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In calculations using matrix Pade approximants, an off-shell momentum (or several off-shell momenta) is

introduced. In previous work, this momentum was chosen arbitrarily and not varied. However, it is a
variational parameter and may be varied to find points where the phase shift has an extreme value. At such

points, the matrix Fade approximants are extraordinarily accurate, even for potentials with strong repulsive
cores.

I. THE METHOD

For potential scattering, the Schrodinger equa-
tion in momentum space is'

This difficulty is overcome by the following
scheme. Choose one off-shell momentum k,
and calculate the following elements of K:

(k'iE k) = (k' Vk)

+—P
~

dk"(k'Vk") „, —,(k"iffik),
1r 0

where ko is the on-shell momentum, and

(k, if''ik, ) = tan~/k, .
Equation (1) can be solved by iteration,

(k'iI~ik) = (k'iVik)

+-P dk" (k'iVik") „, „,(k"iVik, )
7l 0

+ ~ ~ ~

=—(k' V, k)+ (k' V2k)+

The elements of Z required by Eq. (2) are

(k,iKik, ) = (k, V, ik,)+ (k,iV, k,)+ ~ ~ ~, (4)

and from the first two terms of this expansion one
forms the ordinary (1/1) Padd approximants, '

i' (k IVlk) —(klVlk)

x (k, iv, ik,).
For potentials with strong repulsive square-

well cores, this (1/1) ordinary Pads approximant
is not accurate; it becomes worse as the strength
of the repulsion increases, approaching the phase
shift for a hard repulsive core no matter what at-
traction lies outside the core. (Numerical evi-
dence for these facts is presented in Tables I-IV;
see Sec. II below. )

E,(kiE k,) (kiff k)j ((kiV, jk,) (kiV, k) f

, /'(k, iv ik,) (k,iv, lk)i

((kiV, ik,) (kiV, ik))

Equation (3) may be used in this way because it is
valid for any of the elements of K, in particular
the above four elements of K. With the under-
standing that everything is now a 2 ~ 2 matrix,

K= V~+ V2,

iK= Vi Vi.
1 2

The (1/1) matrix Padd approximant to tan5/ko is
gotten from the k„k, element of this last matrix.

As a practical matter, it is somewhat easier to
calculate the terms in the Born series, not by
iterating Eq. (1), but by iterating

(8)

U,(r) = +
ll G, (r, Y)v(r')U„(r')dh',
~0

where 6, is the on-shell Green's function,

» sinkof g coskox&

0

and substituting the result into
~ f

(k'iEik) = —J' dr, V(r) U„(r).

from which one forms a (1/1) matrix Pads approx-
imant, s
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TABLE I. Phase shifts and scattering length given by
the ordinary and matrix Pads approximants compared to
the exact results for the potential of Eq. (12) with
&~=0.68 F, &2=1.92 F, V& = —170.05 MeV, F2=34.01 MeV.
The units are MeV, fermi, or (fermi), as appropriate.

TABLE III. Phase shifts and scattering lengths, for
c, =0.45 F, ~,=1.95 F, V, =-666.7 MeV, F2=31.75 MeV.
See caption of Table I.

Phase shifts (degrees)

Phase shifts (degrees)
Energy

Ordinary Exact
Matrix Pade Pads solution

20
100
140
210
220
230
240
300

0.49 4.2
1.10 3.9
1.30 3.8
1.59 3.7
1.63 3.6
1.67 3.5
1.70 3.5
1.90 3.4

54.88
24.20
14.93
3.453
2.190
1.007

-0.099
-5.320

55.28
25.59
18.13
-0.312
-0.966
—1,749
-2.576
—7.05

54.94
24.20
14.93
3.459
2.198
1.017

—0.088
-5.298

Ordinary Exact
Energy ko k Matrix Pade Pade solution 20

100
140
210
220
230
240
300

0.49 4
1.10 3.8
1.30 3.8
1.59 3.6
1.63 3.6
1.67 3.6
1.70 3.6
1.90 3.4

54.75
23.34
14.67
3.174
1.90
0.706

-4.16
-5.838

64.73
-79.64

1.20
3+37

—4.23
—5.09

5.92
—10.27

Scattering length (fermis)

54.77
23.96
14.71
3.252
1.98
0.797

-0.319
-5.676

Scatter ing length (fermis)
Matrix Pads

Ordinary
I ad5

Exact
solution

Matrix Pads
Ordinary

Pads
Exact

solution 4.0 -20.54 -67.04 —20.71

4.20 -20.37 -21.44 -20.75

II. CALCULATIONS

The principal point of this paper is this: Since
the matrix Pads approximant can be derived from
a variational principle, k is a variational param-
eter and one should look for those places where
the phase shift 5 is stationary when k is varied
(maximum or minimum). The calculations re-
ported in the next section show that the phase shift
calculated in this way is extraordinarily accurate.

We have done calculations for the 'S, state of
nucleon-nucleon scattering using a two- square-
well potential

V(r) = V, 8(c, —r)+ V, e(c, —r), (12)

with c, ~ c„V,positive (repulsive), and V, nega-
tive (attractive). Adjusting three of these param-
eters to fit the nucleon '$0 scattering length and

TABLE II. Phase shifts and scattering lengths, for
Cf ——0.53F, c2-—1.92F, V&= —364.3MeV, F2=33 ~ 12MeV.
See caption of Table I.

TABLE IV. Phase shifts and scattering lengths, for
~, =0.4F, c,=1.95F, V, =1323 MeV, F2=32.27 MeV.
See caption of Table I.

Phase shifts (degrees) Phase shifts (degrees)

Energy ko k Matrix Pads
Ordinary Exact

Pads solut ion Energy ko

Ordinary Exact
Matr ix Pads Pads solution

20
100
140
219
220
230
240
300

0.49 4
1.10 3.8
1.30 3.8
1.59 3.6
1.63 3.6
1.67 3.6
1.70 3.6
1.90 3.4

55.05
24.59
15.37
3.847
2.568
1.365
0,234

-5.226

57.88
31.59

-59.28
—1.441

2.336
—3.065

3.89
—8.38

55.10
24.60
15.38
3.882
2.605
1.405
0.277

-5.146

20
100
140
210
220
230
240
300

0.49 3.9
1.10 3.7
1.30 3.7
1.59 3.6
1.63 3.6
1.67 3.6
1.70 3.5
1.90 3.5

54.67
23.36
13.83
1.96
0.63

-0.61
-1.80
-7.57

-60.10
—9.26
—0.86
—7.09
—8.00
—8.89

9.74
-14.16

54.49
23.29
13.93
2.115
0.79

-0.45
-1.62

70 32

Scattering length {fermis) Scattering length {fermis)

Matrix Pads
Ordinary

Pade
Exact

solution Matrix Pade
Ordinary

Pade
Exact

solution

4.0 -20.33 -33.53 -20.59 4.0 -20.46 -3.618 —20.74
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FIG. 1. 80 phase shift versus the off-shell momentum
k. The calculation is done for Ej,b =140 MeV, V~/V2
= -5.0.

effective range and the 'Sa phase shift at E„b =240
MeV leaves one free parameter which we take to
be V, /V2. For the four potentials for which re-
sults are reported in Tables I-IV, -V, /V, =5,
11, 21, and 41 respectively, and all parameters
have the values given in the tables.

The result of varying k in one particular calcu-
lation is shown in Fig. 1. The phase shift at the
first maximum is extraordinarily accurate, not
only at this particular energy or for this particu-
lar potential, but for all energies and all poten-
tials, as the tables show.

Why the first maximum'P We do not know. All
maxima other than the first yield the ordinary
Pads approximant given by Eq. (5). But the or-
dinary Pads approximant is derivable from a var-
iational calculation with fewer parameters (that
is, without the parameter k) so that a more ac-
curate answer ought to be obtained when k is in-
cluded, and presumably this more accurate an-
swer is obtained at the first maximum. The min-
ima would not yield a unique answer. In any case,
the most accurate extremum is also the one cor-
responding to a value of k closest to the on-shell
momentum k„which is not surprising since off-
shell momenta close to ka contribute more than
others. While interesting, these facts are hardly
in themselves a rigorous mathematical proof that
the first maximum should be used.

Alabiso, Prosperi, and Butera, in their work
on the connection of Pads approximants and vari-
ational principles for potential scattering, have
given methods which, at least for the case of po-
tentials which do not change sign, should make it
possible to decide rigorously which extremum
should be taken.

We have also done the calculation for the Reid'

EXACT
PHASE SHIFT
0.282 radians ~~ ~ ~ ~ ~ ~ . . ~

f
~ o

'
k

2 3
k (F ')

FIG. 2. So phase shift versus the off-shell momentum
k. The calculation is done for the Reid (Ref. 5) potential
for Ebb =140 MeV.

potential. In this case we calculated (O'IV, lk) from
the momentum-space integral shown in Eq. (3).
As shown in Fig. 2, we found that there is only one
maximum and one minimum. Again, the value of
the phase shift at the maximum is extraordinarily
accurate.

III. DISCUSSION

Graves-Morris and Samwell' have treated the
problem of a two-square-well potential using two
variable Padd approximants (the so-called Can-
terbury approximants). Their (1/1) approximant
(more accurately their (1, 1/1, 1) approximant)
requires the coefficients of Vy V2 Vy VyV2 Vg,
V,'V„and V, V,' in the Born series. We require
only the total first-order term (not the coefficient
of V, and V2 separately) and the total second-or-
der term (not the coefficients of V,', V, V„and V',

separately). We require off-shell matrix elements
and they do not.

The main point in comparing our method with
theirs is that we do not require any third-order
terms. Consider the following symbolic form of
the iterative solution of Eq. (1):

(k'IKI» = (k'Ivl»+ Q (k'Ivlk")s, (k-)(k"Ivlk)+ Q p(k'lvlk")s(k")(k" lvlk"')s(k")(k"'lvlk)+ ~ ~ ~ .
/Ill Qgl
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While k' and k in our scheme have a limited range
of values (actually only two), k" and k"' have a
finite but very large number of possible values
corresponding to a discretization of the continu-
um carried out in order to evaluate the integrals
in Eq. (3) numerically. Since (k'~V~k}=(k~V~k') for
all k, k', our scheme, which requires only the
first- and second-order Born terms, requires the
calculation and storage in a computer of (k~V~k")

only, where k takes a few (two) values and k"
takes a finite but large number of values, whereas
the Graves-Morris-Samwell scheme, which re-
quires third-order Born terms, requires the cal-
culation and storage in a computer of (k"~V~k"),
where both k" and k"' take a finite but large num-
ber of values. If N is the large but finite number,
our scheme requires the calculation and storage
of 2N V-matrix elements, whereas theirs requires
X'/2. In short, their scheme requires much more
computing and storing than ours.

The Bethe-Salpeter equation for nucleon-nucleon
scattering is not so different from Eq. (1). Com-
plications are introduced by relativity and spin,
and by positive- and negative-energy states. The
number of spin and energy states of two spin--,'
particles is at most 16, and in any state of defi-
nite angular momentum the number is at most
eight. Let a Greek index, such as n, number the
spin and energy states. Let k4 be the fourth com-
ponent of the relative momentum of the two par-
ticles. Then a state is

not ~k), but (k„k, n).

On-shell, k4 = (k'+ m')' ', where m is the mass
of the nucleon, k = ko, and n would correspond to
some positive-energy state. Our scheme would

go the same, except that the off-shell values of
k~, k, and n would be chosen independently of
each other and varied independently of each other.

Alabiso, Butera, and Prosperi, 4 have discussed
the variational principle for the Bethe-Salpeter
equation. This work would form the basis for a
rigorous mathematical discussion of our method

as applied to the Bethe-Salpeter equation.
Tjon and Fleischer' solve the Bethe-Salpeter

equation by iterating and forming ordinary Pads
approximants. They have to compute and store
"N'/2" (times factors and still more powers of
N due to the spin and energy and the fourth com-
ponent) matrix elements of V. Their "potential"
V, the kernel in the Bethe-Salpeter equation, is
composed of one-boson exchange contributions.
There are several coupling constants correspond-
ing to coupling of the several bosons with the nu-
cleons. They have not used the Graves-Morris-
Samwell scheme because they would have to com-
pute and store "1V'/2" matrix elements for each
kind of exchange; that is, they would have to com-
pute more, not fewer. The fact that fewer itera-
tions might be required because of the greater
accuracy of the Graves-Morris-Samwell scheme
is of no consequence because the iterations do not
take much time once the necessary elements of V
have been computed and stored. Tjon and Fleisch-
er could have used matrix Pads approximants just
as Gammel and Menzel' did in the case of pion ex-
change only in the Bethe-Salpeter equation. How-
ever, judging from the work of Gammel and Men-
zel, the (1/1) matrix Pads approximant with sev-
eral off-shell momenta chosen arbitrarily and
not varied is not accurate enough, and any higher
order will require the "cV'/2" elements. It re
mains to be seen how our scheme will shorten the
time required in the Tjon-Fleischer sort of cal-
culation.
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