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Regge cuts and charge-exchange reactions in the triple-Regge regions'
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W'e estimate the Regge-cut contribution to the inclusive reactions m p ~ n X, x p ~@X,and EC p ~E X in

the triple-Regge region. We find that the magnitude of the cut is less than about one-half that of triple-Regge-
pole contribution near t = -0.5 (GeV/c) . We discuss the implications of this for the interpretation of the t
dependence of these reactions.

I. INTRODUCTION

As is well known, the cross sections for some
but not all two-body charge-exchange reactions
exhibit significant structure as functions of the
invariant momentum transfer t. For example,
the cross section for n P- n'n has dips at t=0
and t =- 0.6 GeV'. Such structures have been
studied extensively in the Regge-pole framework. '
While it is generally accepted that the dips at t=0
are due to the vanishing there of helicity-flip am-
plitudes, the dips at t= —0.6 GeV' have been at-
tributed both to nonsense wrong-signature zeros
(NWSZ} and to interference between Regge-pole
amplitudes without NWSZ and Regge-cut ampli-
tudes.

In this paper we study the possibility of similar
dips in charge-exchange inclusive cross sections,
specifically those caused by pole-cut interference.
We consider n P-w'X, m P-gX, and K P-Z'X
in the triple-Regge region with a small momentum
transfer t between the two mesons. In this region
the graphs shown in Fig. 1 are relevant. We ex-
pect the dominant graphs to be (n„n„a,}=(p, p, P)
for w P-m'X, (A„A„P) for m P-qX, and both

(p, p, P) and (A„A.„P) for K p-%OX. Since no
helicity flip is involved, none of these graphs
should vanish at f =0. If the (p, p, P) coupling has
a NWSZ, then the m' P-m X cross section will
have a dip at t = - 0.6 GeV'. Since we want to
study the yossibility of a pole-cut interference,
we will assume here that no such zero is present.

We want to see whether the inclusion of rea-
sonable Regge-cut graphs can produce dips in the
cross sections. To calculate such graphs we use
the techaniques first introduced by Gribov' and
later extended to inclusive reactions by several
authors. "We are interested in moderately large
values of s, the invariant energy variable, say
those available at Fermilab. We can therefore
ignore all graphs which decrease like a power of
s at fixed x = I -M'/s, where M' is the square

of the missing mass. Of the cut graphs which give
a constant cross section within powers of logs,
we believe that the most important are those
shown in Fig. 2, where a, and Q4 are Pomerons.
More complicated graphs involving additional
Pomeron interactions are certainly important
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FIG. 1. Triple-Regge-pole graphs.
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FIG. 3. Higher-order Regge-cut correction to the
triple-Regge-pole graph.
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1, so that the over-all normalization is irrele-
vant. Our main result is that the magnitude of
this ratio is fairly small for (t~ &0.5 (GeV/c)',
reaching about 0.5 at x= 0.9. Thus the cut seems
too weak to produce a dip in the cross section.

On the basis of our calculation, no dip is ex-
pected at —t =0.6 (GeV/c)' in any of the charge-
exchange inclusive reactions under consideration.
If a dip is found in the inclusive distribution at the
above value of momentum transfer, it can only be
due to NVSZ in the pole residue and not due to
pole-cut interference. This will be checked in an
experiment' at Fermilab.

FIG. 2. Leading Regge-cut corrections to the triple-
Regge-pole graph.

in the limit logs-~. However, we know that
the triple-Pomeron coupling is small in the sense
that the unenhanced two-Pomeron-cut graph dom-
inates the enhanced one' at moderate values of
logs. The meson-Pomeron-meson triple-Regge
coupling is not well determined phenomenolog-
ically, but there is no evidence that it is large.
It thus seems reasonable to drop graphs involving
additional Pomeron interactions.

It wiQ be seen below that the graphs shown in

Fig. 2 give a negative contribution to the inclusive
cross section. Obviously, therefore, if the mag-
nitude of these graphs were to exceed that of the
pole graphs, then one would have to include addi-
tional graphs, e.g. , that shown in Fig. 3. How-
ever, we shall see that this does not happen.

In what follows we give a numerical estimate
of the cut graphs shown in Fig. 2 for m P- n'X,
m P-qX, and K P-K'X. We actually calculate
the ratio of these graphs to the pole graphs, Fig.

II. POLE AND CUT AMPLITUDES

For the reaction a+6 -c+Xwe take the inde-
pendent kinematic variables to be

(2.1)

It is also convenient to introduce

x= 1-M'/s . (2.2)

d(T

dt dM2

1
2s, +1 ~ (2.3)

Then the triple-Regge region corresponds to large
s and small (1 —x) and t. Since we are interested
in meson-baryon charge-exchange reactions, we
take a and c to have spin zero and & to have spin
s& = 2. Then by Mueller's generalized optical theo-
rem' the unpolarized inclusive cross section is



13 REGQE CUTS AND CHARGE-EXCHANGE REACTIONS IN THE. . .

Here Azt, z, , the Mueller amplitude, is theM'
discontinuity of the forward a+5+7 @'+b' +c'
amplitude with s-channel helicities ~, and &,

' and
with a ( —ie) prescription on the outgoing energy.

The triple-Regge-pole graphs, Fig. 1, have
been discussed extensively in the literature. ' The
Mueller amplitude for the sum of the two graphs
ls

(2.4)

where n&(t) and p&(t) are the usual Regge trajectories and residues, gn + + is the triple-Regge cou-
pling, and

7. +e-iw ((nt)

( t —sinsa&(t )
(2.5)

are the signature factors. These have been complex-conjugated for the outgoing Reggeons in accordance
with the (-ie) prescription on the outgoing energy. For e, = a =a and o( = a). the corresponding inclusive
cross section is

(2.6)

where

(2.V)

because P, + ~ = P ~. Here we assumed that the intercept of the Pomeron trajectory is at unity.
The Regge-cut graphs shown in Fig. 2 have been calculated in Refs. 3 and 4 using the techniques of the

Reggeon calculus. The Mueller amplitude is

1 d2k'~
A g ~ 16 8 16 2 Pac, nz(t) Nn cl an(4tas t )

X[N gt, )~(t', t')i(* (t) tn, (t,) 50(,(t')+Nn gi, n g(t', t')(-i) 5n (t) 5n, (t) t~(t')]

where

ay{t) + atm(te) + 04(t ) j,

x (~ t t}(' (2.8)

t = -q~', t'= -k~', t, = -(q~ —k~)' . (2.9)

In this equation N denotes the usual Reggeon-particle vertex and gn + +(t, t„ t') reduces for t'=0 and
t, =t to the triple-Regge vertex in Eq. (2.4). For o(, =a, = a and c(, =a, =a~ the corresponding inclusive
cross section is

d2$
c',„,=,p„- (t ) N . , (t„ t') N, ,(t', t') (- 2) Im[)*(t) & „(t,) g (t') ]g „(t,t„ t')

) a(t)+ a(t2) - ag (t ')
x (S)'n~(' )

1 —x) (2.10)

To proceed further it is necessary to introduce a model. For the Reggeon-particle vertices we take

N, ,(t„ t') =P„„(t,) P„- (t'), N— ,(t', t') =P, , (t') . (2.11)
%'e refer to this as the absorption model, since such a form for N reproduces the usual absorption model
for two-body reactions. This model has had considerable success in fitting two-body data. Furthermore,
it can be justified at least for the forward Pomeron-Pomeron vertex by relating that vertex to an inclusive
cross section. Using the absorption model, we find that Eq. (2.10) becomes
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„;,tt. ;,.(t')~„, (t') R,[(,(t), (, )]
a(t)+ a(t2) -a&(t')

&(—2}™[t*„()(t„(t,)t (( )](('(P)' P ' (2.12)

where G~ t, is defined in Eq. (2.7).
Now G„„t,(t„ t„ t, ) must be symmetric in t, and

t, . For t, =O and t, =t, =t, it must reduce to
G„„J,(t, t, 0), which can be studied in inclusive
reactions and which behaves roughly like

G„„t (t, t, 0) = Ga e" . (2.13)

(Of course it is the sum of the pole and the cut
amplitudes which is related to the cross section,
but since that is found to be weak we are justified
a posteriori in neglecting it. We also assume
here that the charge-exchange pole amplitude has
a t dependence similar to the RRP amplitude in
PP-PX. ) The dependence of G on t, for fixed t,
and t, cannot be directly observed, but presum-
ably it is like that of a product of two typical Pom-

eron residues. We are thus led to parameterize
G as

G(t t t } G ea(tl+ 2 /2+bt2
1P 2% 3 0 (2.14)

Paa, t (t) =yae '

P++ tP(t) Yb e
(2.15)

Then we can obtain the ratio of the cut to the pole
amplitude:

with a and & determined as indicated above. Since
the integral in Eq. (2.12) is dominated by small
4~2, the result is not very sensitive to the extrap-
olation of G to nonzero t, .

The only remaining quantities in Eq. (2.12}are
the Pomeron residues. We parameterize these as

&cut

O'pole

0 27r
(t -t) / (5 +by+5) t'

16@2

1m[(a(t) ( (t ) ( (t')] 1 «2&-«t&-ttt «'&+&
x (e)2 Ctt(pt ] 2

Re[)*„(t}$ „(t,)] 1 —x (2.16)

where

t, =t+t'-2(t t')' 'cosy . (2.17)

with

n(t) =0.5+0.9t . (3.4)

We shall give numerical results for this ratio in
the following section.

We take the parameter a defined in Eq. (2.13) to
be the same for the p and the A2 and equal to the
logarithmic derivative of the RRI' coupling' in
PP-PX:

III. NUMERICAL RESULTS a=5.88 GeV '. (3.5)
For each of the reactions m P-m'X, m P-gX,

and K P-K'X we calculate the ratio &«, /o'ba],

using Eq. (2.16}and evaluating the integrals nu-
merically. We take

Finally we note that Eq. (2.16) depends on tt„ ttb,

and & only through the combination &, +b&+&. We
take

ctt, (t) = 1.0 +0.28t (3.1) ~. +6, +~=6 GeV-'; (3.6)

for the Pomeron trajectory and

yp =10.14, y, =6.18, y~ =4.94 (3.2)

for its residues at t=0. These numbers corre-
spond to

&r(pp) =40 mb, o' r(mp) =24.4 mb, &rr(Kp) = 19.5 mb

(3.3)

for the total cross sections. We assume that the
p and A2 trajectories are exchange degenerate,

varying this parameter within reasonable limits
does not change the results substantially.

For m P- n X only p exchange contributes. Our
numerical results are shown in Fig. 4.

For m p sonly A2 exchange contributes, and
the only change from the previous calculation is
in the signature factors. Our results are shown
in Fig. 5.

For K p-Z'X both p and A2 exchange contrib-
ute, so both the pole and the cut amplitudes are
the sum of two terms. Not knowing the relative
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FIG. 4. Relative magnitude of cut and pole graph,
0'cut/ +po]e& for x +P 'tl' +X at P]ab = 50 and 200 GeV/c,
and+ =0.6, 0.7, 0.8, and 0.9 as a function of t.

magnitude of the ppI' and A, A, P couplings, we
take them to be equal. Then we obtain the results
shown in Fig. 6.

Several comments are in order:
(i) We have given results for o,„,/&e, t, at values

of x as small as 0.6. However, it is clear that the
whole triple-Regge formalism is doubtful at such
values of x, so that these results are not reliable.
They have been included here for completeness.

(ii) The ratio o'«t/ue, t, depends only weakly on

FIG. 6. Same as in Fig. 4 but for K +p K +X.

s and on x except for very small values of (1 —x).
As x-1, the integral in Eq. (2..16) does become
infinite. However, M' is small for x near unity
except at very large values of s, at which our
neglect of Pomeron interactions is not justified.

(iii) Equation (2.16) gives small values for
o,„,/oe„, mainly because the integrand falls off
rapidly with k~', and most of this falloff comes
from the t dependence of the various vertex func-
tions. Thus it is important to evaluate the inte-
gral numerically rather than calculate just the
terin of leading order in ins and ln(1 —x).

Using a phenomenological prescription, "Pump-
lin has estimated cut contributions to m P- m'X.
His results are similar to ours.

I I

a) x-

-0.8
p~q X

pl b= 50Gev/c
--- P =200GeV/c

1.6— lob

O

b 0
b" -0.4

-0.8

-1.2

I I I I

I I I

I I I

IV. CONCLUSION

We have calculated using what seem to be rea-
sonable assumptions the ratio of the Regge-cut
to the Regge-pole amplitude for m P-m'X,
n P-qX, and K P»K'X. For all three reactions
this ratio is less than one, so that the cut cannot
cancel the pole and produce a dip in the cross sec-
tion. Of course, there could be a dip coming from
pole-cut interference if our estimate of the cut is
too low. In that case the dip should move to small-
er It I as x increases, since o,„t/cr~„ is largest
for large x.
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FIG. 5. Same as in Fig. 4 but for m +P g+X.

ACKNOWLEDGMENT

We would like to thank Professor G. C. Fox for
creating our interest in this calculation and Dr.
T. L. Trueman for useful discussions.



3020 FRANK E. PAIGE AND D. P. SIDHU

*Work supported in part by Energy Research and De-
ve1.opment Administration.

$ Permanent address: Brookhaven National Laboratory,
Upton, New York 11973.

~For a review of Regge folklore, see G. C. Fox and
C. Quigg, Annu. Rev. Nucl. Sci. 23, 219 (1973) and
references therein.

V. N. Gribov, Zh. Zksp. Theor. Fiz. 59, 654 (1967)
[Sov. Phys. —JETP 26, 414 (1968)].

H. Abarbanel, J. Bartels, J. Bronzan, and D. P.
Sidhu. , Phys. Bev. D 12, 2459 (1975); 12, 2798 (1975).

4F. E. Paige and T. L. Trueman, Phys. Bev. D 12, 2422

(1975).
~I. J. Muzinich, F. E. Paige, T. L. Trueman, and L.-L.

Wang, Phys. Rev. D 6, 1048 (1972).
G. C. Fox {private communication).

YA. H. Mueller, Phys. Bev. D 2, 2963 (1970).
H. Abarbanel, G. Chew, M. L. Goldberger, and L. M.
Saunders, Phys. Rev. Lett. 26, 937 (1971).

9R. Field and G. C. Fox, Nucl. Phys. B80, 367 (1974).
In estimating the parameter a, we have taken solution
I of this reference.
J. Pumplin, Phys. Bev. D 13, .1261 (1976).


