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This paper studies two concepts of time delay in few-particle scattering. The first is a global time delay that
refers to the total advancement or retardation of the entire wave-packet motion owing to the presence of
interactions not contained in the asymptotic H~i&tonian. The second type, the angular time delay, is the
early or late arrival of a particle in a counter subtending an angle 8 with respect to the incident beILm

direction. In the two-body problem the magnitude of this time delay is known to be (d/d E)QE,8), where

f(E,8) is the scattering amplitude at energy E. We discuss the definition of these two kinds of time delay in
the three-body problem. We provide a genenAi~~tion of the relation between angular time delay and the
scattering amplitude that is valid for elastic, rearrangement, and breakup scattering. The interdependence of
these two kinds of multichannel time delay is established. Possible physical applications of the resulting theory
are discussed.

I. INTRODUCTION

This paper comprises a study of two, physically
distinct concepts of time delay that occur in mul-
tiparticle scattering theory. The first of these
is related to the total advancement or retardation
of the wave-packet motion due to the presence of
interactions not contained in the asymptotic Ham-
itonians. We shall characterize this kind of time
delay as "global. " The second form of time delay
is one appropriate for a scattering observed by
counters in a differential cross-section measure-
ment. We shall call this latter concept the "angu-
lar" time delay. In the main body of this article
we develop both of these concepts for the three-
body problem within the theoretical context of
Faddeev's time-dependent multichannel scatter-
ing theory. ' However, it is our belief that the
three-body problem provides a paradigm within
which we may explicitly state our analysis. The
simple and general nature of our results suggest
a much wider range of validity.

In the multiparticle time-delay phenomena the
definitions, the theory, and the associated deriva-
tions are elaborate. Thug it is helpful to have a
balanced overview in a simpler context of the
various features that may arise. The two-body
problem provides us with just such a simple par-
allel and one in which most of the theoretical
problems have been resolved. So we shall briefly
describe the structure of the two-body time-delay
theory.

We turn first to the global time delay. The idea
for this definition is found first in the work of
Smith' where it appears in a time-independent

description. Later, Goldberger and Watson' posed
this concept in an abstract definition set in the
time-dependent wave-packet formalism. In this
latter approach, one writes

(fQf)=»m f, ((()()("( 6) )((,)())(

—(4(f), 6'(R) e(~))]dt, (1.1)

where (j)(t) =e '"0'f is the freely evolving wave
packet for the Hamiltonian H, . The wave function
P(t) is the exact solution of the time-dependent
Schrodinger equation with the fully interacting
Hamiltonian H that evolves from Q(t). The func-
tion f specifies the initial wave packet. Finally,
6'(R) is a projection operator that is unity for in-
terparticle distances less than 8 and zero other-
wise.

The physical meaning of (f, Qf) may be read off
from the right-hand side of Eq. (1.1). We see that
the first scalar product in Eq. (1.1) represents
the probability of finding the particle described
by g(t) inside the sphere of radius R at time t
When integrated over all time, this gives the total
time spent by the particle in that sphere during the
scattering process described by (})(t) The sec.ond
term in Eq. (1.1) shares this same meaning, but
the exact wave is replaced by the free wave Q(t)
Clearly the integral in Eq. (1.1) gives the time dif-
ference the waves g(t) and (j)(t) dwell in the sphere.
By taking R- we obtain a time delay defined for
all of space. Thus for each f one determines a
matrix element (f, Qf), and this quantity is an
aggregate property of the scattering averaged over
all space and time. Consequently, we label this
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phenomenon global time delay.
The problem associated with global time delay

is to compute (f, Qf) in terms of fundamental
properties of the scattering process. A rigorous
and general solution of this problem was found by
Jauch and Marchand. 4 These authors succeed in
relating the time delay to an on-shell Hermitian
operator. First they establish that Q is energy-
conserving and may be expressed as

(1.2)

In this formula E is the kinetic energy, p is the
reduced mass, and p, p' are exit and incident mo-
menta in the directions p, p'. A similar on-shell
representation may be introduced for the two-body
S matrix,

These last two equations of course define a one-
parameter family of energy-dependent operators,
q(E} and s(E), that act on the two-dimensional
Hilbert space f.'(p) as reduced operators. The
solution to the global time-delay problem is given
by the operator relation

q(E) = —is (E) —s(E) .d
dE (1.4)

The unitarity of s(E} implies q(E) is Hermitian.
The derivation of Eq. (1.4) is valid for all physical
wave packets f. Also, it is known' that the time-
dependent definition Eq. (1.1}is in fact equivalent
to Smith's original time-independent definition. '

Let us now consider the angular time delay.
Here the problem is to assign a delay for a par-
ticle incident in the direction P; and subsequently
detected in the direction p. The idea for this type
of time delay apparently was present in the orig-
inal work of Wigner and Eisenbud, e and has since
been studied by Brenig and Haag, ' Froissart,
Goldberger, and Watson, ' and recently again by
Goldrich and Wigner. ' The formal definition for
this concept is obtained from the expression

(I 5)

In this equation i}&(x, t) is the exact time-dependent
wave function that appeared in Eq. (1.1), here ex-
pressed in coordinate space. The subscript C' on
the integral sign means that the integration is to
be carried out only for the interior of a cone C'
whose axis points in the P direction. Mathemat-
ically the cone is the set in coordinate space given
by C'(p, &}= {x:x.p & l&

I x I ), where 0 & A & 1.
Clearly, as ~-+1 the apex angle of the cone van-

ishes. Thus &x(t)& has the physical meaning of the
average position at time t of the portion of the
wave &t&(t) found inside the cone C'. For the case
where the incident momentum-space wave packet
f is strongly peaked about p;, computing the right-
hand side of Eq. (1.5) in the limit A. - 1 yields

(1.6)

The time variable t in this formula is defined such
that at t = 0 the average separation of the particles
in the wave function is zero. The mean velocity of
the wave is just v, = p; jp. It is found that' '

(p I
t& (E) I pg& =

sE arg &p I
s (E}I p& .

The physical interpretation of Eq. (1.6) is straight-
forward. The term v, t is the position one expects
the outgoing wave to have if it always has a mean
velocity v, . The term n(E) gives a correction to
this position and represents the time delay in the
P direction. Note that formulas (1.7) and (1.4) are
quite different in structure. Equation (1.4) is an
operator relationship, but (1.'I) involves only the
energy derivative of the argument of the reduced
s -matrix element.

It is interesting to understand how these two
time delays are interrelated. H one sets
f(p}=5(p- p;) f;(p) in Eq. (1.1), then it is easy to
deduce that the forward matrix element,
(p; I q(E) I p;), is proportional to the global time
delay for a plane wave of energy E and incident
direction p;. For a final scattering direction p
then (PI t&(E}IP;) is the associated angular time
delay. The likelihood of the plane wave scatter-
ing into p isl(pls(E)lp;)I'. Thus we anticipate
that if we weigh the angular time delay with its
probability and integrate over all angles we will
get the global time delay, viz.

x p dE s(E) p; dp
I

dE

PsE P;* sE P;

x Re —i —ln &pl s(E) I p;) dpdE

sE P) P LE P) dp.

(1.8)

As the last form of Eq. (1.8} shows, our antici-
pated result is correct. The first form of Eq.
(1.8} employs just the integral version of Eq. (1.4)
and the reality of the diagonal element
&p& I q(E) I p&&. In fact, Nussenzveig" found a con-
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nection between the angular and global time delays.
It is not difficult to show Nussenzveig's result is
equivalent to that above.

There remains one important feature of the two-
body time delay we have not yet discussed. This
is the spectral property. For the moment, con-
sider the resolvents r, (z) =(Ho —z) ' and r(z)
=(H —z) ' that are related to the free and exact
Hamiltonians, H, and H. Then the spectral prop-
erty is the statement that

1 * 1—Im tr[r(E +f0) —ro(E +i0) j = —tr i, il(E),

(1.9)

where tr is the trace on L'(p) and tri, is on L'(P).
In its mathematical guise this has been carefully
studied by Birman and Krein, "and by Buslaev. "
The explicit connection of the spectral property
to time delay is found first in the paper of Jauch,
Sinha, and Misra. " A very simple proof is found
in Ref. 14. It is well known"' ' that the left-hand
side of Eq. (1.9) is physically equal to the change
of state density at energy E produced by the inter-
action v=H- H, . It is through this state-density
meaning that the global time delay enters stat-
istical mechanics. "' "

The above list of properties, summarized by
Eqs. (1.1) through (1.9), form the theoretical
framework of time-delay theory in the two-body
problem. Let us close this summary by mention-
ing some other approaches and applications extant
in the literature. Attempts to view the problem
from a classical perspective have been worked
out by Smith" and by Bar-oadda. " Time delay
for two-body scattering with absorption has been
analyzed by Martin. " The time-delay concept
has been recently extended to one-dimensional
field theories by Jackiw and Woo." Applications
of the time-delay formalism include corrections
to the Boltzmann equation derived by van Santen. "
Causal lower bounds on global time delay have
been obtained by Nowakowski and Qsborn. " Fong
has discussed some aspects of the static coupled-
channel problem. " Finally, Dalitz and Moore-
house" have used the time-delay formalism to
investigate resonances in the coupled-channel
problems.

The purpose of our paper is to derive the multi-
particle equivalents of the global and angular time
delay. We have elsewhere ' discussed the mathe-
matical features of global time delay. Consequent-
ly, the primary emphasis of this paper is to ana-
lyze the forms of the angular time delay as it oc-
curs in the three-body problem and to establish
the connection between the global and angular
forms.

In Sec. II we present a discussion of the defini-
tion and physical meaning of angular time delay.
We use the two-body problem to carry out this
discussion and to illustrate the general method of
solution we employ. Section III describes the an-
gular time-delay results for elastic, rearrange-
ment, and breakup scattering in the three-body
problem. Section IV gives the interconnection
statement that is analogous to Eq. (1.8). Also in-
cluded in this last section are some remaining
difficulties in the physical interpretation and a dis-
cussion of some of the observable effects of these
time delays. Finally, in the Appendix we study
some aspects of the convergence of the asymp-
totic and exact time-dependent wave functions
needed in the treatment of angular time delay.

We do not derive the three-body spectral prop-
erty. Its proof requires the introduction of a new
analytical method in the three-body problem based
on Cayley transforms and will be presented sep-
arately.

II. ASPECTS OF TWO-BODY ANGULAR TIME DELAY

Equation (2.1) implies that i'(t) has the unique
form

~(t) -iet II(+)f— (2.2)

where II" is the Mg(lier operator satisfying the
outgoing radiation condition. Long after the col-
lision i'(t) again evolves according to the free
Hamiltonian, Ho, and the asymptotic wave
iti'(t) =e '"0'f' converges in norm to ili(t) for large
positive times; i.e. ,

(2.3)

The wave-packet function f' characterizes the
outgoing state and is known to be'

f+ g(-) ~ g(+)f—

=sf (2.4)

Here D l is the Mt(lier operator with the incom-

The method we use to obtain the three-body an-
gular time-delay results is easy to understand in
the context of two-body scattering. So we shall
use the two-body problem as a model in which we
may present the more sensitive physical and math-
ematical aspects of the angular time-delay deri-
vation.

Let us begin our analysis by examining the defi-
nition of angular time delay. Suppose f is the
incident asymptotic wave packet, then the exact
time-dependent solution to the Schrodinger equa-
tion, i'(t), is determined by the condition

(2.1)
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ing-radiation condition and S is the S-matrix oper-
ator.

The quantity we need to compute is the average
position of (t)(t) in a cone C'(n, A) for large posi-
tive times. We find it convenient to carry out
this calculation in momentum space. The posi-
tion operator x has the momentum-space form

x= —V
2

= —(v- v)
2

(2.5)

J d 'p (t) *(p, t ) x n (t)(p, t )
(x(t)},= '

f d'P i(()(p, t)I'
(2.7)

One needs the form of Eq. (2.7) only for very
large positive t. Because of the convergence
property (2.3) it is plausible that we are allowed
to replace (t)(p, t} in Eq. (2.7) by the simpler
Q'(p, t). We shall take as a basic ansatz that this
replacement leads to an error that vanishes as

Such an ansatz is characteristic of all the
former treatments of angular time delay. "In-
tuitively, one might think that the convergence
condition (2.3) is sufficient to prove that the ansatz
is correct. This would be so if we were comput-
ing the expectation value of a bounded operator.
However, x n is unbounded and is expected to have
a behavior like At+B, where A and & are con-
stants. Thus 6(t)-0 is not sufficient to show

f,d'Pe*(p t) x n4(p, t) f,d'Prt)'*(p t}x'n0'(p t)

f d'pl/(p, t) I' f d'pI y'(p, t)I'

-0, (2.8)

as t-+~. In the Appendix we study the sufficient
conditions for this convergence. We conclude that
if 6(t) &const xt ' ' for large t, and where e &0,
then the ansatz (2.8) is valid. We also prove in
the Appendix that if the potential falls off faster
than x ' then 6(t) satisfies the estimate
6(t ) & const x t ' '.

In posing the definition of the mean position in
momentum space we have implicitly assumed that
the correct momentum-space cone restriction is
the cone C(n, A) that is identical to the coordinate-
space cone C'(n, A), but is set in momentum space.
This reasonable assumption is given a rigorous
statement in a theorem by Dollard. ~ For the

Let C(n, )() be the momentum-space dual of the
coordinate-space cone C'(n, A), i.e.,

C(n, )(.) ={p: p n&A. (p(), 0-X- I . (2.6}

The mean position of P(t) in cone C is given by
the expression

freely evolving wave Q(t }= e '"()'f, Dollard proved

lim d x e o x
t~ s~ t."'(n, ~)

d'p p '. 29

Here f is any I. function and f its Fourier trans-
form. The physical content of the above statement
is that if at time t =0 a particle is contained in the
momentum-space cone C(n, X), then as t ~-it
must be found in the dual coordinate-space cone
C'(n, A).

The final important ingredient in this derivation
is the nature of the incident wave packet. The
simplest structure for the incident wave packet
is that of a plane wave of momentum p~. This
wave function is just f (p) =6(p —pq). If this form
of wave function is used, then our method of der-
ivation is meaningless. Technically, we must
employ normalizable wave packets that are suc-
cessively more and more like a plane wave. Spe-
cifically, our assumed wave-packet properties
are the following:

Pl: The incident wave packet f (p) is almost
monochromatic with an average momentum value
p&. It is also highly collimated with a direction p&.

These two properties are implied if the modulus
of f (p) is sharply peaked about p~. We assume
that relative to this sharp peak the t matrix is
slowly varying.

P2: The phase of the wave packet f (p),
arg f (p), is slowly varying and vanishes in the
limit as f approaches a plane-wave structure.
Note that a plane wave is represented by 6(p —p;),
and since it is purely real it has no phase varia-
tion.

P3: The coordinate-space position of each in-
cident wave packet is at the origin at time t =0.

This last property P3 simply defines the origin
of the time variable t. The vector position, x (t),
of the incident wave packet f, is determined by

=t d~p — p

d P f p Varg p (2.10)

d'p p
' Varg p =0. (2.11)

In the plane-wave limit, property P2 implies
property P3.

where it is assumed that f is normalized to unity.
The requirement P3, that x (0) =0, means that
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Let us consider the derivation of Eq. (1.'I) for C
in any nonforward direction. To do this we need
to compute the ratio

(2.12)

in the t-+~ limit. Only the numerator requires
attention. Recalling the momentum- space rep-
resentation of x given by (2.5), we note the use-
ful identity,

strongly peaked about p;. From representation
(2.14) it follows that I (t('(p, t) I' is also peaked
about E =E;. As a consequence the energy E in
the two-argument terms in Eq. (2.19) may be re-
placed with E;. We also have to take the opening
angle of the cone C to be small enough such that
the variation of arg(pls(E) lp;& is constant with
respect to P. This step incorporates the limit
X-1. Putting this modified form of (2.19) into
the ratio (2.12) gives the desired solution

2
4'*(p, t) v ny'(p, t) =-l4'(p, t)l'

x —
E argQ'(p, t),

(x(t)&, =( &, t -arg(pl (z;)lp;)c c
&E&

8
arg E(p;) (2.20)

(2.13)
where (v&c is the mean velocity of (t('(p, t) in the
cone C:

where E is the kinetic energy E=P'/2p. For (t('

we have the representation fc d'p(p/t() If'(p) I'

f d'Plf'(p)l' (2.21)

('((, t) = '*' f4( (i(~(E(l( ('f (li (. ('2 (4)'

Thus the energy derivative of arg Q'(p, t) gives us

where

F(p)
-=dp'f (pp') .

Now Eq. (2.15) takes the form

(2.16}

(2.1'I)

,E argy'(p, t) =-t+,E [arg&pls(z)lp, &

+arg F(p)] (2.18)

and Eq. (2.13) becomes

*(p, t) v n(p'(p, t}= I(p'(p, t) I'

x t —
sE arg&pls(z) I p,.&

8—,Zarge(p) .

(2.19)

Property P2 tells us that If (P, P')
I

' will be

8 9

sE arg (p'(p, t) = —t+ 6E arg dp'&pls(z) I
p')

xf (pp ) . (2.1-5)

The evaluation of the time-independent term is
carried out by employing the wave-packet property
Pl. For C not in the forward direction (pls(E) I p(&

is a smooth function of p and p;, thus we have the
approximation

In the plane-wave limit we expect the term with
arg F(P;} to vanish. It is an essential feature of
the above derivation that we only used the wave-
packet properties to assist in the computation of
the constant terms in (x(t))c. The coefficient of
the linear term must be computed without approxi-
mation since any error in this coefficient is mul-
tiplied by t which goes to +~.

We close this section with a few general remarks
about the nature of the result found above. It is
important that property P3 states that it is the
noninteracting rather than the interacting wave
packet that is at x=0 when t=0. Thus it is clear
that the spatial shift of the position of the outgoing
wave,

a
&v&c,E»g (PI s(E;) I p;&,

S

includes effects from accelerations as the particle
approaches the scattering region, as well as
accelerations affecting the outgoing stage of the
scattering. So, for the scattering geometry (P, P;)
Eq. (2.20) represents the total time delay. With
this interpretation the connection formula (1.8)
makes good physical sense.

It is of some interest to contrast our method of
derivation with those employed in Refs. 8 and 9.
The major difference is in fact that the above
derivation, Eqs. (2.13)-(2.21), is much shorter.
There is a simple reason for this. The deriva-
tions of Refs. 8 and 9 are set initially in coordi-
nate space and then Fourier transforms to mo-
mentum space must be introduced to complete the
calculation. However, the presence of the cone
restriction make the Fourier transform uncom-
monly awkward. Our derivation is set completely
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in momentum space so we need only algebraic
manipulations.

III. THREE-BODY ANGULAR TIME DELAY

4'8(P qi ~) =48(qs) e 8 f 8(PB) (3.1)

where

We derive here the angular time-delay results
for three-body scattering. The method we use is
just a multichannel modification of that employed
in Sec. II. We begin our discussion by setting up
the appropriate definitions. Let fz(ps) be the mo-
mentum-space function describing the free rela-
tive motion of particle P and the cluster composed
of particles a and y. The momentum p8 is the
relative momentum of particle p and the center
of mass of the ey cluster. The internal momen-
tum of the ay cluster is denoted by qz, and the
conjugate coordinates of p8, q& are x8, yz. A more
detailed description of our Jacobi coordinates
may be found in Ref. 28.

The freely evolving wave packet associated with
f s is given by

a=1, 2, 3. (3.6)

For a =0, P, is the identity. The asymptotic wave
functions are

4';(p, q; t) =N.(q.) e '""'f'.(p ),

(S.V}

4'(p, q;t)=e '""f,'(p, q), (3.8)

where Ho is the Hamiltonian, Ho =p ~'+g ~'. The
outgoing wave packets f' are related to f s by the
S matrix,

As t-+ ~, 0'8(t) has wave-function components qp'(f)
satisfying four different boundary conditions that
are determined by

lim II P I@8(t }—4"(t )] II
= 0, a = 0, 1, 2, 3 .

t~+ oo

(3.5)

Here P is a projection operator associated with
the subspace of a-channel motion, and is given
by the kernels

(PA. I P.I p'. q.'& = 0.(q.) C.(q.') 6(p. —p'.),

and

2

HB = -Xgps
2' 8

=P g -Xs

2

(q8 +VB) $8(qB) $ 8 q8 2/8

(3.2)

(3.3)

f' =S~Bf8, a=0, 1, 2, 3 . (3.9)

All of the above statements have been given a
rigorous proof by Faddeev. ' To find either the
elastic or rearrangement time delays we have to
calculate the mean position of the outgoing wave
packet in a cone. The operator x, whose matrix
elements give the separation of cluster py and
particle a, is

Here H8 is the p-channel Hamiltonian, -X&' is
the bound-state energy of cluster ay, and $8(q8)
is the unit normalized two-body bound-state wave
function. The reduced mass of cluster ay and
particle P is denoted by nz while p. 8 denotes the
reduced mass of particles n and y. The exact
time-dependent state 0'8(t) evolving from 4 8(t)
is defined by

Zx~-
2 VP (3.10)

We denote by C (n, &) the cone that is related to
x . This cone is the set of vectors p satisfying

C„(n„,Z) =(p;p n„)alp„l), 0-a-1 .

(3.11)

»m Iles(t)-es(t)Ii=0.
oo

(3.4) The mean position x 8(t) for the state evolving
from f 8 is given by the expression

( } fd'q fc d'p P +s(p~, q t)x ~ n„P 4 s(p„, q„; t)
fd'q. f d'p. lP.+,(p., q.; &) I'

C0

Following the procedure used in Sec. II we shall also need

( f ))
fd'q fed'p„e'„+(p q; t)x n 4'(p, q . f)

fd'q. f d p. l~:(P., q.;f)l'
&n

(3.12)

(3.13)

In this case our fundamental ansatz is that

lim l(x s(t)}c-(x s(f))c]=0.
f~+ a)

(3.14)

As in the two-body case, sufficient conditions for
the validity of this ansatz are that the limits in
Eq. (3.5}vanish faster than f ' We also ass.ume
that our wave packet f s satisfies the properties
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(t)'(p ) = '"" """f'(p ) . (3.16)

We next introduce a reduced s matrix, defined
b 25

(p. lS B I p'8)
p . . . (P.l B(&) I p'B&,
~(E- &')

n p nt) P8)' '

(3.1'1)

where E = p ' —X ', E' = p82 —X &'. This leads then,
together with Eq. (3.9), to the following repre-
sentation for (I)'„(p, t ):

1/2
~+( t) iBt B-PB

a pa~ „pa a

x dp', p s., z p' ~ps ps

(3.18)

with P8' =&+Xg =P —X '+X8'. We now use the
analog of Eq. (2.13). So we have to calculate the
energy derivative of the argument,

,z ~ a ('.(i., t ) = - t ~,z ~ I fd))
i) &(). l s(@) l

() i))

xf ()(p(), p8) .

(3.19)

We observe that the presence of the factor
(n8PB/n„p )' ' in Eq. (3.18) does not modify the
above expression because this factor is real and
does not alter the phase. Thus we are lead to

*(p, t)~ 'n 0 (p t)

= Id'(p, t)I' t- sE»g(P„IB 8(&;)IPI(&

(3.20)

P1-P3 ~ A few changes need to be incorporated
so that these properties apply to the multichannel
case. For example, the position x8 of the non-
interacting incident wave is given by (2.10) again,
with f replaced by f&. For convenience we will
also assume that f 8 is real. It is straightforward
to add the terms arising from a complex f t). How-
ever, the effect of P2 is to argue that in the plane-
wave limit these terms vanish.

Let us complete the computation of (x„z(t)&c.
Using representation (3.7) of C '(t) allows us to
perform the q„ integrations. Thus

xmas(t)

may be
simplified to read

(x)( (t)) fc„d pi($()(*(p~, t)x~ n~ p('( p~ t)

J d'p. le'.(p., t) I'
~a

(3.15)

where

where P'8 is the direction of collimation of the in-
cident wave. Defining the mean velocity in the
cone C to be

5 . 'P. (P./n. ) lf:(p.) I'
Jc„d'P if'(p )i'

we have then

(3.21)

I

(x.,(t)&, =(v2, t-,E arg(p. ls„,(z, ) I p'8&

(3.22)

This completes the derivation for elastic and re-
arrangement scattering.

The remaining case to be treated is the breakup
scattering. The final state of three free particles
in the center-of-mass coordinate system has five
degrees of freedom after energy conservation is
taken into account. We shall introduce a six-di-
mensional spherical coordinate system to describe
this final state. Let E be the total center-of-mass
kinetic energy

p 2

E =P'+q' =-

2m

PPl] ~PQ

m1 +APL) +~
(n p )1l2

(3.23)

where m„m„m, are the individual particle masses.
Equation (3.23) defines a momentum Po that is re-
lated only to the kinetic energy. In terms of P„
the momenta P and g are

1/2
P = P cos(d 0 ~+4a m 0 a9 a

0

S/2

~a ~0
fop

(3.24)

(3.25)

where the ratio p /il may be used to define the
angle & . We shall further represent the pair of
vectors Pp„, q j by p, . Associated with p, is the
six-dimensional gradient V& and the radial com-
ponent is n, Vz =S/SP„~ where no is the unit vec-

P0
tor in six dimensions. The canonically conjugate
variable to p0 is p„which is given by the expres-
sion

p, =(2m, ) 't'(2n x '+2ti y ')'t', a=1, 2, 3 .

(3.26)

This coordinate p, is independent of the Jacobi
coordinate system chosen. It may also be written

p, =(2m, ) ' '(2m, r, '+ 2m, r, '+2m, r, ')' ',
(3.27)

where r„r„r, are the individual position vectors
of particle 1, 2, 3 in the center-of-mass coordinate
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system, respectively.
The cone restriction in momentum space is now

the set

Co(tt„)) =(P,: Po tt, &)(PJ, 0 &X &I . (3.28)

The position operator of p0 in the cone has the
form

p = —n ~ V-
0 2 0 P0

(3.29}

We must calculate the mean position of p, in C,.
The ansatz (3.14) means it is sufficient to com-
pute

(3.80)

The outgoing breakup wave packet may be repre-
sented with the help of the S matrix

4.'(i., s) =f4*t's (ii.ls. s li))

Xe 1(/s/) X(t )tf (-t-)-(3.31)

Introducing the reduced breakup s matrix defined
by29(, 5(E —E')

pa l~o() lp()} =
( p 4)1/2(@ ps}1/2

x(p, ls„(z) I pt)}

Eq. (3.31) becomes

~f i/)'2

c,+ (» t )
ttt) PS e I/tt-

0 0y ~p4

(3.32)

x dp~ 0 s06 p', 6 ps, 333

where

p/ [2s (E +)( 2)] 1/2 (3.34)

(
P. fc.(t'P. (P./ttt ) ~f.'(p.) ~

'

f, &'p. ~f.'(p.) ~'
0

(3.36}

It is appropriate to comment here on the gen-
erality of these results and the method of analysis.
Are the type of results given in formulas (3.22} and
(3.85) valid in the four- and N-body problems It
is obvious that they are. The two basic ingredients
of our derivation are the convergence of the as-

Inserting Eq. (3.33) into Eq. (8.30) gives the result
0

(*„(s)), = (~ zs (t,sIs„-O()lt's),
C0

(3.35)

with the average radial velocity in the cone C0
given by

ymptotic outgoing wave to the exact wave given
by Eq. (3.5) and the representations (3.18) and

(3.33) of the asymptotic waves in terms of the
channel S matrices. These general features should
be a part of any rigorous N-body scattering theory.

IV. GLOBAL TIME DELAY

In this section we discuss global time delay in
three-body scattering. We emphasize the defini-
tion of this concept and the corresponding solu-
tion. The elaborate mathematical analysis needed
to obtain the solution is found in an earlier paper. "
Here we shall also derive the multichannel equiva-
lent of connection statement (1.8). This estab-
lishes the mutual interdependence and self-con-
sistency of the angular time-delay results ob-
tained in Sec. III and the global time-delay results
presented in this section.

Consider the exact three-body wave packet )I/2(t)
that evolves from the asymptotic wave packet 4()(t)
given by Eq. (3.1). The function )it t)(t) is defined
by Eq. (3.4} and is known" to have the form

(t) -1/tt U( )f (4.1)

In this formula and subsequent ones we drop the
superscript minus that appeared on f /t in Sec. III.
The operator U()

' is the Mt(lier operator defined
in Faddeev's work. The momentum-space matrix
elements of Ut) ), (pq l Uz

)
l pt)), give the exact

time-independent wave function solution for a plane
wave of momentum pz incident in the P channel.
This wave function satisfies the outgoing radiation
condition in all final channels. " The wave func-
tions U(t f (t and )It ()(t) are both members of the
Hilbert space with six momentum or coordinate
degrees of freedom.

Let us define a six-dimensional sphere in the
(x„,y } space. An invariant radial distance, p„
is specified by Eq. (8.26}. Thus for any function
f(x, y) we can define a projection operator onto
the sphere of radius 8 by

f(x„,y ) if p, -ft,
0 if 8 (4.2)

The matrix element (0' t)(t },5'(8) 0' t)(t)) gives the
probability that the state )I (t(t) is inside the sphere
at time t. The integral

4, t), 6'B 4g t )dt (4.3)
0

has the meaning of the fraction of time between
—t0 and t, that the state 4& spends inside the
sphere. At this stage we refrain from letting
t, ~, since i-t is likely that (4.3}will be infinite.

If we write down the same quantity for the as-
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ymptotic solutions in the absence of the interclus-
ter potentials, we have the integral

l

�to
(4 s(t), 6'(R) 4 s(t)) dt .

-tp
(4.4)

x(its((TI)) d'(f sd'(f II . (4.6)

When a = P and f s =f s, then T s(R, t,) is equal to
the integral (4.4). For the case of the interacting
waves one has the quantity T s(R, t,},

T s(R, t)=f (f'„s' U', ' IP(R)t)ts's "s'fs)st
-t

0

(4. t)

This quantity is equal to the integral (4.3) when
a = P and f ' =fs. Thus computing the difference
T s(R, t,}—T„s(R, t,) will solve the global time-
delay problem. We denote this difference by
(f ', Q s(R, t,)fs). The operator notation for
Q~s(R, t,) is justified since the difference
T s(R, t,) —T„s(R, t,) is a bilinear functional of

f „' and f s. So we get for the operator form of
Q s(R, t,)

t

Q~s(R, t,) = e'"~'[U~ ' d'(R) Us ' 6„s(P(R)]
0

Xe '"8td (4.6)

The difference of these two integrals in the com-
pound limit as tp-~ followed by A-~ defines our
time delay for channel P. For each value of P and
incident wave packet f s a related time delay is de-
fined.

We now must develop a technique which allows
us to compute these time delays. We do this by
embedding this problem in a larger mathematical
problem. In this larger problem we find a natural
Hermitian operator that is related to the time de-
lay defined above. The larger problem is sug-
gested by treating the matrix elements as though
they were transition probabilities rather than ob-
servable amplitudes. For example, related to
the integral in (4.4) one writes

tp
T s(R, t,) = 6„s {f s, e's'd's(R) e '"s' f s) dt,

-t 0

(4.5)

where 6'8 is the two-body-like channel projection
operator that is given by the kernel

(tt ~ I
R s(R) I i's ) = f(S)(is) (isis) tt(R)

I
i', i',)

The operator Q 8 has a number of properties
closely related to the three-body S matrix, viz.

+a a8 @a8+8y ~a8 8a (4.10)

q s(E) =-i+ st (E) s„s(E) .
7=0

(4.12)

Our discussion above means that we interpret
only (f (E) as being related to observable time
delays. Naturally, because of property (4.10) all
diagonal inner products of it (E) are real —as
they must be for an observable phenomenon. The
matrix elements of (f s(E) are, however, com-
plex and as far as we are aware are not related
to any observable phenomenon. The only calcula-
tion these matrix elements could enter would be
in computing the expectation value of Qe8 for an
initial state that is a coherent superposition of
several incoming asymptotic channel wave func-
tions. Although it is easy to write down such a
state mathematically, we cannot see how such an
initial state could be prepared in a scattering ex-
periment.

We investigate now the connection between global
and angular time delay. As we have shown in
formulas (3.22) and (3.35}, the angular time delay
may be written

&P(RI +(Rs(E}I Ps) = sE»g &P(RIe (Rs(E) I Ps) s

a = 0, 1, 2, 3, P & 0. (4.13)

For the elastic scattering channel, r ss(E), this
formula is demonstrated only in the nonforward
direction p8 &p8. The integral form of the global
time delay Eq. (4.12} is

3

&Ps I'? ss(E) IPs} = ' Q dPy &0'y I ys(E}IPs)'
7=0

xdE &P') Isys(E)IPs}

The first property means Q 8 is diagonal in energy,
the second property is closely related to the uni-
tarity of the S matrix. Because of the first prop-
erty one may introduce the diagonal representation

6(E E)
&p I Q slps) =

( p )tea
&P" I& s(E) IP'e}

+ePe~8~8I

(s &0 . (4.11)

The solution of the global time-delay problem
found in Ref. 25 is then

We then define Q 8 as the weak limit

Q s= lim lim Q, s(R, t,) .
g ~an t ~()o

(4.9)

(4.14)

Since the matrix element on the left-hand side is
real, we may take the real part of Eq. (4.14) with-
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out altering the left-hand-side element. So we
have [cf. Eq. (1.8)]

Consider the y &P terms first. The differential
cross sections may be written in terms of the re-
duced s matrices as"

(4.15)

This statement has an obvious physical interpre-
tation. The global time delay for an exact scat-
tering state specified by a plane wave of energy E
and incident direction PB is seen to be the super-
position of the angular time delays summed over
all open channels and integrated over all direc-
tions. The weighting coefficient of the angular
time delay is just the probability of that scatter-
ing —i.e. , the modulus of the & matrix squared.

A second form of this connection statement may
be set up. We may introduce into Eq. (4.15) the
differential channel cross sections. Let us break
up the right-hand side of Eq. (4.15) into two sets
of terms. The first will contain the elastic term
s 8 8(E); the second set will have all the remaining
inelastic terms. These two cases are essentially
different because the elastic scattered wave may
interfere with itself in the forward direction, but
the inelastic channels cannot have this feature.

«)I )I'
Py PJ

y = 0, 1, 2, 8, y 0 P . (4.16)

Thus all the nondiagonal terms have the form

(4. 17)

In order to find the diagonal matrix element let us
employ the scattering amplitude, f 8(E, PIt), de-
fined by

(4.18)
Ps

f&(E, ps) = —2ne 2v'X s8(P's, ps, p&' —Xtt'+i0),

(4.19)

where X &8 is the on-shell elastic amplitude de-
fined by Faddeev. Using these last two equations
to evaluate the elastic term in Eq. (4.15) gives
the expression

d 2 -, do s s(pIt) d
2m dE Re[psf8(E, PB)]+; 2 ps' dp's d-, '

dE argfs(E, ps) . (4.20)

Thus, altogether we are led to

(pal~88(E) I&8) = 2„dE Re[p8f s(E PB)]

dps d, d argf 8(E p8)+ g dpi' „'., ' —arg(p'Is~s(E)I ps)
8 B(pB) N~s(p~) d

8 dPy dE

(4.21)

In this version of the connection statement the
angular time delay is weighted by the differential
cross section rather than the square modulus of
the s matrix. We note that the first term on the
right-hand side accounts for the interference in
the forward direction between the scattered and
unscattered wave. For the two-body case one may
restate the connection formula (1.8), in a fashion
parallel to that of Eq. (4.21). This has been done
by Nussenzveig. " The result is just the first two
terms on the right-hand side of Eq. (4.21), with all
the channel labels removed.

We shall close this paper with a discussion of
the observable effects of the theory presented
here. The entire treatment of angular time delay
has been set up so that it can be directly related
to scattering observed by counters. There are,
in our opinion, three distinct difficulties which

need to be overcome before such a measurement
could be practical. We shall comment on each of
these in their order of severity. All these dif-
ficulties occur both in the two- and three-body
problem, so we shall confine this discussion to
the simpler two-body case. The first problem is
the presence of the wave-packet structure term
(&/sE) arg F(p) in formula (2.20). If this term is
unknown, then in a single scattering observation,
one could never obtain a determination of
(&/sE) arg(pls(E) I p;) more accurately than
(s/aE) arg F(p) It seems likel. y that in an en-
semble of similar plane-wave-like packets the
function (S/&E) arg F(P) is random in sign. Thus
in the average of many observations the effect of
(8/BE) arg F(p) will average to zero. The next
problem is the limitation on observation accuracy
imposed by the uncertainty principle. Neglecting
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arg F(P) in (2.20) then ACKNOWLEDGMENTS

E arg(Pls(E, ) I p, & =t-e . &x(t)),
8 vc (4.22)

The physical meaning of (x(t))c and (v)c is the
average value of position and velocity, respec-
tively, in the scattered wave packet. Assume for
the moment that t is known. If one observes the
position and the velocity for a large collection of
identical wave packets, then the average of the
observations converge to (x(t)&c and (v)c. For
this reason, the uncertainty principle governing
x and v will not limit the accuracy to which
(x(t}&c/(v&c can be determined. The principal
difficulty concerns determining t. Property P3
defines t as the elapsed time since the moment
when the free asymptotic incident wave packet is
at x =0. How one could even in principle deter-
mine this is not clear to us. Another way of stat-
ing this problem is to say that we do not know
where the point x = 0 is.

There is one example of observed time-delay
phenomena where the problems above are over-
come. This is the observation of compound nu-

clear resonant lifetimes using crystal blocking
techniques. These techniques succeed in measur-
ing nuclear reaction times in the range 10 ' -10 '
seconds. The theoretical study of time delay for
a scattering in a crystal has been carried out by
Yoshida" and Yazaki and Yoshida. " The general
structure of the crystal blocking problem is quite
different from that studied here since the formal-
ism must be appropriate to the compound nuclear
resonance model of scattering and the effects of
the crystal medium must be explicitly taken into
account. The underlying feature of this type of
scattering that makes the observations feasible
is that one knows the location of the scattering
site, and the crystal provides, through the chan-
nel mechanism, a precise measure of the distance
traveled by the scattered wave.

We believe the significant observable effects of
the time-delay theory studied here will come
about through indirect mechanisms. The best
understood of these is the spectral property given

by Eq. (1.9). For example, it is well known that
the second virial coefficient for a gas of inter-
acting quantum particles has an integral repre-
sentation involving the trace of the global time
delay. ' This result can be derived as an imme-
diate consequence of the spectral property. An-
other consequence of the spectral property is that
it implies Levinson's theorem. " It is reasonable
to expect that similar predictions can be obtained
from the three- and N-body global time-delay
theory.

In this appendix we provide a brief discussion
of the convergence features of our fundamental
ansatz, Eq. (2.8). Consider the quantities

N (t) =(P+(t), x n Q+(t))c,

N, (t) = 4(t), x s 0(t))c

D,(t) = ll4'(t)ll ' (A1)

where all the functions are those defined in Sec.
II. The subscript C on the inner product indicates
a restricted domain of integration given by the
cone C(n, &). The function D,(t) is a constant and

D, (t) converges to D,(t }by Eq. (2.3). With this
notation the ansatz re."-:.ds

&x(t )& —&x~(t)& -0 as t -+
where

(x(t))c =N, (t)/D, (t),
&x~(t )&

= N, (t )/D, (t) .

(A2)

(A3)

Since D,(t} and D, (t) converge to constants we can
state the convergence problem without loss of
generality as proving that

D, D, ~ —~ =N, (D, —D,) +D,(N, —N2) (A4)
1 2

vanishes for t-+. We will investigate this con-
vergence under reasonable physical assumptions.
First we note that the results of Sec. II imply that

Ilx np'(t)II &A,t, (A5)

with A, some positive constant and t sufficiently
large. We also expect a similar result holds for
the wave P(t) So we make t. he assumption that for
sufficiently large t

II» n4(t)llc&A t, A, &0. (A6)

Inspecting relation (A4) we see that the term
with D, —D, is multiplied by N, (t) which has the
behavior A, t, A, &0. Let

r(t) =y'(t) —g(t) (AV)

be the difference between the free outgoing wave

Both authors want to thank the theory group at
the Stanford Linear Accelerator Center for its
hospitality during the final stages of this work.
One of us (T. A. O. ) is grateful to Professor L.
Castillejo, Professor K Yazaki, and Professor C.
Chandler for informative discussions of this prob-
lem.

APPENDIX



310 D. BQLLE AND T. A. OSBQRN

and the exact one. Then we have

6(t ) =
II &(t ) II

-
II &(t ) II -I II o(t) II

—
II y'(t ) II I

I~D, —vD, I=
~D, +~D,

(A6)

some neighborhood of infinity. The second set is
the Schwartz space of C" functions of fast de-
crease. " This intersection is a dense set in the
L' Hilbert space. For f(x) in this intersection
Donaldson, Gibson, and Hersh' established the
estimate

The first term in Eq. (A4} has the estimate

IN, (D, —D,) I (A, t(v D, +~D,) 6(t) .

Clearly, if

6(&)«,f ' ', e)0, 6, =const)0

(A9)

(A10)

Now with this information the rate of convergence
may be determined from the well-known bound"

6(t) = II(&' '-e""e ""')f'll
then

I N, (D, —D,) I -A, 6,(~D, + ~D, ) t ' 0,
H-II, e '"o ' dt'. (A14)

(A11)

We still have to consider the second term in Eq.
(A4). From the definitions (Al) we are lead to

IN (t) -N, (t) I
= I(d(t), x nn(t)},

—2Re(A(t), x sf'(t)}c I

-II &(&) II [Ilx n &(&)II where the constant is

3(1+&)/2
1 (A15)

We may estimate the integrand of the expression
on the right-hand side of (A14) by substituting the
relation (A13) to obtain

- I/2
II(&-H.) e '"'f'll (

I v(x) e ""Of(x)I'd'x

+2llx ny'(t}llc]

-«f)[ll» se«)ll +3llx s4'(f)ll j

(6(f) (A, +3A, ) t-0 as t-~ .

(A12}

C,' =C' v x 'd'g
I X 1~1

+C2 x " v x 'd'x.
Ix)&1

(A16)

So again the estimate (A10) is strong enough to
show the second term vanishes.

Our conclusion is that if the reasonable assump-
tion (A6) is valid, then the rate of convergence
(A10) is sufficient to prove our ansatz (A2).

ln the remaining portion of this section we shall
compute the restriction on the potential necessary
to ensure that the rate of convergence (A10} will
be satisfied. Consider two sets of functions in
L'(x). The first shall be defined as those functions
whose momentum-space Fourier transforms van-
ish in both some neighborhood of the origin and

Carrying out the integration over t in (A14) gives
us

ll(g& & e""e "
0) f+II

1 +3E'

(A I I )

The above inequality tells us how 6(t) will van-
ish. If we require 6(t) go to zero faster than t ',
then we need a potential such that e& —,'. From
(A16) we see that if the potential falls off faster
than x ', then we may have values of &) —, such
that C, remains finite.
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