the equation (4), (3, 1) represents the contra-
gredient triplet state with charm quantum number
1. The multiplet 4 is given by

4= (3, 1)+(1,0).

(4)

The baryon wave function for the 20 representation
can be expressed in terms of the U(4) indices by
a totally symmetric tensor B"„,which is normal-
ized to the number of particles in the multiplet.
The tensor B",„,can be expressed in terms of the
SU(3) multiplets as follows:

B'„„2= 5'„5~5p do„+~ (5~5~5p+ 5'„5,'5~2+ 5~5'„5p) S,*;"'+~ (5„'5',5', + 5'„5„'5p+ 5~5„'52) T,*"'+5'5'„5,'S,*(2'. (8)

In the above expression d, » represents the decouplets of SU(3) and the indices i, j, and k only run from
1 through 3, whereas p, , v, and p run from 1 through 4. S&&

' represents the sextuplet charm-1 baryons
and is totally symmetric in i and j. The states T," ') are the SU(3) triplets, with charm quantum number
2. The state S~2(2) is the (1,3) state of the equation (3)."

Similarly, we find for 20'

&~„P= 5'„5„5P&((„);+ ~2 (525~5P —5P5J5~) S,',"+ ~8(25„'5,'5~2+ 5',5,'P, —5~5„'5P)T((1,') +~ (5„5„'52—5P5'„5„')T,'". (7)

In the above expression, whenever we have put
two indices within the curly brackets the terms are
antisymmetric with respect to those indices. Here
again the Greek indices run from 1 through 4,
whereas the Latin indices run from 1 through 3.
The symbols A~;»&, S,",.', T~';z&, and T,"' stand for
a baryon octet, a sextuplet with charm 1, a eon-
tragredient triplet with charm 1, and a triplet with
charm 2, respectively. The baryon octet ean be
expressed in terms of the well-known symbol N,'-

by the formula

1
&(;2);=~2 «2)Ng (7')

Here &,~, is the Levi-Civita totally antisymmetric
tensor in three dimensions.

Finally, for the baryon 4 multiplet, we can write

1
+~8 5'„5~5P&;,2S '

gpss
S2)2(1) S2I2(1) (9a)

S2' (& ) = T+0
33

For the triplet members, (3, 2), of the 20 repre-
sentation, we identify the particles as

T*"'=Ã*", T,*"'=X*' and Tf"'=I*'. (9b)1 8 ~ 2 3 8

The new baryons belonging to the 20' represen-
tation, the members of the sextuplet SI!) [(8, 1)],

where 7'.
~,'z~ stands for the charm-1 contragredient

triplet and S" is the singlet with charm zero.
Here we would exclusively follow the identifica-

tion of the particles as introduced by Gaillard,
Lee, and Rosner. ' Thus, for the sextuplet belong-
ing to the 20 representation, we define

C,*'
Sg(1) Cg++ S+(1) — S2)2(1) Cgo11 1 1 12 ~2 1 22 1
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III. MOST-GENERAL CURRENTS

In calculating the magnetic moment coming from
the first-order electromagnetic interaction, we
need to construct the most general current tensors
J'v (Ref. 14) with the help of the multiplet wave
functions B given by the equations (6), (7), and (8).
For the 20 representation, the most general cur-
rent that we can form is

Z(D) = {(B""B„,„.+g'6„"(BB) (10)

where p,o and go are two arbitrary constants and
(BB)„stands for the trace of the tensor defined
as follows:

(BB&2o = B2o" Bvvp

The most general current J(N)„" that can be con-
structed with the tensors B and B belonging to the
20' representation is given by

Z(1V)„"= D„"+()„'G,", (12)
where

y. (u p}v 2O' (pv) 0 20 (vy) p 2O'D Qy B2p B(Kp)v + cE2 B20 B( p) + a3 B2p B( p)v

(Qp)v 20' {pv) 4 20' {vv ) P 20'+ bj B20. B(pv)„+b2B2o. B(pv)K+ b3B2p. B(Kp)v

{up)v 2O' {Pv) y, 2O' {vg)p 2O'+ c,B2p. B{VK)p+ &2B202 B(vK) p+&3B202 B(vK) p

(13)
and G is an expression obtained from D„" by sett-
ing p. = w= o. and replacing the constants a;, b„and
c, —s by new constants a,', b,', and c, —s.

By using the symmetry relations

202 2O' 2PP
B(~v}p+B{vp)p +B(pv)v
n20' n20'

(yv) p {vv)p~

(Pv) p. 20' (Pv}g 20'B20' B(pv}K —2B20& B{Kp)v&

B(eP) VB20' B(Pv}+B20'
20' ( pv) K 20' {Kp)v~

(14)

(15)

(16)

(17)

we can simplify Eq. (12) into a very convenient
form. We should notice that Eqs. (16) and (17)
are the outcome of Eqs. (14) and (15). We finally
get

(N)k ) x 20 (kp)v+ {2 2O' (kp)v

20 (OP)V gV k 20' (nv)V ('

are given by the equations (9a) just by dropping
the asterisks. Similarly the multiplets (3, 2) of the
20' representation are given by the equations (9b),
where we also have to drop the asterisks. For the
multiplet (3, 1), we write

{$2) f op {23) ~2 p {31)
——~A'. (9c)

For (3, 1) belonging to 4, we go over to the par-
ticles by adding a prime to the relations in the
equations (Qc).

Subsequently, we use the abbreviation
1

8'0 =8m —& gy- (19)

to express the magnetic moments of the baryons
in terms of the constants p,„, p,„g„,andg, .

Similarly, for the representation 4, which is
totally antisymmetric, the current tensor is

Z(A)„= {(,,B(""P)B{„„,) +g, 6„(BB)„ (2o)

where again p., and g, are two arbitrary constants
and

(21)

In the next section we use the currents in Eqs.
(10), (18), and (20) to obtain the magnetic mo-
ments.

Q"„=q„5"„ (22)

where q, = q4 = —, and q, = q, = —3 are the charges of2 1

the quarks. We follow the prescription of Qkubo
et al. ' for the charge operator as given by the
equation (1).

We assume that for a. low-momentum case the
expectation value of the magnetic-moment opera-
tor is proportional to

z(x)„"q"., (23)

where X stands for either D, 1V, or A. We have
altogether suppressed the spin part of the magnet-
ic moment as a first approximation.

A. 20 representation

For (10,0) members of the 20 representation,
we find, using Eqs. (6), (10), and (23), that

and

)((&*")= 3{(0+3g.', {((N ) =~3{{0+3go~

{((N*')=3go, ~(N* )= -3{.+-'g.',

)((1'* ) = u(N*'),

{(F*')= { (=.*')= { (N*'),

V( &* ) = {((="* ) = {((fl ) = V(N* ).

(24)

(25)

(26)

(27)

For the sextuplet (6, 1)

)((C*")= p(N*") p(C*, ') = p(S*')= )((N* )

p(C,*')= {((S*')= p(T*') = p(N*')

Similarly, for the triplet (3, 2)

(28)

IV. MAGNETIC MOMENTS IN U|4)

As shown by Glashow and Coleman, ' the mag-
netic moment for baryons can be obtained by form-
ing the trace of BBQ in all possible contractions,
where Q is the charge operator, a 4 x 4 matrix,
and can be written as
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p, (x„*")= g(lv*"), u(x*') = v(~.*')= v (&*').
(29)

For the singlet (1, 3) (identifying S,*"'=8*"),we
find

u(&;) = u(&') = 4u. --'v, +~sr. ,

P (& ) = —
6 P„6P—~ + 3 go

0 & 1 2

(34a)

(34b)

If we now go over to the contragredient baryon
triplet (3, 1), we find

g(R*")= p(X*").

B. 20' representation

(30) Expressing (34a) and (34b) in terms of proton,
neutron, and A particle magnetic moments, we
flnd

If we now go to the 20' representation and use
the equations (7), (18), and (23), the magnetic mo-
ments of the baryon octet (8, 0) come out to be

p(c.")= q(P) + v(n) —q(&') (34c)

P(=- )= P(~ )= —3P.+ 6 Py+ sÃo~

V(~ )= —izPx m2Py-+340~'0 1 1 2

V(~')= 2u. + |'.&, +-'go.

The transition moments are given by

&~'~v~&'&=&~'~ v ~~'&

1 i=-4'" -4~3"'

(31a)

(31b)

(31c)

(31d)

(31d')

p(A') = —3g{n)+ 4g(a'). (34d)

- &~i lvlco& = - &c.'II~I &,'&

= &s' lola'&

(36)

Owing to the degeneracy of quantum numbers of
some baryon sextuplet particles with the contra-
gredient triplets, we find that transition magnetic
moments appear between sextuplet and triplet par-
ticles. The results are

p(p)+ p(Z )+4p(n)=6@(4'), (»g)

If we compare these results with the U(3) re-
sults as quoted by Okubo, ' we find the unchanged
relations are

~(p)=u(~'), V( )=u(~), u(:. )=u(~ ), (31f)

C 4 representation

For the particles belonging to the totally anti-
symmetric representation 4, the magnetic mo-
ments for the contragredient triplets can be found
using Eqs. (8), (20), and (23). We get for the con-
tragredient charmed triplets

V(~')+ ~(~ ) = 2~(~').

However, we should notice that

(31h) u(&") =4,

u(&') & —u(d') (31i)

in U(4) in contrast to the result p, (Z') = p, (d') in
U(3).

For the charmed sextuplet (6, 1)

~(&")=v(&".) =4~, +4,
For the singlet (1,0) we get

v(~") = u(&").

(36b)

(37)

2 I 2
I (Cg ) 3p~ 3/ ~+ 3gog

+ 5 1 2
u(&;) = u(~ ) = —,.u. ——,.u, + 3 a.,

(32a)

(32b)
V. CONCLUDING REMARKS

u(&;) = u(P)+ 3u(~) —3u(d'). (32e)

For the charmed baryon triplet (3, 2), we find

g(C', ) = q(S') = q(r') = q(n). (32c)

In terms of p(p), p(n), and p, (&'), we can write

u(& )=2m(p)+6m(~) —6u(&')

We have calculated the magnetic moments. in the
low-frequency limit in the U(4) symmetry, assum-
ing that the magnetic-moment operator is propor-
tional to the charge operator. The expectation val-
ue of the magnetic moment could thus be written
as in Eq. (23). This equation finally has produced
the results quoted in Sec. IV. Almost all the re-
sults of U(3) have been reproduced in U(4). The
only different result U(4) yields is

p{E')& —V(&')
u(& )=u(c ),

~(~;)=v(~ ) = u(P).

(33a)

(33b)
We have also derived the magnetic moments of

all new charmed baryons in terms of the magnetic
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moments of the proton, neutron, and 6' particles
in the 20' representation and in terms of the mag-
netic moments of N~ —s in the 20 representation
in U(4). Since Q is not an operator in SU(4), the
results cannot be extended in SU(4) symmetry.
Moreover, we would like to mention here that our
results would be valid for both total magnetic mo-
ments and anomalous magnetic moments for ex-
actly the same reason that the results obtained by
Coleman and Glashow' would be valid for both.

In the following paper we will show how the re-
sults of U(4) can be extended to the U(8) symmetry.
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