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Decay modes of , {', 1, are examined within a model of Okubo-Zweig-lizuka (OZI) -rule violation based
on the S-matrix topological expansion (SMTE). The model provides an appropriate language for discussing
general features of the OZI rule and successfully predicts the order of magnitude of the decrease in widths
between ¢ and . Because of the relatively strong mixing of 1 and m' with 71, necessitated by the SMTE, these
mesons play a prominent role in s, Y’ decays. We readily explain the “large” ' — s, y— 7'y, y—ny rates
and predict several more channels involving 7 and 7' into which the new particles should frequently decay.
We describe why there is no general concept of double-OZI-forbidden processes and successfully correlate the
role the € meson plays in such reactions as ' —yse, Y— €w, Yy— €. The differences between s and |’ decays
expected because of the radially excited nature of the {’ are touched upon, and it is speculated that
I'(n.) = I'(¢—p). Comparison is made with other models of OZI suppression. B

I. INTRODUCTION

“What are they?” “Why are their widths so
small?” Ever since November, 1974 when the
¥ (J) particles were discovered simultaneously
at SLAC and at Brookhaven® particle physicists
have been asking themselves these questions.
During the past several months there has been a
growing consensus in the physics community as
to how these particles fit into hadron spectroscopy.
The new particles are the first manifestation of
another degree of freedom in hadronic physics.
In keeping with tradition a fourth quark is endowed
with this degree of freedom and from new quarks
we construct new hadrons. We conform to this
viewpoint and use the symbol ¢ to denote the new
quark, but, except in one application, do not nec-
essarily require the new quark to be charmed.

There has also been a consensus that the reason
the new particles are so reluctant to decay into
hadrons is that they obey the selection rule pro-
posed by Okubo, Zweig, and Iizuka (OZI).? If this
is the “solution” to the difficulty we are still left
with the task of explaining the origin and system-
atics of the mysterious OZI rule. Recently such
an explanation has been found® within the frame-
work of the S-matrix topological expansion
(SMTE).* We now propose to build upon this ex-
planation and use it as a basis for studying the gen-
eral features of the OZI rule and the decays of the
new particles. The phenomenology which emerges
is exceedingly simple and surprisingly successful.

In our previous work® answers were provided to
the following questions:

1. What is the dynamical basis for the OZI rule?
2. Why is T'() < I'(¢p = pm)?
3. Why do the pseudoscalar mesons exhibit a

mixing pattern different from that of the vector
and tensor mesons ?

Using the information contained in the answers
to the above we propose to try to answer the fol-
lowing:

1. Why do there seem to be two types of OZI
suppression?® ’ - rmp and §’ -y are suppressed
but not nearly as much as other decay modes such
as P-pm.

2. Why is the radiative decay rate for y-yn’
larger than the strong decay 3 —p°n°?

3. Is there a generally valid concept of double-
OZI-forbidden decays?

4. What is the width of the pseudoscalar partner
to the y, assumed to be the 1,(2800)?

In addition to providing answers to the above
questions the phenomenology we espouse will lead
to reasonable estimates of specific decay channels.
One feature of these numbers which is especially
interesting is the relatively large rates for the
processes ¥ or P’ —(n or n* or 7n,)+ anything. These
decays are of great interest as possible candidates
for the “missing” decay modes of ¢ and 3’.

Any attempt at a detailed phenomenology of y,
P’ ,m, decays requires specific knowledge and
understanding of the properties of the “normal”
hadrons into which they decay. For instance, a
calculation of ' - €y — 7mp depends very strongly
on the parameters of the € meson which we use.
Because such precise information is not presently
available we must forego providing detailed nu-
merical predictions and content ourselves with
estimates we expect to be accurate to within fac-
tors of 2 or 3. Since our main concern here is to
study the features of the OZI rule as applied to the
new particles, and not the nature of conventional
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hadrons, we are satisfied that our rough analysis
will be sufficient to confirm or disconfirm our ap-
proach® to the physics underlying OZI suppression.
Once we feel confident that we do understand the
basis for the OZI rule we can then go back, do
more careful phenomenology, and learn about the
nature of conventional hadrons from studying new
particles. Some possible points of reentry for
such a program will be indicated as we proceed.
While the model presented here originated and
is deeply rooted in the S-matrix approach, many
features of the phenomenology are more general
than the specific S-matrix theory we advocate.
There are indeed several remarkable similarities
between our scheme and models® of asymptotic
freedom based on the two-dimensional field theory
of ’t Hooft.” These similarities will be discussed
in our concluding section, where we will also dis-
cuss other related work, particularly that of
Harari.® However, before reaching conclusions
we must have results. Section II will introduce
the relevant concepts from Ref. 3 and will define
the vocabulary (verbal and graphical) of the anal-
ysis. The study of the general transition vector
- vector + pseudoscalar (V- VP) commences, in
Sec. III, with the comparison of ¥ and ¢ —p7 and
proceeds to ¥ =70 (n')+ w(¢), and P’ ~nY, wn,. In
Sec. III B we present results on decays involving
€ mesons, and add comments on miscellaneous
decay modes of ,)’. Radiative decays are treated
in Sec. IIIC, and finally the decay of 7, is men-
tioned in Sec. IIID. Since the 1 and 7’ play a
prominent role in our discussion their phenomeno-
logical parametrization is analyzed in the Appen-
dix. We find that the 1 and n’ contain a »elatively
large admixture of ¢ (see Table II) and this ac-
counts for their enhanced importance in ¥ decays.

II. PRELIMINARIES

In the beginning is the planar S matrix. For our
purposes planarity is defined in terms of the prop-
erties of rubber-sheet duality diagrams. Figure
1(a) is planar, Fig. 1(b) is not. Of crucial impor-
tance for us is that by definition planar diagrams

t
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(a) (b)
FIG. 1. (a) A typical planar duality diagram. (b) The
simplest nonplanar duality diagram. This diagram and

all diagrams which are topologically equivalent are
known as cylinders.

obey the OZI selection rule exactly. The ¢ meson,
considered as a pure A\ state, decays into KK

via a diagram such as Fig. 2(a), but cannot decay
into p7 since the simplest such diagram for this
mode, Fig. 2(b), is nonplanar. Further content

to the planar S matrix is provided by planar
unitarity which leads to planar-bootstrap equa-
tions.>"*

The simplest and most important corrections to
the planar S matrix have the topological character
of Figs. 1(a) and 2(b). They have been studied
extensively (Refs. 11-14). Clearly such diagrams
(cylinder diagrams in technical jargon) violate the
OZI rule and must therefore be small if the theory
is to correctly describe reality. Yet Fig. 1(b) is
responsible at =0 for the effect referred to as
the Pomeron and hence represents a substantial
deviation from planarity. The resolution to this
problem was already contained in Ref. 12, where
the concept of asymptotic planarity was introduced.
This principle asserts that as the variable ¢ be-
comes more and more positive the importance of
cylinders (and all higher corrections) becomes
less and less. This conjecture has been verified
as being a basic property of the topological ex-
pansion.®1%

If we call 2(#) the strength of the cylinder cou-
pling which describes the importance of Fig. 1(b),
th§ realization of asymptotic planarity is expressed
as

- k0
k()= cosh(2t/¢)'7% 2.1)

Since asymptotic planarity is a result of the top-
ological properties of the cylinder, natural and
unnatural parity cylinders are expected to exhibit
similar functional dependence on ¢#. The difference
between them is in the value of ¢,, which has been
estimated as % for the vector-tensor cylinder, and
as ~2-3 for the pseudoscalar.® Actually Eq. (2.1)
is true only in the exact SU(3)- [or SU(4)-] sym-
metry limit for £, and is expected to be an ac-
curate estimate only for smali ¢#. It is known3

that as ¢ gets large, the rate of decrease of k(¢)
slackens into a power-law falloff. For SU(3), the
cylinder couples only through I=0 states, while
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FIG. 2. (_a) The planar duality diagram for the allowed
decay ¢—KK . (b) The simplest diagram for the OZI-for-
bidden decay ¢—pw.
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for SU(4) it couples only with SU(3) singlets.

The simplest way to interpret the OZI-violating
effects of the cylinder is via the mixing it induces
amongst the quark wave functions. After turning
on the cylinder the ¥ will no longer be a pure cC
state but will have gained an admixture of @, 9%, x
quarks because of mixing with the ¢ and w. For
instance, ¥ will now have a strange-quark com-
ponent (| AX) given by

—_ k(m,?)
<¢|A>‘>_ ao(mwz) _jbaw(mwz)
k(my’) k()

- kW
T o
The second equality follows from the (henceforth
standard) assumption of parallel linear trajec-
tories. The numerator reflects the strength of the
cylinder coupling at %, while the denominator
takes into account the familiar feature that the
closer together the two levels are, the stronger
the tendency to mix when perturbed. There will be
sources of [XX) in the y wave function other than
the mixing involving ¢. Daughters (radial excita-
tions) of ¢ will also make contributions. For the
phenomenological applications at hand we shall
ignore such additional mixing. To the extent that
our theoretical prejudices regarding the expected
small overlap between different radial excitations
is true our attitude is justified. Inevitably, when
discussing the ¢/, which we consider a daughter
of ¥, we will have to confront in some way the
transitions and couplings between different radial
excitations. In the interests of economy we adopt
the phenomenologically simple expedient of intro-
ducing only one new parameter to describe cou-
plings involving odd numbers of radial excitations.
The ansatz we adopt, consistent with the general
features of the topological expansion, is that all
Y decays proceed through planar diagrams, and
that OZI-rule violation occurs because of quark
mixing. Thus the coupling constant for the decay
A -~BC, Fig. 3, is given by

8a-Bc™& z(A|qié'i><qu(7,XC|(Iﬁ,->, (2.3)
249j
with the overlap in quark space given by formulas
such as (2.2). (For more details see Chew and
Rosenzweig, Ref. 12, especially Appendix A, and
Schmid and Sorensen, Ref. 13.)

Qi B
A qj
aj ¢
FIG. 3. Allowed coupling between particle A and parti-
cles B and C.

This ansatz is in fact the simplest and most
naive that one can think of. It is gratifying that it
arises from and can be justified by the SMTE. It
is even more gratifying that a phenomenology
based on such a simple model works so well.

Content and predictive power are injected into
the ansatz when the properties of 2(¢) as deter-
mined by the topological expansion are used to
compute mixing and coupling constants. Thus
knowledge of the masses and couplings of conven-
tional hadrons, when supplemented by knowledge
of the masses of the new particles, allows us to
predict the couplings, and hence the decays of
these new particles.

For convenience we have compiled a table giving
the quark content of the /=0 mesons appearing in
our discussions. The angles § used in Table I
are the octet-singlet mixing angles in terms of
which

|n)=cos®,|8)+sing, |1),
| X)=~ sinQ, |8)+ cosQ,|1),

where X is either € or n’. Table I provides the
clue as to why the naive concept of double-OZI-
forbiddenness (see Fig. 4) as applied to, e.g.,

Y = 7m$ may not be useful. If such processes pro-
ceed through an intermediate resonance (e.g., €)
which is strongly mixed with either |X) or |c) the
¢ and w modes will be comparable. Typically,
neglecting symmetry breaking and assuming y is
an SU(3) singlet

T~ ox)~3T()~wy),
which follows from the approximate relations
TABLE I. The quark composition of the /=0 mesons

which are used in our study. All symbols, except for
[6) = (|9 +| ®®))/VZ, are defined in the text.

Particle\ Quark |b) ) ic)
—V2k(w) —V2 k(w)
w 1 —_— e—
A¢w Azpw
V2 k(p) —k(¢)

¢ 1 A

Agw ve
" V2 k@) k@) 1

A A

Yw Yo
. —V3 k@) sinQ
cos —sing, —
n bn ! Anen
. V2kn,) k(e 1
¢ A qen A nen’
V3 k(€) cosf
. ¢
€ Ccosb¢ sinbe Ac,c
— k ! !

n’ sinby. cosbyr —M @) cos®?

A-Ucﬂ’
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(neglecting small variations in A and %2 due to
my2>m,?) of Table I

<¢1M>u71-2=<w|b>, <¢|c6>=71§<w|c6>.

Clearly for special particles X it is possible that
T'(p - ¢X) < I'(p ~ wX) but such circumstances are
not general, and in fact will not be the ones we
encounter when considering y decays.

Qur analysis will proceed on the assumption that
k(t) is really SU(4)-symmetric. Possible devia-
tions from SU(4) and SU(3) symmetry will be men-
tioned in passing and discussed at the conclusion
of the next section. The cylinder coupling constant
is not the only variable in which we have to worry
about symmetry breaking. In writing down Eq.
(2.3) we have implicitly assumed a universal g for
each quark type ¢ and all particles ABC. Particu-
larly when g has dimensions, as for instance in
V—-VP (gx1/m), the question arises as to which
mass should appear. One popular assumption is
to use a mass characterizing the decay process;
another popular procedure chooses a universal
mass. We shall adapt the latter alternative and
scale all dimensional couplings by a universal
mass, e.g., 1/a’. Other choices are also possi-
ble. One might think of using m , for the diagrams
involving g-type quarks.!® The variation in choice
of scale introduces ambiguity in doing phenomeno-
logy, but with our current limited knowledge of
properly accounting for symmetry breaking we
cannot do much better. Possibly, because of the
large mass differences involved, a good model for
OZI violation will help distinguish among the al-
ternatives.

We close this section by presenting a prediction,
specific to SMTE, which sets the scale for the
narrowness of . We can use Eq. (2.1) to estimate
the ratio k(m,?)/k(m,?) which in turn will determine
T(p~-pn)/T(¢p ~pm). We find

k() _cosh2(m ,2)/?
k(¢) ~cosh2(m2)*7?

Ty (2.4)

This should be regarded as a lower limit since, as
mentioned above, the cosh estimate was strictly

valid only for small 2.
@ —
L
R\X
A

FIG. 4. A naive diagram for y—~¢x, which seems to
involve a double violation of the OZI rule. Such diagrams
are meaningless in our approach.

i
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FIG. 5. Planar diagrams which contribute to the coup-
line £y

III. DECAYS

A. V->VP

The first set of decays we consider are V-pr,
where Vis ¢, ¢, or w. The decay rate is given as
T(V-pm)=(gy,>/4m)P°. The relevant diagrams for
computing g,, are Fig. 5 and we readily find that

T(p—-pm _<Pw~ o7 >3<m¢2 - mw2>2 [k(mf) }2 .

T(¢ ~pm) \P,.,./ \mF-m,? k(my,2) ]

(3.1)

using I'(p—p7) =2 0.9 keV, I'(¢ - pm) =660 keV we
have

k@)= 5 k(). (3.2)
This factor of 30 is in reasonable agreement with
our most naive expectations, Eq. (2.4), and strong-
ly confirms the continued sharp approach to the
planar asymptotic regime. [We point out the
technical detail that the rate of decrease given by
Eq. (3.2) is consistent with the arctangent appear-
ing in Eq. (V.3) of Ref. 3 being 7/4, a number in
pleasing accord with the expectation of a gradual
change from the cosh 2V# behavior to a power-law
decrease.] Comparing ¢ -p7 to w—p7 as given by
Gell-Mann, Sharp, and Wagner,'” we obtain the
estimate k(m,?)~ %. We shall also use (see Table
I) 2(w)=~ &, where % is the most convenient num-
ber larger than g consistent with cylinder correc-
tions to w.

We next turn to the interesting set of decays in-
volving n and 7’ in the final state. The first to be
considered will be ¥ ~n’w. Two of the six relevant
diagrams are displayed in Fig. 6. The other four
are two which correspond to Fig. 6 but with the
quark arrows reversed plus two more involving
® quarks. One finds

T =n'w) _1(Py\*[VE6E(n)k(w) cosu . 2
r(lp ‘pﬂ) B 3 <'Pnp) [ Ancn'k(¢) i Smon‘]
~2.5; (3.3a)

similarly

T@-n'9) 1 (En_' )3 sz{m— k(n') cosQuy k(¢)

T@@-pm 3\P,) 2 A, k)

2
bo

2
+ cosen.}

~1 (3.3b)
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TABLE II. For each of the mesons X, we list the value of k(x) used in our analysis as well
as the coefficient of the | ¢€) component as calculated from Table I. For ne and ¥ we list the
amount of SU(3) singlet present. P stands for the Pomeron and the associated % is the strength
of the cylinder coupling necessary to describe low-energy diffraction scattering (Ref. 31).

Meson p 7 n’ w ¢ Ne ]
2 1 1 1 1 i
k 0.15 H B 1 5 % 50
(X |cT) 2x107%  5.5x107% 4.5x107% 2.5x1073
(X | @) 5x1073  1.5x107¢

while for decays into an 7

T@-nw) 4
Lp-pm ’

(3.3¢)

T(—¢m _
ETT

These results are extremely interesting and we
pause briefly amidst our calculations to discuss
them. The first feature which strikes us is the
predicted relative abundance of decay modes in-
volving an 7 or 1. Indeed n’w may well be the
single most important hadronic decay channel for
the ¥ meson. Harari has recently pointed out that
if  and g’ decay copiously into 7 and 7’ many puz-
zles concerning the properties of the decay prod-
ucts of i, y” will be solved. We shall return to this
in Sec. IV. Note also that there is no evidence for
double-OZI-forbidden decays.

The ¢n channel is small, since for ¢n, the c¢
and AX quark diagrams interfere destructively
rather than constructively. It is a reflection of the
mostly octet character of . Because of this in-
terference the ¢n decay rate is much more sensi-
tive to the various parameters and hence our nu-
merical estimate is not especially reliable.

We momentarily leave 3 decays to consider de-
cays of §’ into VP. The most interesting such de-
cay is ¢’ - yn. Since the y’ is probably a radial
excitation it is not clear if we are entitled to em-
ploy the coupling g,, in performing a calculation.
Nevertheless with this caveat in mind we calcu-
late y’ ~ ny using the standard value of g,,,°/47
~20 GeV~! and find I'(y’ ~ym) ~35 keV.

Since essentially only the ¢¢ diagram contributes

¢ n’ b '
14 ¢ v 5
T w Bid w

FIG. 6. Planar diagrams which contribute to the coup-
ling & ypr-

to this decay it is very sensitive to the parametri-
zation of 17. Using the extremes suggested in the
Appendix the limits on our estimate of I'(y’ - yn)
are, in keV units,

15<T(y’ - yn) <130. (3.4)

Clearly these estimates are too large and necessi-
tate the introduction of a suppression factor 1/¢
for g. We interpret this as indicating that ground
states are less likely to interact with radial ex-
citations. Rather than being embarrassed by the
need to introduce a new factor we are confident
that it accurately reflects some of the physics of
radial excitations.!® Estimate (3.4) suggests
values for ¢ between 2 and 4. This factor will
make frequent appearance in our subsequent cal-
culations.

As further support for the reasonableness of in-
troducing the ¢ factor we can make the following
qualitative remarks. The same suppression factor
will appear in computing I'(’ - p7) and will cause
this rate to be smaller (in absolute value) than
I'(y —pm). We also expect & to continue its de-
crease between ,” and m,°. Using Eq. (2.1) and
remembering our remarks following Eq. (3.2) we
estimate 2(’)= 2k(). We can then estimate a rate
for Y’ —pm,

Ty’ —pm)
L(p—pm)

consistent with the experimental upper limit for
this mode.

Conversely, if radial decays to ground states
are suppressed, decays into other radial states
might be (relatively) enhanced. ' should decay
more frequently than ¥ into radial excitations. We
thus expect multiparticle states to be more abun-
dant in ¥’ decay products than in . The factor ¢
thus helps us understand some of the differences
in the decay channels of ¥ and y’. We conclude
that there is evidence for suppression of radial
transitions in the ¢y’ system. This is in disagree-
ment with recently expressed opinions.'® We do
agree with these authors, however, in that the
radial suppression we find is not as large as for

~1/(3¢%),
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conventional mesons (¢ ~7-10).
The last decay to be considered in this subsec-
tion is ¢’ - n w, for which

12 keV
§2

L@ ~nw)=

=3 T ~ny).

This number is, of course, sensitive to m, *. If
m, =2750 MeV, our prediction for I'(y’ -ncw) will
almost double.

B. vector —>vector + scalar

The most prominent decay mode of this group is
the ¢’ - 7w interpreted as proceeding through an
I=0 77 resonance known as the €. Such a pathway
is crucial for our being able to understand such
decays, and the data support this interpreta-
tion.!®2° Little is really understood about this ¢
meson; it is not agreed as to how it fits into stan-
dard quark spectroscopy. We do not need to know
the actual classification of this particle but shall
assume it is one that mixes like the other natural-
parity trajectories. We then obtain

Ty ~eyp) _| Lelce) 2

T(p" = pe)

r=klv, (3.5)

where 7 is the ratio of the phase space for ' — 7
via € to p’ —p77 via €. Our results will depend
strongly on 7, which in turn is strongly dependent
on the particular parametrization one uses for the
€ resonance. In keeping with the spirit outlined in
the Introduction, we will choose a value, repre-
sentative of some of the models in the literature
r~ 4. If we assume that the partial width for p’

- pmr via € is 300 MeV, we find k.~ 3. This
amount of suppression is consistent with a strongly
mixed meson such as the 7’, in terms of which
relevant comparison might be {c¢|n’)/(AX|n")~ %
While we have no way of predicting the mixing of
€ as we did for the 7,7/, its unusual properties,
and the inability to discover an adequate mixing
scheme for the 0* particles, allow us to postulate
that the € will not exhibit ideal mixing but will be
strongly mixed. A corollary of this is that we also
expect the other =0 members of the € multiplet
to mix strongly. We can now attribute differences
in various OZI suppression factors (5) as reflect-
ing differences in the ¢¢ content of the final states.
T'( = 1Y) <T'(p - mmp) mostly because 71 is predomi-
nantly an SU(3) octet.?!

Given a value for k., assuming the popular de-
rivative-coupling scheme for VVe (see Ref. 19)
[(6,V,-8,V,)(8* V- 8"V*)¢], we can calculate the
decays y—~€ (w or @),

(Y~ ) _ o {V2k() [1 k(w)]} Py(3m.2+2P)
T'(p’ - pe) Ay ek(zp) P,(3m,” +2P,2%)’

(3.6)

Consistent use of the radial-transition suppres-
sion now calls for the factor ¢ to enhance the rate
for the purely nonradial y decay

T'(p = ew)=2%(0.2) keV =2T(p~€¢) . (3.7

Again notice the comparable rates for the ¢ and

w channels. This is further evidence of the strong
mixing of €. Using ¢{~4-6, consistent with our
previous suggestions, produces acceptable values.
Because these decay rates are strongly dependent
on parameters of the poorly understood € meson,
and because of the destructive interference of the
various quark diagrams we do not view our results
as convincing or as firmly established as for the
n and 7’ channels. The ratio of the ¢ to w channel
will be especially sensitive to symmetry breaking
and will decrease if such symmetry breaking is
introduced. Nevertheless, we respect the reason-
ableness of the numbers we have obtained and
hold them to be meaningful.

The reader should now be in a position to make
models for many other possible decay modes.
Given the coupling between a 1" meson and any
two mesons (A4, B), one can convert that number
into a prediction for ) ~AB. As a last example we
quote the B - 7w reaction, which if mediated by a
similar gauge-invariant coupling as we used for
p’pe implies

I'(p—~Br)=0.1keV.

Any attempt to extend our results on € modes
to ¥’ will involve us in further speculations. The
decay rate into €w (as well as other channels such
as mg, pA,, or p’m which contribute to the 57 de-
cays of 1) will be suppressed by the factor 1/¢2
and/or k(y’)/k(y). We will thus be safely within
the quoted upper limits on 57 modes of §’<1.5
keV. On the other hand, the reaction ¢’ - w’e may
be important. Since w’ is expected to be broad
and large imaginary parts (widths) obscure argu-
ments for the continued decrease of 2 we may
speculate k(w’)=k(w). At worst we expect only
power-law decrease. If this is so the phase-space
enhancement coupled with less important interfer-
ence suggests

Ty ~ew’) _
T~ ew)

This result may be attributed to the fact that decay
modes proceeding primarily through the ¢¢ parts
of mesons will not be further suppressed as % de-
creases in going from ¥ to ¢’. Such modes, as we
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have seen (€w,n’w, etc.), account for a signifi-
cant fraction of all decay channels.

Since we expect the dominant decay of w’ to be
€w, the ew’ decay mode will appear in the 77 chan-
nel.

C. Radiative decays

Because the hadronic decay modes are so strong-
ly suppressed radiative decays take on added sig-
nificance for the new particles. Indeed the re-
ported rate! for -7’y is larger than for the
strong decay ¢ —p°s°. As we shall see, this sur-
prising situation is readily understood in terms
of the strong mixing engaged in by the pseudo-
scalar SU(3) nonet. The most simple determina-
tions are for the ratios

F(ZP"‘}’T?')_ Py Y ’ 21
F(w-’m)_<'P—nc> [lea®=s,
(3.8)
L)
T(@-yn’)
where the decay proceeds through a diagram such
as Fig. 7.

It should now be clear why the Y7’ channel is,
relatively, so large. The small ratio of coupling
constants (a/m 2)/(g,,./4m) is offset by the large
value of the ratio | {7’ |ce)|2/| (¥|®,9, )| * (see
Table II) which is present in comparing 7’y to
o°n°.

Can we estimate the absolute magnitude of the
radiative transitions ? Such an estimate is possi-
ble if we are extremely naive and adopt elementary
quark-model ideas. The radiative transition under
consideration will be proportional to the quark
magnetic moments, which in turn are proportional
to e, /mq. Comparing ¥ and ¢ radiative decays we
find

1
T

W w0

We choose the ¢ decay for comparison because it
involves a “heavy” quark and therefore should be
most analogous to the 3 decays. Choosing m,

~ 250 MeV, m ~2 GeV, and using charm to fix

e, implies T'(p—yn,) =7 keV.

Y
C
\P:’_é‘kn’

C

FIG. 7. The planar diagram for the radiative decay
p—=yn’.

For ¢’ we find

T ~ym)_,
T =ym)

and (3.10)
Ty - Yﬂc)z 20

2 =<5 ’
T'@-yn) ¢
where the by-now-familiar ¢ has again made an
appearance.

D. The .

The main feature we consider here is the total
width. We have already seen and capitalized on
the fact ahat the n and i’ are strongly mixed and
strongly OZI-rule-violating. Does the 7, conform
to its pseudoscalar counterparts and also exhibit
strong OZI-rule violation, and hence a “large”
width? Current popular estimates for I'(n,) are
several MeV. We disagree with these estimates
and expect 7, to be more narrow. The basis for
this prediction is the following. The arguments
presented in Ref. 3 suggest that all cylinder cou-
plings decrease with increasing ¢. The pseudo-
scalars are no exception. Indeed the parametriza-
tion used in the Appendix exhibits this decrease
between »,* and m,,®. The reason the unnatural-
parity nonet is peculiar is that the rate of approach
to the asymptotic regime is slower. The differ-
ence in rate has been estimated, and these esti-
mates provide the numerology on which we base
our prediction. In Ref. 3 it was suggested that
t"~ while ¢%~2-3, where n and « stand for nat-
ural- and unnatural-parity trajectories. Notice
that

2 2
Mue x2.5-3.5>"¢ 3. (3.11)
L 124

This estimate strongly hints that m, ? is suffi-

ciently large to be asymptotic. The 5, may be
even more asymptotic than the ¢. This opinion is
further strengthened by the considerations (3) of
symmetry breaking. Since m?>>m ? such effects
should be even more pronounced in the pseudosca-
lar cylinder coupling charm quarks to p,#n, A than
anywhere else. Such symmetry breaking will de-
crease the value of /, and hence push our estimates
of 1, as lying further in the asymptotic regime.
An opposite effect, however, arises from the
slowing down of the cosh decrease of 2. Never-
theless the upshot of this admittedly speculative
reasoning is the estimate k(n,)=k(¢). [The factor
A will tend to cancel the effects of increased

NeM
ph;,se space with the implication that

I'(n,~all)*T(¢—pm).] (3.12)
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Regardless of whether or not our strong estimate
is correct, the SMTE implies that there should be
further damping of &, so we expect

[{nel@, 90, MIZ<{n’ | cT)HI?. (3.13)

If we use the estimate k(n.)=k(¢) we can com-
pute some characteristic decay modes of 7,:

I'(n,—~p°%°) =175 keV
3T (e~ ¢9),
T'(n,~om)s1keV.

E. Symmetry breaking

We promised to include some remarks on sym-
metry breaking and take this opportunity to re-
deem that pledge. One piece of evidence that the
¥ does not behave as a pure SU(3) singlet is that

I'(y—~K*K)
T'(—pm

the SU(3) singlet value when corrected for phase
space. A deviation by as much as a factor of 2 is
possible. We have no ready explanation for this
fact, but point to the most likely path for such
symmetry-breaking effects to enter our analysis.
Comment has already been made on the possibil-
ity of symmetry-breaking effects on {,. Cylinders
coupling heavier quarks will have a /, smaller
than the estimate 3 appropriate to the SU(2)
quarks. Hence k will decrease more quickly. Be-
cause of the large value of m,’/¢, we are per-
forming extrapolations over large distances. This
will have an amplifying effect, causing a rela-
tively small symmetry breaking in ¢, (10-20%)
(not very noticeable at ¢=m,’) to become much
larger (40-60%) at £=m,*>. Whether this is the
appropriate symmetry-breaking mechanism re-
mains to be seen. Symmetry breaking of as much
as 50% in % for the coupling to AX will still only
imply a 10% mixture of SU(3) octet in ¢, and thus
SU(3)-singlet-forbidden decays are still expected
to be significantly suppressed. For instance, ¢
~KK=~1¢eV.

Such symmetry breaking will tend to suppress
channels involving ¢ with respect to those in-
volving w.

<0.8,

IV. CONCLUSIONS AND DISCUSSION

What have we learned about y decays, the OZI
rule, and the SMTE? Our most important quanti-
tative predictions are summarized in Table III.
As we have already pointed out in the preceding
section, the abundance of events containing 1 or
7’ is especially noteworthy.

After the bulk of this work was performed a re-

port by Harari® was brought to our attention in
which he also considered the implications for y, y’
decays of ¢C mixing in 7 and ’. We both agree
that the relatively large transition rates for y’
=0y, ¥=n'y, ¥y=ny, $, ¥ ~n, or n’+X arise be-
cause of the correspondingly large ¢C components
inn and n’. Harari further conjectures that as
much as 20-30% of y and y’ decays occur through
channels containing either n or n’ and notices that
such copious 1 and 1’ modes can explain both the
unexpectedly large ratio of (n)n,/(n)n* (observed
at Frascati) and the relatively small K/m ratio
which is seen in ¥ and y’ decays. It is emphasized
that decay channels containing n or n’ almost al-
ways have two or more neutral particles in the
final state and will have thus escaped identifica-
tion at SPEAR. This could account for the “miss-
ing” ¢ and ¢’ decays.

To the extent that our model predicts large
rates for decays into final states containing n or
1’ it will solve the above experimental problems.
The issue on which we can hope to shed additional
light is whether or not we expect as much as 20—
30% of all decays to involve 1 or n’. The results
tabulated in Table III add up to about 8%, but to
this we must add many more possible decay modes
involving radial excitations, channels such as
1n’'w(1675), etc. One can readily imagine coming
up with a 15% total, and we thus feel that our nu-
merical estimates support the lower limits of
Harari’s conjecture.

What about y’ decays? Here the situation is
complicated by a lack of concrete information on
the differences between ground states and radial
excitations. We can say with confidence that a

TABLE III. A summary of our more important results
concerning the decay modes of ¢, ¥, and .. Entries
with an asterisk are more speculative.

Y decays
L@ —n'¢) T@—nw) 2T@—1w
T@ —pm) L@@ —pm) 5 I'(Yp—pm)
L@ ~ew)+ TP —=¢e) . 10TQ ~Bm)
(¢ — pm) T T@—pm
L@~y o3 LO Y1)
T@—-yn") 7 T@—yn)
P’ decays
D@ —ngw) 4 *T@ —ew) L@’ —~pm -1
TG —nd) 3 TW—ecw) T —am o<1
LR =yn) 1 @ —=yng _ o
L@ —vny) 3% T@—vyne)
1. decays

*I(n,—all) = T(¢ — p7)
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relatively large number of hadronic decay chan-
nels will contain n or 9’ and that these channels
might not be the same ones important in y de-
cays. Whether or not these channels can account
for all the missing decays of ¢’ is problematical.
We also expect some additional contribution from
P’ = wne.

We are thus in basic agreement with Harari as
to the prominence and importance of n and n’
channels. We do, however, disagree with some of
his other conclusions. Notice that our estimates
of the c¢¢ content of 1 and 7’ are more than an or-
der of magnitude smaller than those given in Ref.
8. Nevertheless we are still able to account for
the relatively strong coupling between n and n’
and the y system. At the same time these small
values do not lead us to embarrassingly large
rates for radiative transitions.

Kugler®® has pointed out another difficulty with
the simple ideas used in Ref. 8. An upper limit of
one part in 10* to the SU(3) quark content of 7, is
given on the basis of vector-dominance arguments
and the absence of a signal for y~yn.~y¢¢ or
yp°0°. This number is = 5 below our estimate of
I{n"|cT)|? and ~10-3 smaller than Harari’s esti-
mate. This upper limit, rather than being a diffi-
culty for us, is another piece of confirming evi-
dence for one of our strongest and most charac-
teristic predictions—the decrease of all cylinder
couplings toward very small asymptotic values.
This is, in fact, the first evidence that &(n,)
< k(n’) and thus adds further credence to the idea
of asymptotic planarity and to the entire SMTE.

We have answered the questions of the Introduc-
tion. Our ansatz for OZI-rule violation made us
focus on the mixing properties of the mesons in-
volved in the decays. Since y mixes roughly equal-
ly with ¢ and w we do not, in general, have doubly
forbidden decays. Since n and ' mix strongly (a
prediction of the model) as does the € (required by
the data, but consistent with the acknowledged
anomalous properties of this meson) certain chan-
nels involving these particles seem less sup-
pressed than we at first expected.

We conclude that the SMTE has taught us much
about the new particles, and symbiotically, we
have gained confidence in the theory because of
its success, particularly the confirmed character-
istiec properties of k(¢). There are further, some-
what more technical lessons which we can also
learn. Strictly speaking, asymptotic planarity
was shown to be a feature of only the cylinder cor-
rections,®'!® not the more complicated handle cor-
rections. While reasonable to extend the concept
from cylinders to handles, this has not been
firmly established. The calculations performed
here for y decaying into two I=0 objects can be

thought of as a phenomenological evaluation of the
first handle corrections to the cylinder. This is
most readily understood diagrammatically from
Fig. 8. While some of these “handle” corrections
turn out to be larger than corresponding cylinder
terms [e.g., I'(y=n'w)>T(y=pn)] they are all
very small, which we hope indicates the correct-
ness of the conjectured general validity of asymp-
totic planarity.

Apart from the physics of OZI, we were led in
our study of ¥’ decays to introduce a parameter ¢
which reflects the differences between parents and
daughters, and was capable of indicating ways in
which y’ decay modes will differ from ¢ decay
modes.

Among the topics we did not consider in detail
were the consequences of symmetry breaking. We
expect such effects to cause % to be smaller than
our estimates. On the other hand, we have ignored
the evidence that the slope of the y family of Regge
trajectories may be only 3 of that of the other
Regge trajectories[e.g., m,* —m,* ~2(m ,* —m ?)].
This would mean some of our values of A, are
overestimates. Since, for instance, the relevant
€ admixture in w depends on k2/A,, these two ne-
glected effects tend to cancel, and for the phenom-
enology at hand our simplified assumptions should
still be meaningful.

We have avoided the mention of form factors.
This may be a source of criticism. The nature of
hadronic form factors is not well understood. It
is probable that our S-matrix formulation and our
phenomenological treatment already account for
some, maybe even all, of what is loosely and
vaguely referred to as a form-factor effect.?
Therefore, we shall continue not to mention them.

There are two other popular dynamical models
for OZI-rule violation. One of these is the scheme
of Freund and Nambu?* in which an entire new
class of Pomeron-daughter particles is conjec-
tured to exist. These new particles then serve as
intermediaries in the pathway of an OZI-violating
reaction. The chief drawbacks may be the fact
that many new particles are required and the
somewhat arbitrary use of only the lowest-lying
daughter particles as the intermediaries. Never-

FIG. 8. The topological interpretation of the decay ¥
—two isoscalar mesons as giving rise to a “handle” cor-
rection to the cylinder.
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theless, successful phenomenological applications
have been made.?®:?® Similarities exist between
the Freund-Nambu approach and ours to the extent
that dual models underlie both approaches. Dis-
similarities arise when new singularities (the
Pomeron and its daughters) are introduced.

The S-matrix model adopted here bears even
more striking resemblance to the recent field-
theoretic models for the OZI rule.?”** The most
obvious of these analogies is that both the theories
of asymptotic planarity and gluon theories posess-
ing asymptotic freedom possess characteristic
couplings (cylinder and gluon coupling constants,
respectively) which decrease as m? increases.
Topologically, both couplings characterize those
diagrams responsible for OZI-rule violation.

Thus both approaches will have the property that
the OZI rule improves as the masses become
larger. This has as a corollary the somewhat un-
familiar feature that mixing angles will change as
we go from one member of a multiplet to another
member of the same multiplet. Such behavior is
now seen to be expected both from S-matrix and
field-theory models.

Given the existence of an OZI asymptotic regime
one must ask about the approach to this regime.
The original investigations suggested that in an
asymptotically free gluon theory the approach to
small coupling was like inverse powers of Inm?/
my. This left unspecified the scale of how far
away the asymptotic regime was. It was suggested
that the rapid onset of asymptotic behavior (appar-
ent already at m®=m *), referred to as precocious
planarity in SMTE, comes about because m,=m .28

Recently a nonperturbative, albeit two-dimen-
sional, model of an asymptotically free field
theory was solved® in which a more firm field-
theoretic understanding of the OZI rule was es-
tablished. Remarkably, as the field-theory mod-
els become more sophisticated, the similarities
with the S-matrix approach increase. We refer to
two specific results. In the two-dimensional field
theory the rate of approach to the asymptotic
regime is an inverse power of m?, in qualitative
agreement with the truly asymptotic expectations
of asymptotic planarity.® Even more dramatic is
the (mass)? which sets the scale for this approach
—-n%a’. We see an ¢’ in a field theory and a fac-
tor, similar to the 272, which was responsible for
the precocity of planarity® in the SMTE. However,
one major difference is that in the field theory the
scale is with respect to the quark masses. This
still leaves unresolved the question of why the ¢
meson (with m,2~1/7%a’) is already asymptotic.
In the SMTE the scale is taken with respect to
particle masses, and so we can readily account
for the planarity of the ¢.

One might argue that similarities in the two ap-
proaches are to be expected. The field theory
studied® is the model of 't Hooft” which has an ex-
pansion in 1/M [SU(M) is the color group] which
reproduces the topology of dual resonance models.
The 1/M expansion is then to be thought of as an
expansion in the dual coupling constant g?. But as
Veneziano has discussed* this might not be a good
expansion since the relevant expansion parameter
is g2N (N is the number of flavors). This leads to
the SMTE. Thus it is plausible that the two mod-
els are logically related.

The need for the introduction of o’ to fix scales®
indicates that even in field theory concepts from
Regge theory play a necessary role. We claim
that these ideas are actually sufficient and provide
us with a detailed understanding of the OZI rule.

Because of the similarities discussed above, the
phenomenology presented here could equally well
serve as a phenomenology for field-theory models
possessing asymptotic freedom. We therefore wish
to recall those characteristics of our results which
are most comfortable in the S matrix as opposed
to the field-theoretic approach:

(1) the precocity of the OZI asymptotic behavior;

(2) a rate of falloff characterized by 1/cosh;

(3) the extension of the explanation of the OZI
rule to the tensor mesons f, f' (a corollary of this
is that we expect the spin-2 y state between ¢’ and
¥ to be even more narrow than ¢ itself);

(4) the ease with which the n and 7’ fit into both
the general theoretical approach and the specific
phenomenology at hand.

In the course of this paper we hope to have con-
vinced the reader that we have possible answers
to all the questions posed in our Introduction. The
methods used are simple yet productive. They
provide solutions to many of the problems which
vexed those worrying 4bout the content of vague,
previous formulations of the OZI rule. We make
definite, testable predictions. But no theory or
model should be judged only by one specific set of
predictions and explanations. The ¢{-dependent
Reggeon coupling theory which has emerged® from
the SMTE describes and correlates a wide variety
of seemingly diverse sets of phenomena. It ex-
plains the dramatic success of the QZI rule,
teaches us about the physics of the new particles,
explains the approximate linearity of Regge tra-
jectories,? generates diffraction scattering,'? and
correctly predicts Pomeron couplings, slopes
and their variation for negative t.> When viewed
in this larger setting the success of the theory is
even more impressive and gives us confidence that
the SMTE will continue to provide new insight into
many facets of hadron physics.

Note added. Similar applications of the topolog-
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ical or dual unitarity'! theory to ¢ decays have
been made by other groups.?® I am most grateful
to these authors for bringing their work to my at-
tention.
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APPENDIX

Because the mixing parameters for the 7=0
pseudoscalars play a prominent role in our analy-
sis we devote this Appendix to establishing their
values. The rather large difference in mixing pat-
terns between pseudoscalar and the vector and
tensor mesons has found an explanation within the
SMTE as arising from the small pion mass.® This
is reflected in the larger value of ¢, in Eq. (2.1)
when applying this formula to a pseudoscalar cyl-
inder. We are thus able to apply the SMTE for-
malism to our study of pseudoscalars, with the
confidence of knowing that the SMTE can account
for some of their more unusual properties. Ex-
cept for one point, the parametrization follows
from a straightforward application of the simple
six-trajectory model previously introduced.'? The
relationship between the 1 (or n’) trajectory, the
pion trajectory a,, the ideal (planar) AX pseudo-
scalar trajectory @,, and the unnatural-parity
cylinder coupling %, is

a,= %{an +ay - 3ku +[(a1r -y - ku)z +8k"2]1/2} ‘
(A1)

The appropriate formula for @, has a minus
sign before the square root. The one change we
have made from the corresponding formula for the
natural-parity trajectories is that even though the
1 and 1’ are states of positive charge conjugation
we have used (-%) in Eq. (Al), contrary to the
prescription for the f and w trajectories. We are
not especially upset by this change as there is
ample room for minus signs to enter in future, de-
tailed studies of pseudoscalar cylinders.

In order to determine k(n) and %(n’) we will also
have to make an assumption about the position of

the unobservable «, trajectory. The simplest
such assumption is that a, - o} =a, - a3, where
the superscripts # and n refer to natural or unnat-
ural parity of the corresponding trajectory. Tak-
ing the value 0.4 used in the simple model treat-
ments of the leading trajectory, a,(f)=-0.02+a't,
a,(t)=-0.42 + a’t, one readily sees that k(1) =2,
and k(n’) =% reproduce well the desired a,(m,)
=a,,,(m,,,2)=0. These choices are convenient, but
are not to be accepted as accurate determinations
of k. This is because, for the values of o, and
o ., k depends sensitively on the choice of o, — a,.
Equally important, since the values of 2 are large,
higher-order corrections in the SMTE will be im-
portant and will modify the simple formula (A1l).
Nevertheless within the expected accuracy of our
study the values of £ are adequate. One feature of
formula (Al) which is not sensitive to the value of
a, —a, is the property that k(n’)<k(n). This, of
course, is exactly the behavior predicted by
asymptotic planarity and reaffirms our faith in
applicability of SMTE of the pseudoscalars. Our
analysis of  and 1’ has some resemblance to the
recent discussion of De Rijula et al.*®

Given values of 2, we can compute the mixing
angles displayed in Table I from

V8

tan26 = —————.
an a,,—(!x—k

With the choice of parameters we have used, we
find

6,~45°, Q,=10°,

6,0 ~35°, 9, =20°,

It is amusing that the n has the mixing angle im-
plied by the quadratic mass formula, and the n’
has that given by the linear mass formula. The
pseudoscalars may thus be the best example of the
difference between conventional mixing schemes
at fixed J and that implied by the SMTE which is
mixing at fixed £.

It seems to us that possible, reasonable limits
for the pseudoscalar mixing parameters are

0.3sk(n)<0.4, 10s<Q,<20,

0.15<k(n’)<0.3, 10<Q,,<20.

The calculations of Sec. III use k(n)=2k(n’)=0.4.
We wish to stress that once we have accepted the
relevance of the SMTE for pseudoscalars and the
applicability of the simple, but realistic model
embodied in Eq. (A1), we are forced to the quali-
tative conclusions drawn in the text, i.e., that the
n and 7’ play an enhanced role in ¢ decays.
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