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A renormalizable model in which weak interactions are mediated by spin-0 exchange rather than by spin-1
exchange is studied. The lowest-order diagrams for p, and P decay are box diagrams. Neutrino cross sections
off leptons and hadrons are calculated for the effective charged and neutral currents of the model. Weak
corrections to e+e l p,

+
p, and higher-order contributions to p, decay are also calculated. Neutral-current

effects are predicted to be small for neutrinos on lepton targets and large for e+e ~p, +p. ; their strength is
fixed by v-hadron scattering. In particular, there is a sizeable suppression of v„e scattering and a large
enhancement of the asymmetry in e+e l p, +p, . The only troublesome prediction is a parameter-free value of
1 for the ratio cr(v„+ N ~v„+ X) / cr(v„+ N —l v„+ X), On the whole, however, the model provides a
sensible, renormalizable alternative to the gauge theories.

I. INTRODUCTION

The study of weak interactions has blossomed
in the past five years, on the theoretical as well
as on the experimental side. Of key importance
has been the development of a unified theory of
weak and electromagnetic interactions' with the
attractive feature of renormalizability. ' This has
led to a formidable array of calculations and a
great deal of model building' to obtain agreement
with experiment while operating within the frame-
work of these gauge models. A basic ingredient
has been the GM (Glashow-Iliopoulos-Maiani)
(Ref. 4) cancellation mechanism based on an SU(4)
symmetry' for hadrons.

It seems likely that many of these ideas are
correct, even though all the components of a
complete theory of the weak interactions may not
yet be in hand. A good dose of skepticism, how-
ever, is probably healthy and with that in mind we
turn to the predictions of an alternative renormal-
izable model of weak interactions. Our purpose
is not to claim uniqueness for the alternative model,
but rather to show that there is still a good deal
of flexibility in developing a theoretical scheme to
fit weak-interaction experiments and to demon-
strate within the context of the specific model how
improved experimental results will resolve ambi-
guities. The model' we consider is one in which
the weak interactions are mediated by spin-zero
bosons. Earlier versions of this model required
a large number of as yet undiscovered particles to
appear in the weak-interaction Lagrangian. One
of us (G.S.) recently found' that by using the GIM

(Ref. 4) mechanism, and by allowing the coupling
of the spin-zero bosons mediating the weak inter-
action to be fairly large, considerable simplifi-
cations would occur.

This paper will explore in some detail both the
theoretical framework and the experimental pre-
dictions of the model of Ref. 7. We will place
particular emphasis on contrasting our results
with those of gauge models.

In Sec. II we introduce the model and calculate
the lowest-order diagram contributing to p, decay,
in this case a box diagram in which two spin-zero
mesons are exchanged. We then calculate some
higher-order diagrams and discuss the limits
placed on the scalar meson's coupling to had~ ~ns
and leptons by universality, the muon g-2, etc.
In Sec. III we consider the model s predictions for
purely leptonic scattering processes, namely
v„+e —v„+e, v +e —v +e, and e'+e - p,

'
+ p, . The first of these reactions is of particular
interest, as it is forbidden in order G (the Fermi
coupling) in this model, but allowed in the
Weinberg-Salam' model. Weak effects in the third
reaction should soon be measured and these may
be particularly large in the present model. In Sec.
IV we analyze neutrino-hadron scattering; the
neutral current in our model has an isovector
vector part and an isoscalar axial-vector part.
We analyze the consequences of this form of
neutral current. Since the coupling constant of
the scalar boson to hadrons is quite large, re-
normalization effects may be appreciable. We
examine these with particular regard to univer-
sality in Sec. V. In Sec. VI we conclude by re-
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=Btcos6+~sin8 and X~ = -Xsin0+~ cos0.
The lowest-order diagrams for p, decay and J8

decay are shown in Fig. 1. If the masses of the
scalar mesons are much larger than those of the
heavy leptons and m~+-m~p&m~p or m~+, then
these box diagrams reduce to an effective V-A
inter action

FIG. 1. Lowest-order diagrams for p and P decay.

viewing the more important experimental pre-
dictions. Finally we present two appendixes. In
the first, some of the details of the higher-order
calculations of Sec. II are given, and in the
second, a model with manifest universality is
displayed.

ff 4 2 ey (1-ys)v v((y„( l-ys)p,

Therefore we identify

2 2 y

(2 2)

(2.3)

II. LIMITS ON THE COUPLING CONSTANT

The interaction Lagrangian is'

g = —if g [L,(l-y, )lB'+L, (l-y, )v,B ]
l=e, p

+[st (1-y,)6'+X (1—y )6"]B

+ (Dt ((-y, (9l +X ((-y, }l ]8 )+H e. ,

(2.1)

where the values of l are the usual leptons, e and
p. , while v, are the usual neutrinos. L,, are two
massive, charged leptons, and B', and B', and
B' are the scalar mesons which mediate the inter-
action. The interactions with baryons are given
in terms of the quarks +,X, A., ', where~

where t" is the usual Fermi coupling constant.
Of course (2.3} is only valid if (a) the mass of

the charged scalar (m, ) is equal to the mass of the
neutral scalar (m, ) and they are much larger than
the masses of the heavy leptons of muon type (M„)
and of electron type (M, ), and (b) f'/4v is small
enough that the lowest-order diagram is a good
approximation. We are also assuming that the
coupling of the charged scalar, f„ is equal to the
coupling of the neutral scalar, f,. This assump-
tion can be relaxed in a trivial manner by intro-
ducing a factor e where f, '=sf, ', and in later
sections we will do this. For the time being, how-
ever, let us take f, = fo and consider (a) and (b) in
turn.

If we calculate the diagrams in Fig. 1 more
carefully we have (still to just first order in
M'/m')

(2.4)

as the effective coupling constant for p, decay while
P decay is the sa,me with M„replaced by the quark
mass. Now we can compare the couplings for p.

and P decay and use universality to put a lower
bound on f'/4w. The least restrictive lower bound
comes about when m, =m, =m and M„=M, =M for p,

de cay. Then

=(—), ((+,—,(n —,), (2.5R)

G. (y')* ( (, sns' (,~', m')

where we have assumed M' is much larger than
the square of the quark mass. Thus

If we now require that there be no more than a
2%%uo difference (for example) between the coupling
constants, then we must have m ~ 12M. If we r e-
strictM to be larger than 5 GeV, thenm must be
larger than 60 GeV and, from (2.3}f'/4m must be
greater than 0.17. If we allow a 5%%uo difference in
the coupling constants, then m ~ 27 GeV and
f'/4v ~ 0.08. These last numbers seem to be
reasonable values to take as absolute lower bounds.
Notice thai even if higher-order diagrams contri-
bute significantly they will not change this esti-
mate of the lower bound on f'/4w since they will
not affect the difference in (6) as long as M'«m'.

As we have said, 0.08 is the least restrictive
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lower bound on f '/4m. In the following sections of
the paper we will use

G f' ' 1 m„'
, lnf2 4v m;-m, m,

(2.7)

I 0 000

withm ~m andm ~ 27 GeV. If m, &mp) then

(2.6) requires f'/4m to be larger than 0.08. Fig-
ure 2 shows the minimum value of f'/4m as a
function of 8, where 8 =m, ,mp . Sine
symmetric in m, and m, we only need to consider
A~ 1. In most of the calculations which follow we

will have three unknowns, f /4v, m, , and2 d R. We

will generally use (7) to eliminate m, ' and give the
results in terms of f'/4w and ft, remembering the
lower bounds on f'/4v shown in Fig. 2.

Now consider the question (b) of how big f '/4v
can be if we are allowed to calculate perturbatively.
T ake the calculations simple, we will seto m

r Wem =m, although this may result in some error. e+ p

can estimate the relative magnitude of higher-
order graphs by performing the following count:

(a) Each vertex has an f.
(b) Every closed loop has 1/(2m)4.
(c) Each four-dimensional integration gives &'.

(d) Each vertex has a factor of (1-y5); these are
commuted until they stand next to each other and

1- 2this gives a power of 2 times (1-y,) smce ql-y,

(e) There are a number of diagrams in a given
order, say ¹

(f) After the four-dimensional integrations are
done we are left with a multiple integral, I, over
Feynman parameter s.

Our experience is that these combine to give,
for graphs of order 2n)

I, + ~ ~ ~ +I~ ) (2.8)

h re I is the integral for a given graph. We
only consider graphs which go as 1/m .) Some o
the I's will be of order 1 and, therefore, if
f'/4w is of order 1, the only suppression in higher
orders is the (1/v)" ' factor.

As an example of the above we have calculated
the contribution to p, decay of order f'. The
graphs are shown in Fig. 3. After renormali-
zation subtractions are made, the scalar self-
energy contribution is zero while the leptonic
self-energy diagrams give

2
——(21 —2~') — ey"(I y, )~.~-„y.(I y, )u .-

Sw 4v m'
(2.9)

There are no vertex corrections in this order jLf

the B' particle is not self-conjugate. The smth-
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FIG. 2. The minimum value of f /4x vs R, where R
=m+ /mo and we require mo& 27 GeV'. If mo& m, then
this figure is still correct with R =mo,]'m2]'m 2 and m

GeV. Thus we only need to consider R ~ 1.0.

FIG. 3. Sixth-order corrections to p, decay. There are
no vertex corrections or scalar self-energy corrections
in this order.
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FIG. 4. The eighth-order corrections to p, decay.

order contribution, (2.9), is less than 10% of
(2.3) if f'/4w is less than unity, but this may be
accidentally small because of the (21-2w') factor.

The self-energy corrections seem small so we
have also evaluated the contribution to muon de-
cay of order f ' shown in Fig. 4. The result is

, —,(1.68 + 0.76)ey"(l-y, )v, v„y„(l-y,)p,(
f' 1 1

(2.10)

where the error arises because some of the in-
tegrals were done numerically. Combining (2.9)
and (2.10) we see that, through eighth order,

f2 2

+(0.170+ 0.077) — . (2.11)

Therefore, lowest-order perturbation theory would
seem to be a very sensible procedure if f'/4w ~ 1.
In this range the contribution from sixth and eighth

order is a maximum of —2.5% but the higher-
order contribution grows rapidly when f'/4w be-
comes larger than 1.

Details of these calculations are given in Ap-
pendix A.

III. LEPTONIC SCATTERING PROCESSES

In this section we discuss scattering processes
in which only leptons are involved. The contents
of this section are in part contained in a shorter
article written by two of us' (D.A.D. and V.L.T.);
promised details are given here. Four calcula-
tions are described; two are processes (v„e
and v,e scattering) currently being measured,
while two are combinations of e'e —p,

'
p, ampli-

tudes that should be measured at SPEAR and PEP
in due course.

A. e+v„~e+v„

This process is forbidden' in lowest (fourth)
order because of the form of (2.1). It is allowed
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The neutrino charge radius is proportional to
the momentum transfer, q2, but that factor is
canceled by the photon propagator, leaving the
matrix element equal to

1+4 dy 1-y y ln

&& ey"ev „y„(1 y, -)v„, (3.3}

e

( i( p y8-P

Pp

= —2mqT . (3.4)

For reasonable values of m and the heavy-lepton
mass, M, we can neglect the q' term in (3.3).

If we write the total matrix element as

where a is the fine-structure constant. In the lab
system q' can be written in terms of the kinetic
energy of the final electron T as

FIG. 5. The lowest-order contributions to v&+e t»+e.

in sixth order, however, and also in order e'f'
(where e is the electric charge) because of the
neutrino charge radius. These diagrams are
shown in Fig. 5. The value of the two diagrams of
order f' is

II =~ vy" (1 y, )v-ey„(C» -C„'y,)e,
the cross section in the lab frame is

» m (O' -C')+(C»+C~)V A

(CI 2 CI 2) 2

CO

(3.6)

(3.6)

(
2

—I(m,', m2')ey"(l-y, )ev„y (1-y,)v„, (3.1)
4m m

where

where e is the neutrino energy.
Using (2.7) to write the answers in terms of R

we have

I(m+', m, ') = dx dy dz
0 0 0

y(1-x)(1-w }z'(4-3z)
m,2zwx +m,2y (1-z)

2 1R-1

C» =——— I(R)
f' 1 R-1
4m n lnR

(3.7a)

+ (m, '-m, ') .
This integral is elementary but tedious.

(3.2)
1 2 m, R-1

f '/4v 3 M»' R lnR

where I(R) comes from (3.2) and is equal to

1 1 1 1 R-1 1 R-1 2 R-1 m R-1 2 ~ 1 1
I(R) =-+—+ -lnR — lnR+, (R'+1) lnR ln 1-- +, ln'R+ —, ——~2 (R'+1)~ —, — ~

4R 2R 3 2R ~», n R

(3.8}

Notice that I(R = 1)= l.
C„' and the first term in Cv, which comes from

the f ' contribution, are symmetric in m, - m,
(i.e., R -1/R), but the neutrino charge radius de-
pends only on m, . Therefore, the second term in
C„' is asymmetric as R-1/R and becomes large
as R gets small (m, &m, ). A plot of C» and C„' is
given in Fig. 6 for various values of R and ranges
of f2/4w. We see that C» and C„' are probably
quite small, although for extreme values of R they
could be as large as 0.5 in magnitude. Therefore,
we cannot draw any definite conclusions except
that although the cross section is not zero it is

probably smaller than is predicted by the Wein-
berg-Salam theory, "where the process isof order
G~. In Sec. IV we will estimate R and find R&1.

B. v~ +8 ~ p~ +8

This process is allowed in order f'. The re-
levant graph is shown in Fig. 7. This has the
same form as p, decay; in particular it has the
exchange of one neutral and one charged scalar.
Therefore the matrix element simply reduces to
the V -A. form with no dependence on the relative
size of m, and m, . If we perform a Fierz trans-
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FIG. 6. The vector and axial-vector coupling con-
stants for the reaction v +e-& +e for various valuesP
of the ratio R =m+ /mo . The curves (a)-(e) have R
= 0.01, 0.1, 1.0, 10.0, and 100. For a given curve f2/4m
ranges from its minimum value, given by Fig. 2, at the
lower left end of the curve, to 1.0 at the upper right
end of the curve. The factor ln(m+2/M&2) in the neu-
trino charge radius was set equal to 4.0.

formation and write the matrix element as

M =~&—v, y (l-y, )v,ey„(C»- C„y,)e, (3.9)

then we have C~ =C„=1. The cross section, in
terms of C» and C„, is given by (3.6). The point
C~ =C„=1 is well within the experimentally al-
lowed" region in C~-C„space. The Weinberg-
Salam' theory predicts —,

' & C~ ~ 2 and C„=—,'.
There will also be graphs of order e'f' like the

photon graphs in Fig. 5. Based on our calcula-
tions for v„+e- v„+e these should not change
C» and C„by more than-20%%uc.

C. e'+e ~p, 'p

Thus far we have seen that there is no neutral
current effect in v,e scattering and that v„.e
scattering has a neutral current effect only in
order f' For e'e . p'p, -however, there is a
neutral-current effect in order f4. The diagram
is shown in Fig. 8; this graph gives a weak matrix
element

This gives a significant contribution to the cross
section only through the cross term with the one-
photon- exchange matrix element

2
nggy= 2 p,J p, epee ~ (3.11)

dO(o)

dQ 16E2 o (3.12)

where

W, = 1+a' —s'(1 —z') cos2$. (3.13)

The scattering angles are Q and 8 with s = cos8.
The total cross section may then be written as

do der"&

da =dn "'" (3.14)

where 5 contains all the higher-order effects. If
we call 5, the part of 5 that comes from the cross
term between Eqs. (3.10) and (3.11) and is odd in
cos8, then [using {2.7)] we have

where E is the c.m. energy of one of the initial
particles. The weak neutral current can then be
observed by looking for terms in the cross section
that are asymmetric in scattering angle or heli-
city. " These effects can be separated from the
similar effects due to two-photon intermediate
states as discussed in Ref. 12.

Consider electron and positron beams with equal
and opposite polarizations, s, perpendicular to
the direction of motion. The differential cross
section due to one-photon exchange is

SRNoe = — p, y (l-y, )p, ey„(1-y~)& ~ (3.10)
f'

0

8v 2 G~ R-1 zE'
2 l~ pro

(3.15)

~e ]s qr P~

Notice that if R =1 this is exactly twice as large
as the same quantity in the Weinberg theory. ""
This means that if s' is close to unity the asym-
metry in the cross section

'r Le dv(8) —d v(v —8)
dv(8) + dv(v —8)

(3.16)

B ~ra

FIG. 7. The lowest-order contribution to &, +e v~+e.

will be 2% if R is 1. If R is larger than 1, 6, will
be even larger (almost 8% if R =10), while if R is
less than 1, 5, will be smaller than 2%, but it is
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This value is much larger than the value pre-
dicted by the Weinberg theory, given current esti-
mates of 8w. If the estimate (R —1)/lnR=6 of the
next section is correct, the muon polarization is
also dramatically large in this model.

The parameters of a weak- inter action model are
also constrained by the experimental limits on the
weak correction to the muon's magnetic moment.
In the present model the weak correction comes
from the diagram in Fig. 9. Its contribution to
(g- 2) is"

FIG. 9. Weak correction to the muon magnetic mo-
ment.

still bigger than the Weinberg' theory if R ~ —', .
In Sec. IV we will see that (R —1)/lnR =6 is a rea-
sonable estimate which gives a dramatically large
value for the asymmetry.

The second way neutral currents may manifest
themselves in this process is through a nonzero
polarization for the final particles. If the polari-
zation of the final p, is called h, then we define
the polarization from the square of the matrix
element as

3f mga 8~' ~'
0

I dx x'(1 —x}
, 1-x+(M'/m, ')x —(m„'/m, ')(1 -x)x '

(3.23)

where m„ is the muon mass and, as before, M„
and mo are the masses of the heavy lepton and the
neutral scalar. Since, as we saw in Sec. II, uni-
versality requires M„'/Mo' to be small we have

0w
f' m
8g2 m 2

0

IM g=+,
' —IM g= i'

IM g=+, + IM g=-i
(3.17) I G, R —I I

2n W2 " lnR fg/4(( ' (3.24)

Using (3.10}and (3.11}we find

4@2 G„E R —1 2g
e' lQR Ro

At $ =0, (( and

P has a maximum

(3.18)

(3.19)

where the second equality comes from using (2.7).
The experimental bounds on the weak correction

are'4

aw = (2 8 y3.1)x10 ~. (3.25)

As long as f'/4(( is larger than the lower bounds
derived in Sec. II the weak correction of (3.24)
is smaller than the present experimental bound.

IV. NEUTRINO-HADRON INTERACTIONS
4 2G E [1+(1 —s') ~g] (3.20)e' lnR

This can be compared with the prediction in the
Weinberg theory

2&2G E'

P,„=3.1'/o . (3.22)

x [1 + (1 - s') ~g], (3.21}

where 8~ is the Weinberg angle. For s' =0.924,
E=3.5 GeV, and R=1, (3.20) gives

The effective lowest-order weak Lagrangian for
inclusive neutrino scattering with a muon in the
final state, v„+N- p, +X, is the same as in ordi-
nary weak-interaction theories:

+(charged chant) ~2 [ Wy" (I —yg)( (J][&y„(1—y, )&],

(4.1)

where we have set the Cabibbo angle, Oc, equal to
zero, and 6' and X are quarks.

The counterpart for muonless events is

Z(„,~,„„,„t~ = ~ [Py"(1 —yg)v](Py„[a(1 —y ) gb(1+)+]y(P +3ty„[c(1—y )+d(1 +y )]%), (4.2)

assuming the couplings to be V-A. or V+A. For example in the Weinberg-Salam model we obtain, with
L9~ the Weinberg angle,

Q=@ —3 Sin Op 5=-3sln 6}p C= —g+3 SlQ 8g d=3 Sln Og . (4.3)
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In our model, ' Z,&~"""' is generated by the two box diagrams in Fig. 10, which lead to

[vr"(1 - r, )v] [» (1 +r, )&-@r (1 - r,}5'],G~
(4 4)

i.e., a = -1 and d =1 with b and c to equal zero.
Using (4.1) and (4.4) one can calculate in the usual
way" the ratio of v- and v-induced events without
muons to events with muons, obtaining

v(vp +N~ vp +X) 4

v(v„+N-p +X) 3 '

&x(v„+N- v„+X)
g(v„+N- g' +X}

(4.5)

(4 5)

where N is a target with equal number of 6' and X
quarks and X means we sum over all allowed final
states.

The values of R „and R—„so obtained are too
large to agree with experiment'6 so a suppression
factor must be introduced. The easiest way to do
this without affecting universality is to multiply
all B' couplings by a factor e''&I, leaving B
couplings unchanged as mentioned in Sec. II. Since
v+X- p, +X proceeds by a B+, B exchange and
v +N» v +X by B', B exchange we find

v(vp +N vp-+X)
v(v~ +N v~ +X)

is, however, independent of e (or m, '/mo') and
hence appears to be a good test of the model.
De Rujula et a/. "quote a value of Q =0.53 +0.15,
in disagreement with (4.8), but we believe it is
premature to rule out the model on this basis. "'

We can also calculate the ratio of elastic neu-
trino-proton scattering to the charge-exchange
reaction":

(4.8)

S= d(x(v+p - v +p)/dq'
d(x(v +p - p. +n}/dq'

' (4.9)

If we assume the ratios of form factors are in-
dependent of q', then the cross-section ratio is

crease the effective coupling when two charged
8 s are exchanged. We will discuss this in detail
at the end of this section.

The ratio

R—=4m',
V (4.7)

S =0.4e'[1+ (g'„)'], (4.10)

and e may be adjusted to experiment. A similar
effect could also be obtained by having the B' mass
be larger than the B' mass in such way as to de-

where go is the form factor at q' =0 for the proton
matrix element of the isoscalar, axial-vector
current in (4.4).

This result is effectively the cross-section ratio
at q'=0 and, as Sakurai and Urrutia have shown, '
there are large corrections away from q' = 0.

A third process that we can calculate is v+ p - v

+P+m'. Adler" has given a detailed treatment of
this in the (S.S) resonance region and Lee,"using
Adler's results, calculated the ratio

o'(v+p- v+p+v')+o(v+n- v ~n+v')
( 1)2v(v+ n ~p +p + a')

in the Weinberg-Salam model. He found

R» 0.6. (4.12)

It is easy to take his calculation over to our case
and we find, in our model,

R» 0.76&' (4.13)
L

B

I
B+

Here corrections" must be made for the nuclear
interactions within the target.

A more interesting conclusion can be drawn by
observing that the effective hadronic neutral cur-
rent, in (4.4), can be rewritten as

FIG. 10. Diagrams which generate the effective neu-
tral. current.

(4.14)

i.e. , the vector current is pure isovector while the
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axial- vector current is isoscalar. This implies
that v+N- v+&- v+N+m proceeds only through
the vector current and hence may be compared
directly to electroproduction e+N- e+ &
—e+N+m'. In the region of the &, we have

o(v+N v-+N+v')» q' '
a (e+N- e+ N+ n') e' (4.15)

where q is the difference in the momenta of the
final and initial leptons. This is an exact result
with no structure corrections.

Finally, we note that the vector current does
not lead to coherent scattering of neutrinos off
massive nuclei since it is an isovector current
and an isoscalar vector current is required to ob-
tain this effect."

A second means of generating apparent neutral-
current effects at high incident neutrino energies
exists in the model, namely, the production and
subsequent decay of real heavy leptons (L),

v +N-J„+X
p +hadrons

v, + hadrons. (4.16)

Since the branching ratio, neglecting the muon

mass, is

(4.17)

the ratios R„, R~, and Q given in (4.7) and (4.8) re-
main unchanged though the cross sections all in-
crease as the incident neutrino energy crosses the
J production threshold. The present mass limits
on heavy-lepton production" are not directly appli-
cable since they are relevant to a neutrino pro-
ducing an L', not an I-, but it is clear that the
mechanism of (4.15) will be important unless the
I- mass is very large. This will be particularly
true since L production is proportional to f'/rn'
not G~ and f'»(f'/4v)' for f2«4n'.

Since the exchange mechanism that leads to L
production is 8 —P rather than V-A, the differ-
ential cross section for, e.g. , v„+N- p. +X will
change its angular distribution24 as well when we
cross the 1- threshold.

Rather than scaling the charged to neutral cou-
plings by E we could take the mass of the charged
B to be larger than the mass of the neutral B. In
terms of

(To be completely general we could consider both
E 1 and R 4 1, but the net effect would be some-
where between the R = 1, E 4 1 and & = 1, R 4 1 ex-
tremes. )

The need to suppress the hadronic processes of
this section has a profound effect on the leptonic
processes of Sec. III. The asymmetry and polari-
zation in e'e - p,'p, are enhanced by I/& (if R = 1)
or by the (R —1)/lnR factor shown in (3.15) and
(3.20) (if e = 1). If R„and R~ in (4.7) need to be su-
ppressed by a factor of 10 as indicated by Ref. 16,
then the e'e -p'p. effects are enhanced by a fac-
tor between (10)'~' (R = 1) and —", (e = 1). This is
the large enhancement referred to in Sec. III. At
the same time v e scattering is not significantly
enhanced as we can see by the R dependence of
(3.7) as shown in Fig. 6.

V. RENORMALIZATION AND UNIVERSALITY

Since f'/4v is of order 1, we might expect large
parity-violating effects due to diagrams in which
a single quark emits and then reabsorbs a B par-
ticle. These appear as wave-function and mass
renormalizations, and the parity-violating part
may be transformed away" by suitable renormali-
zation. Our concern, however, is that, in the pro-
cess of doing so, we may destroy universality,
namely the equality of G& and G&, because of the
fact that hadrons and leptons do not appear sym-
metrically in the original interaction, i.e. , there
is no hadron analog of L„L„. (See, however,
Appendix B, in which a model with manifest uni-
versality is displayed by introducing the hadron
analog of L„L„.)

To examine this question in more detail, let us
consider a fermion field g coupled to a spin-one
gluon, A.„, with coupling constant g. The Lagran-
gian for the g field is

2& = g [iy"(s„—i' J —M]g.

If we also allow g to couple by a f(1 a y, ) coupling
to a spin-zero boson, fermion self-energy dia-
grams due to this coupling and their iterations
modify J to

(5.2)

with a —1 and 5 being power series in f'. By de- '

fining
nZ 2

R= 2~0 X= (a+&y, )"0 (5.3)

as defined in Sec. II, we would then replace a by

R —1
R lnR

we can write a new Hamiltonian for the system in
terms of the g field in which the only effect of the
diagram will be to rescale the mass by 1(a' —5')' '.
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v' v'= X (a+ by )1/2 y5 ( +by )1/2 X

gMX
(a2 —b2) 1 /2 (5 4)

P

Allowing g to have several components, each one
of which we renormalize, we find that the effective
nondiagonal coupling to the spin-zero boson
changes by, e.g. ,

1 1f 1( y5 |2 fXl( b )1/2 ( y5
( +b )1/2X2

1 1 5 ~a+ 2&5

1
1 5 [(a b y )(~+b y )]1/2 X2'

(5.5)

Since (1 ay, ) are projection operators, the form of
the weak coupling will be unchanged; its magnitude
will, however, be altered.

We now compare the basic box diagrams for P
decay and for p. decay, as calculated, however,
with the lepton and hadron fields renormalized as
indicated in (5.3). Universality requires that

FIG. 11. A possible source of strong-interaction cor-
rections to universality. The wavy line is a vector
gl.uon.

where of course a„=u„and &„=&„.
The fermion one-loop self-energy diagram for,

say, a proton of momentum b, equals $(1 —y, ),
with $ being a logarithmically divergent integral.
Neglecting terms of order b2/m s2 because of the
largeness of the B mass, $ is only a function of
A'/tns', where A is a cutoff. Calculating the cor-
responding contribution for the other hadrons and
leptons, we find

1
' (a —br, y,)(a„+b„y,)

a&= a„=1+) a~= i+2( a„=1+3( a&=1+)
(5.8)

1 —y, 1
(a.'- b.')'" [(a,+b5y5)(a. —b y )]'"

or, using the projection properties of (1 +y,},
(az+b~)'(a„—b„)'= (a„+b„)(a2—b2)(a„+b„)2,

(5.6)

(5.7}

b„=b„=—$ b~ =2) b„= $ b2= —$

Substitution of these values into (5.7) shows that
the two sides are equal and that universality holds.
Furthermore, suppose B' and &' have different
coupling strengths f, and f„ leading to different
$'s which we call g, and g2. We then have

a&=1+(, a„=1+$2 a/, =1+(,+(2 a&=1+$2 a„=1+2),+$2
(5.9)

bz= &1+4 b„= $2.

Universality holds, as one can verify by substitut-
ing the above values into (5.7). What we have
proved is that a class of diagrams, namely the
one-loop and iterated one-loop wave-function and
mass renormalization diagrams, do not alter the
validity of universality in the model.

Since, with a little bit of work, one can see that
there are no one-loop vertex corrections, Fig. 3
of Ref. 7 vanishes. This then completes the proof
that there are no corrections of order f'/4w to the
universality statement G 8= G„of (2.6). Two-loop
vertex corrections to both hadron and lepton ver-
tices exist as displayed in Fig. 4(c) and we have
not established that (f'/4v)' and higher-order cor-
rections to universality do not exist in the model.

Finally, we would like to comment on the pos-
sibility of strong-interaction corrections on the
hadron line altering universality. Imagine the

strong interactions to be mediated by spin-one
gluons; external hadrons exchanging such a gluon
would not affect universality since the exchange
would be in the nature of a strong correction to an
effective CVC (conserved-vector-current) inter-
action. What mould cause trouble is a diagram
such as that of Fig. 11. This diagram is of order
g'G~/4v -G, where g is the gluon coupling con-
stant and apparently leads to a violation of univer-
sality. We must recognize, however, that the sig-
nificant contributions to the box diagram come
from internal momenta of order m~. This is true
because the box diagram has two B meson propa-
gators so that low-momentum contributions go as
(M'/m~')(1/m~'} and it is momenta of order n221

which give the dominant contribution, ™1/n2s'.
Hence, in Fig. 11, the gluon is coupled inside the
box to an 9t quark with momentum m&. This sug-
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gests that g should be replaced by an effective
coupling constant, which may in fact be very small
if asymptotic freedom" holds for gluon-quark cou-
pling. If this were correct universality would still
hold.

VI. CONCLUSIONS

The most obvious important tests of the scalar-
exchange model in the form given here [Eq. (2.1)]
and in Ref. 7 are:

(a) Q = o(v„+N- v„+X)/o (P, + N- P„+X)= 1;

(b) cr(v+ N- v+ &)/o(e+ N- e+ &) = (Gq'/e')'e';

(c) the large asymmetry and muon polarization
in e'e -p, 'p. ;

(d) C'„,C„'«1 in v, +e-v, +e;

C~=C~=I in v, +e- v, +e.

(a) and (b) follows from the fact that the neutral
current in this model has only vector I=1 and ax-
ial-vector I=0 parts. The resulting absence of
vector, axial-vector interference (after averaging
over isospin) makes the prediction (a) of equal v

and P neutral inclusive scattering model-indepen-
dent. " Deviations from equality could not be re-
medied by varying parameters in the Lagrangian
(2.1), i.e. , taking c (or 8) different than l. A dif-
ferent form would be required.

The large effect (c) results from the data of
Hefs. 16 (Rp = 0.4) which indicate suppression of
charged-B exchange relative to neutral-B exchange
by a factor of &'= —,0 or 8=20. Since e'e - p, 'p.
proceeds by 2B' exchange this has the effect of
enhancing the predictions for 5, and P by approxi-
mately a factor of 3 to 6 (depending on whether we
take z 01 or fl 0 1) to a maximum of 6% to 12% f»
6, and 10% to 20/0 for P. These values are, of
course, dramatically larger than those of the
Weinberg- Salam theory.

At the same time the 8„&I data does not give
significant enhancement of v e scattering (at least
in lowest nonvanishing order) which should there-
fore be much smaller than the Weinberg-Salam
minimum (C„'= z, Cv=0).

The previous sections contained other results
but these four seem the most likely to provide
critical tests of the model in the near future. It
would not be surprising if the Lagrangian of (2.1)
should fail one of these tests and require modifi-
cation. At the present time, however, it gives
sensible predictions and demonstrates the possi-
bility of viable alternative approaches to the weak
interactions.
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APPENDIX A: HIGHER-ORDER TERMS IN p DECAY

To simplify the calculations of the higher-order
diagrams we will set m, = m, and M (the mass of
the heavy leptons) equal to zero. We know from
the discussion of universality that M/m must be
small. Setting the masses of the charged and neu-
tral scalars equal will result in some error, how-
ever, if they are indeed very different.

Once the renormalization subtractions have been
made the scalar self-energy is zero (really of or-
der M/n which we set to zero) in order f' and
there are no f' scalar self-energy diagrams.
There are also no vertex corrections in order f'
if the B' particle is not self-conjugate. This con-
siderably reduces the number of diagrams.

The leptonic self-energy is nonzero after the
subtractions have been made, so the diagrams of
Fig. 3 contribute to order f'. Each heavy-lepton
self-energy graph contains both an electron-8'
and a neutrino-B intermediate state. The total
sixth- order correction is

, —Iy, y (1- y, )p, ey (1 y,)v„(AI)
where

xyz(4 —5x- 2z+ 2xz)
z(1 x)+y(1 z)

(A2)

This integral can be done analytically; the result
ls

I= ——,', (2l —2z'). (As)

, ( ,J~+,) ~r —(1—y,)uer. (1 —y.)~.,

(A4)

Thus the sixth-order correction is very small for
f'/4z less than, or equal to, unity.

In order f ' there are five types of corrections
to p decay; the ladder diagrams shown in Fig. 4(a),
the ladder with crossed rungs as in Fig. 4(b), the
ladder in the crossed channel with the lepton or
quark box in the middle as in Fig. 4(c), the vertex
correction of Fig. 4(d), and the leptonic self-ener-
gy graphs of Fig.4(e). The ladder graphs of Fig.
4(a) and 4(b) are finite and given by



SPIN- ZERO —EXCHANGE MODEL OF %'EAK INTERACTIONS 3103

where

Jo =— dx dy d8 d& dv

(A5)

N(x, y, z, w, v) = xyzw [xz + 4xv (1- z)

+ 2v(1 —x)(1 —z)(1 —v)],
(A6a, )

D(x, y, z, w, v) = xzv(1- x)(1 —w) + xv(l —x)(1-z)

the integral converges as we keep doubling the
number of points starting at 3 points per integral
and ending with 129 points per integral.

Jj is a seven- dimensional integral over Feyn-
man parameters. Two of the integrals can be done
analytically leaving

1 1 fl 1

J,= dx dy du dv AN x, y, u v s
O 0 "0 0 0

&& G(x, y, u, v, z)

(A8)

where, if we define

+ xz (1 —y) (1 —z) (1 —v)

+z(1- x)(1 —z)(1- v). (A6b)

The integrand of (A4) has integrable singularities
at the end points. We evaluated the sv and y inte-
grals analytically and the final three integrals nu-
merically. The result is

J,= 1.30+0.11,

where the error is an estimate based on how fast

5=vx(1- x)+x(1- y)(1- v)(1 —x+xy)

—ux(1 —x)(1 —y+ vy)',

n, =u(1 —y+ vy),

Q2= 1 —Q~q

ns=x(l —y)+ (1 —x)n„

n, = 1 —x+ xy —n, (1 —x),

then

(Aga)

(AQb)

(ASc)

(Aed)

(A9e)

N(x, y, u, v, z) = x'yuv+ —x (1 —x)yvn, n, + 6xyu'v(1 —v)(l —x)+ —,z'x'y(l —v)(1 —x)n, n, n~n~v

+ —x'yvu(l —v)[n, n4+ 2n, n~(l —x) —2n, ns(1 —x) —2n, n4(l —x)+ 2n, ns(l —x)+ n, n, (l —x)2].5

(A10)

D=- vxz(1 x),

E= —xyz (1 —v),

E= vx(1 —x)+z(1 —v)(1 —x+xy)

(A12a)

(A12b)

+ x(1 —y)(l —v)(1 —z) (1—x+ xy)

—ux(l —x) (1 —z) (1 —y+ vy)'. (A12c)

At 17 points per integral J, has the value 1.02
~ 0.09.

The fermion loop in the cross channel [Fig. 4(c)]
diverges and a subtraction must be made (a re-
normalization of the B4 coupling constant). After

G(x, y, u, v, z) is defined as

1 D+E D+E+E D+E+E E E+E
D E E+F E+E E E

(All)
where

this subtraction the diagram has the value

a, =- y(1 —xy),

a, -=(1 —y)(1 —x+ xy),

~. -=xy(1 —y),

P -=a,'(1-z)' —a,a,(1-z),

D, = Pv —zwa, '(1 v),

D, =D, (w= 1),

(A14a)

(A14b)

(A14c)

(A14d)

(A14e)

(A14f)

then

, —2(~, +~,)v„y (1 —y,)per (1 —, w, )v„
(A12)

where we have included two different lepton and two
different quark loops. If we define

g 1 1 1 1

dx dy dz dv 4xyzv 1 —z
O ~0 0 PD,

x {(1—x)[yP —2a,a, (1 —y) (1 —z) (1—v) —4yas'(1 —z)'(1 —v)] —asP), (A15)
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( 1 1 1 t. l 1 (- 1)J,= dx
~

dy
~

dz du) dv 2u)vz'a,
0 &0 &0 ~0 0 1

x $ pxa, [p+4a, '(1 —z)(1 v)]+ 6p(l —x)(1 —z)'(1 —v)a, '
+12(1—x)(1-z)'(1- v)'a, '). (A16)

Again the integrands have only integrable end-
point singularities and the integrals were evalua-
ted numerically using 17 points for each variable
in J, and 33 points for each variable in J,. The
result is

J2 = —0.19,

Js=+ 0.17.

(A1Va)

(Al vb)

The sum of J2+J, is small and did not vary ap-
preciably as we varied the number of points per
integral over 3, 5, 9, 17. Thus the sum has a small
error,

b, =u(1- v)+ uv,
1 —x

1 —xy

b, =- u(l —v)+
1

uv,
1 —x

y 1 —xy

(A20a)

(A20b)

, —,~, 7)„y (1 y,)hher. (1 y, )-h, .
(A19)

J4 is a seven-dimensional integral over Feynman
parameters. Two of the integrals can be done
analytically leaving five to be done numerically.
Define

J2+J3= —0.02 +0.05. (A18)
ZQ'V

b, =- 1-u+
1 —xy ' (A20c)

The vertex correction of Fig. 4(d), after sub-
traction, is also large, in part because all four
vertices must be corrected. It is given by

D= b,' —b, +b3.
Then the five-dimensional integral is

(A20d)

1 1 1 1 1

d, = ( dh ( dy f dk (f du ( dv —,'(((-b,)(-1+bx+bb, —bb, dy)
0 PO ~0 ~0

+ uv[- 2x- 3b, (1 —xy)+6b, x(1 —b,y)]

+ —(1 —x)- x(1 —d)(3 —3b,y))R,
y 1-xy

+ [—', xy(1 —uv) —1]R,

+—,R,[(1—b,)(1 —b,y)(1 —x- bhxy)
2 y(1 —xy) b, —b,'

x (1 —x —b, + b,xy)] (A21)

where 4(e), is

(A22a)

B 2 ln 2 1 ln

1 bh b3(b,' —b, ) b, —b, '

(A22b)

(A22c)

(A23)

where J, is a six-dimensional integral. T;vo of the
integrals can be done analytically. If we define

Notice that B»B„R,all have finite limits when
52 51 53 J4 converges nicely to the value 0.19
+0.01 as the number of points per integral is in-
creased.

The total of the three self-energy graphs, Fig.

C, = uv(l —x)(1 —z),

C, = u(l —v)(l —z),

C, —= (1 —u)(1 —x),

then

(A24a)

(A24b)

(A24c)
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t. 1 j. 1 1

J,= dx dz du dv s xzu'v[(2- 3x)(2 —3z)+6u(1- v)(2- 3z)(1-x)+ 12C,Cs]
40 eJO 0 0

1 1 C, + C, +C3

(A26)

Notice that the factor in the curly brackets is fi-
nite unless all of C„C„C,are zero

J, has the value 0.001+0.001.
Now the sum of (A4), (A13), (A19), and (A23)

give the result (2.10) in Sec. II.

and four SU(2) singlets, two of them, 10 and I.'„,
leptons and the other two, E' and F", baryons.
The weak-interaction Lagrangian has the form

APPENDIX B: A MODEL WITH MANIFEST UNIVERSALITY

We display here a weak-interaction Lagrangian
in which, except for hadron-lepton mass differ-
ences, y, decay and p decay are equal in strength
to all orders in f '/4n. This may also be true in
the model of (2.1), but we have not been able to
prove it as of yet.

The model requires an SU(2) group under which
the four quarks and the four known leptons trans-
form as doublets:

+C(1+y )~'+0'(I+y ) ~"]) (»)

which is obviously SU(2) invariant and has fu)l
hadron-lepton symmetry. The Cabibbo angle may
now be introduced by the usual GIM4 mixing of K
and s. The hadron-lepton symmetry is sufficient
to insure universality to all orders of f'/4n ex-
cept for mass-difference effects.

Neutral- current strangeness- changing, i.e. ,
semileptonic &S = 1, n Q = 0 terms have an effec-
tive Hamiltonian of the form

X, =rG [s y'(1 —y Q][vy (1 —y )v] (S3)

with r proportional to (m~' —m~')/m'.
If rn~ equals m„., a higher-order diagram gives

(S4)

In addition we have a doublet of heavy spin-zero
muons

An additional consequence of this model is that
to lowest order, the amplitudes for elastic neu-
trino-6' quark scattering vanish so neutrinos only
scatter off Bt quarks in nucleons.
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