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Elastic and inclusive proton-proton scattering with bare-Pomeron intercept above 1*
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An analysis of high-energy proton-proton scattering with bare-Pomeron intercept above 1
is presented. Using a value o.'& (0) = 1.06, determined by the energy dependence of the PP total
cross section, a triple-Regge analysis of the inclusive process' -pX is carried out and
compared with the results of a more conventional analysis with nz (0) = 1. The resulting
tripl. e-Regge couplings are used in calculating the second-order corrections to the bare
Pomeron in the bare -perturbation expansion of Reggeon field theory. We find that such an
approach ean correctly describe the existing high-energy pp total-cross-section, elastic-,
and inclusive-scattering data.

I. INTRODUCTION

The observed rising PP total cross section at
Fermilab and CERN ISR has stimulated intense
theoretical and phenomenological investigations
regarding the nature of the Pomeron. In particu-
lar, much effort has gone into attempts to under-
stand the behavior of PP total and elastic scatter-
ing using various models for the Pomeron' ' (e.g.,
optical, eikonal, geometric, multiperipheral,
strong and weak cuts, etc.). However, because
the total cross section, elastic scattering, dif-
fractive resonance production, and inclusive
PP-PX scattering are all related through uni-
tarity; any effort to understand the Pomeron must
inevitably involve a combined analysis of all four
types of data.

Comparatively, little work has gone into the
phenomenological understanding of the Pomeron
in inclusive P+P-P+X scattering or diffractive
resonance production. Previous triple-Regge
analysis"' "of P+P-P+Ã with n~(0) =1 attribute
a rise in the PP total cross section to the summa-
tion over the mass of the X system and this rise
is proportional to G~»(0) ln(lns), where G~»(t)
is the triple-Pomeron coupling. The magnitude of
this coupling is, however, insufficient to produce
the observed 4 mb rise of o„,(PP) over the ISR
region. "' ' In addition, diffractive resonance
production, PP-PN*, is treated on a somewhat
different footing from elastic PP -PP scattering.
The elastic scattering is related via the optical
theorem to the rising total cross section. The
diffractive PP-P¹production is related through
FMSR (finite mass sum rules) and duality to the
triple-Regge term PPP (abnormal duality) or
PPR (normal duality) or a combination of the two

(mixed duality). " In any case, with a~(0) =1
o'(pp- pN*) would be expected to be constant or
slightly decrease with energy and not rise like
o'„(pp). Recent data on N*(1688) production'4' "
show, however, that o'(pp-p¹(1688)) does in-
deed behave remarkably similar to &.& (pp). "
Thus it seems compelling to attempt to analyze
the elastic, diffractive, and inclusive scattering
in terms of the same type of bare-Pomeron sin-
gularity.

A framework within which one can describe both
inclusive and exclusive scattering is the Reggeon
field theory. " " It is a t-channel picture where
the physical Pomeron is generated in terms of a
bare-Pomeron and a triple-Pomeron coupling.
In the weak-coupling solution the triple-Pomeron
vertex vanishes at t =0 and both the bare and the
physical Pomeron at t=0 are dominated by sim-
ple poles with unit intercept. " In the strong-cou-
pling solution, the triple coupling does not vanish
and the bare-Pomeron intercept is above 1. Here
the physical Pomeron, obtained using the renor-
malization group and e-expansion techniques, is
now a cut giving the total cross section an s de-
pendence of the form (lns)", q&0, as s -~.'9""

Recent data" on inclusive PP-P+X scattering
show no indication of a vanishing G»~(t) for t as
small as ( t( =0.035 (GeV/c)'. This, together with
a rising (x~,~(pp), favors the strong-coupling solu-
tion. The (lns)" behavior given by the strong-cou-
pling solution for o„,(pp) is, however, valid at
asymptotic energies (i.e., at energies much higher
than the highest available energy at ISR). At
presently available energies the bare perturba-
tion expansion should be used to compare theory
with data. "

We perform a triple-Regge analysis of inclusive
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PP-PX scattering with bare-Pomeron intercept
greater than 1. The value used for the intercept
is a~(0) = 1.06 which is determined from the en-
ergy dependence of the PP total cross section. We
compare the features of this type of solutions
with those with the usual a~(0) = 1. Then, using
the determined triple-Regge couplings and the
bare perturbation expansion to second order [Fig.
1(a)] we attempt to describe the Pomeron con-
tributions to PP scattering. In our analysis of PP
elastic scattering and total cross section we will
confine ourselves to the region 500 &s &3000
GeV/c and will thus ignore the contributions of
all secondary Regge trajectories except where
they couple to the Pomeron through the triple-
Regge couplings.

We interpret the first two terms in the bare-
Pomeron perturbation expansion in terms of an
s-channel picture. '4 The bare Pomeron [first
term in Fig. 1(a)] can be identified as being gen-
erated by the (rapidly converging) multiperipheral
series owing to nonPomeron Regge exchanges
with low rapidity gaps. The second term then rep-
resents absorptive corrections provided by the
contributions of the various intermediate states
P+P-X, X, including the elastic state, with X,
and X, separated by a large rapidity gap [see
Fig. 1(b)]. In other words, one can identify the
first two terms of the expansion as an expansion
in the rapidity gap length (fireball expansion). "
The crucial absorptive sign corresponds to using
Gribov's yrescription for evaluating the cut. " In
making such an identification we have used duality
for the Pomeron-particle amplitude to include the
elastic along with the higher-mass intermediate
states. '4

One advantage of the s-channel picture is that
one can include the s-channel threshold factors
so that at a given energy only a finite number of
terms in the expansion are nonzero. The pres-
ence of such threshoM factors may be useful for
understanding the transition from finite s where
the bare expansion holds to the asymptotic s where
the cut dominates. ' In addition, the s channel is
the most convenient description when discussing
absorptive-type models.

The terms higher than the second order are
quite complicated and so is their s-channel inter-
pretation. Furthermore, as s - more and more
terms in the perturbation expansion will be sig-
nificant and the strong-coupling results of the
Reggeon calculus indicate that the bare perturba-
tion expansion will eventually break down. There-
fore, at finite s the perturbation expansion would
be useful if only a finite number of terms are im-
portant. We find that the first two terms are
adequate in describing many features of the pres-

(a)

FIG. 1. First two terms of the bare-Pomeron pertur-
bation expansion are given by (a). The second term in
(a) represents absorptive corrections, as givon by (b),
provided by the contributions of the various intermediate
states pp-X&+X2 including the elastic state, with X&
andX2 separated by a large rapidity gap.

ent data.
In Sec. II we discuss the theoretical formalism

used to analyze the PP total cross section, PP
elastic scattering, and the inclusive process
PP-P+X. In Sec. III we perform a triple-Regge
analysis of the inclusive process PP P+X, using
a bare-Pomeron intercept appropriate for the
rising PP total cross section [a~(0) = 1.06]. These
results are compared with more conventional
fits with o~(0) = 1. The differential elastic and
total PP cross sections are analyzed in Sec. IV
using the triple-Regge coupling obtained from the
inclusive analysis. We present a summary and
conclusions in Sec. V. In addition we have rele-
gated some of the detailed calculations to Ap-
pendixes A, B, and C.

II. FORMALISM

In this section we display the relevant formulas
for the PP total cross-section, elastic, and
PP-P+X inclusive scattering. For the elastic
case we consider only the non-helicity-flip am-
plitude and in addition we attempt to write the
various formulas with as few arbitrary param-
eters as possible. The derivations and approxi-
mations are discussed in detail in Appendixes
A, 8, and C.

We first write down the bare-Pomeron term,
then the triple-Regge terms, followed by the
bubble terms.

A. Bare-Pomeron term

This is the first term in Figs. 1(a), 1(b). In the
s-channel picture, as we discussed in the Intro-
duction, it can be considered as a sum of a rapidly
converging multiperipheral series owing to the
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f,(t)
i-a)(t) ' (2.1)

exchange of non-Pomeron trajectories with low
rapidity gaps. It is a simple pole in the j plane:

the appropriate signature factors g;, namely

Gi»(t) =(1/16))') &~(t) &/(t) &a(0) g{»(t) &{ &g

(2.6)

with

aJ, (t) =1+a+apt, e&0 .

Its s-channel projection is given by

f (t) s ~"' .

(2.2)

(2.3)

We parametrize the couplings Gq»(t) as follows:

G (t) =Z e»'+Z, e"2', (2.V)

where the subscripts ijk have been suppressed in
the ~'s and p.'s. A single exponential is insuffi-
cient in fitting both small- [(t( &0.5 (GeV/c)'] and
large-(t( [(t(&0.5 (GeV/c)'] data.

The residue function, f,(t), is expressed in the
exponential form as

f,(t) =f,e"~', (2.4)

B. Triple-Regge couplings

The term g~»(t) =gq»(t, t, 0) (see Appendix A) de-
notes the triple-Regge coupling of the three reg-
geons i, j, and k, where Regge poles i and j with
trajectories a~(t), a~(t), respectively, are ex-
changed and Regge pole k with trajectory a,(0)
controls the Reggeon-particle total cross section
as shown in Fig. 2. The triple-Regge formula
for PP-P+X inclusive scattering is then given by

1 ~(~)+ fxf(~)
= —Q «»(t) — ) """, (2 5)

kf4

where t=M'- t-mf, ' and where we have lumped
together into Gq»(t }the triple-Regge coupling
g~»(t) [Fig. 3(a)] and the three Reggeon-particle
vertices F&(t), E~(t), and E,(0) [Fig. 3(b)] and

where the t dependence of the residue is discussed
in Appendix A.

~~(~)
gw~ (o} a

( rs) {agr{f)-~ {t)]/2 {M 2)&~{t)-c~{t) 2
p /

a~(t) —a,(t) (2.8)

where a,(t) is the Pomeron-Pomeron cut tra-
jectory

a,(t) =1 2e+' +aj, t . (2.9)

(b) (PPR)'. Here i=j=P, 0=k'=R and involves
g~»'. This term is also discussed at length in
Appendixes B and C. Its contribution to the elas-
tic amplitude is written as~

8(0) e2ast s ay{a)

2 e~ lns

C. Bubble terms

These correspond to the second term in Fig.
1(a}, and involve the product gq» g, » [see Fig.
3(c)]. We will divide these products into two
categories, one without interference terms and
one with. We, of course, exclude those terms
which do not communicate with the I=O crossed
channel (e.g. , g~~, g»„, etc ).

(i) ¹ninterferesce terms. By-this we mean
i=j, and O'=A'.

(a) (PPP)'. Here i =j=P, 0'=k=P and involve
g»&'. The contribution of this term to the elastic
amplitude is discussed in detail in Appendixes B
and C. It is written as~

j )I /(&) f)t{-(&)l l2 (M 2) +g(&) f)fg(&)

X Q /

a~(t) —a.(t }
(2.10)

(a) (b) (c)

FIG. 2. Diagram corresponding to the triple-Regge
region for the inclusive process PP P +X.

FIG. 3. (a) Triple-Regge vertex g;f~(t g, t 2, t '); (b)
Reggeon-particle coupling E& (t); (c) bubble term cor-
respondiIIg to g~fj(t g~fy.
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2a2t ~&( t ) (2.11}

(c) (&/&/P}2 and (RRP)'. These pion and Reggeon
bubble terms correspond to large rapidity gap
events. The pion bubble term, because it in-
volves the pion propagator, will give rise to a
very sharp falloff near I'=0. From the triple-
Regge analysis to be discussed in Sec. III below,
the nmI' contribution is not negligible. We expect
therefore that it will be responsible for the ob-
served break at t =- 0.1 (GeV/c)' in the elastic
differential cross section. For our purposes
here, we combine the (&/&/P)' term with the Reg-
geon bubble term (RRP)'. The sum can be approx-
imated phenomenologically as a single exponen-
tial term which will add to the pole contribution
(see Appendix B)":

(ii) Interference terms. These involve terms
such as gI ~I', where i &j but k' = k, and g»J, g»»
where i =j but 0' &k. We will ignore the inter-
ference terms involving t &j (e.g. , g&,»&,) through-
out our entire analysis involving elastic as well
as inclusive scattering. As far as other inter-
ference terms are concerned we note that they do
not give rise to any additional structure either
in s or t than what is already present in the terms
we discussed earlier. Therefore, their contribu-
tions will not be parametrized separately.

D. Summary of formulas

The full expressions for the elastic PP ampli-
tude T(s, t) the total cross section o~ the elastic
differential cross section do„/dt, and the inclusive
cross section are given by

T(s t) (f cad&)+f s&a t)(ss-fr/3}a&it)

16v (sc && /)2N~('))/rsc ff 2/gup(t) g(N0)]/2 pZ 2)i&&t) o; (t& 2

2.5f,' 2n&, ln(se ' } n~(t) —n, (t)

16m (se Ir/2)e~(t) (rse cr/2)[es(t& s~(t))/2 (M )n2(ta) (Nt) -3
+ 6 2 0 e2'»~ 0

2 5f 2 PPB 2nt In(so 4r/2) n„(t) —n, (t)
(2.12)

(2.13)

d a& 25 lTl2
dt 16ms

(2.14)

do'(p+ p -p+X) 1
dtdM s (2.15}

where v =M —t- nz& and the scale factor is taken
to be 1 GeV', and where n~(t) = 1+e+ n~t and

n, (t) = 1 + 2&+ ~n~t.

III. TRIPLE-REGGE ANALYSIS OF p +p ~p + x

A bare-Pomeron intercept above 1 is consistent
with a rising total cross section."As discussed
in Sec. IV, a value of n&,(0) =1.06 correctly de-
scribes the energy dependence of the total cross
section. Whether such an intercept is compatible
with PP inclusive data, however, requires careful
examination. In this section we update the triple-
Regge and finite-mass-sum-rule analysis of the
inclusive reaction pp p+X performed earlier
by Field and Fox" (hereafter referred to as FF)
by including recent Fermilab data. We compare
triple-Regge solutions with n~(0) =1.06 with a
more conventional analysis with n&, (0) = l.

A. Data base

We include in our triple-Regge fits all the high-
energy P+P -P+X inclusive data given in Table
II of FF with the following exceptions:

(i) The 300-GeV/c data from the Stony Brook-
Columbia collaboration" have been deleted. These
data showed a dipping of sdo /dtdllI at small tl
for 8 ~11f « 12 GeV (see Fig. 13 of FF), which
was erroneous. ' Newer data from this group
and others show no indication of a dip in the in-
clusive cross section at small

l
t

l (see Fig. 4)."
(ii) We have included the recent data from the

Dubna-F ermilab-Rockefeller-Rochester Collabor-
ation" on P+0 -@+Xwhich have been converted

. to P+p -p+X by division of the deuteron form
factor. These data were taken at p„,=150, 210,
260, 2V5, and 385 GeV/c for a mass range 0~ M~
—30 GeV' and small Itl [0 0»= ltl =0»5
(GeV/c) ].
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(iii) We have included recent data from the ISR
asymmetrical beam experiment performed at
s = 551, 720, 930, and 1490 GeV~ by the CHLM
collaboration 3' This group has P+P -P+X data
at t=-0.25, -0.35, and -0.50 with M'=30 GeV'.

We do not explicitly fit the FMSR data from EE
but we check to see that our solutions are consis-
tent with the FMSR.

B. Parametrizations

0 d(T/dt dM versus J-t
P

Pl b
= l50

M = IO+ I0.5-
op (t)= l.06+ O.at

Sol. 2

O.I—

P

0.5-
O

L~
0)
(9

Pl b=205

IO+IVI ~25

In the inclusive analysis only the bare pole terms
are kept; the bubble terms are ignored. We varied

o.s(t) =0.5+ f,

n, (t) =f,

C~(f) = 1+E + Q~f.

(3.1a}

(3.1b)

(3.lc)

There has been some question in the past as to
whether or not the triple-Pomeron coupling G»~(t)
vanishes at f = 0 (see discussion in FF). Recent
data on do/dtdM show no indication of a dipping
at small

~
f

~
(see Fig. 4). We thus parametrize

G~~~(t) to be nonzero at t =0 [Eq. (2.V)]. In addi-
tion, there is evidence of some slight Pomeron
shrinkage in inclusive pp -p+X scattering (Fig.
5). A Pomeron slope a~ =0.3 (GeV/c)~ is con-
sistent with this data.

We present two solutions: Solution 1 with & =0,
which is a slightly different version of FF Solution
1 (using a new data base), and the new solution,
Solution 2, with & =0.06. The choice of & =0.06 is
determined mainly by the total and differential
elastic data (see Sec. IV below)

Solution 1: This solution contains no interfer-
ence terms, has n~(0) =1.0 and has a nonvanishing
triple-Pomeron coupling at t = 0. The PPP, PPR,
RRP are parametrized according to (2.V) and var-

der/dtdM versus s M =BOGeV2 2 2
too I I I

Sol.2

the triple-Regge couplings G,»(t) in EII. (2.5) in
an attempt to fit the high-energy inclusive pp -p+X
data discussed above (3.1}.The couplings were
parametrized by Etl. (2.V) with trajectories

O.l—
50—

t =-0.25

P = 585lab

05 M2 =IO~ I

t=-0.35

t= -0.50

„L

O.I

0.0 0.1
I I

0.2 0.3
J-t (Gevtt)

0.4 0.5
a {t)=L06+03t

FIG. 4. Small-(&
~

data for do'/dt dM2 (pp —p +X)
versus ~t at pL,b = 150 and 385 QeV/c (Ref. 23) and

Ph,b =205 GeV/c (Ref. 45). The data at 150 and 385
GeV/c are pd —d + X which have been converted to pp

p + X by suitable division by the deuteron form factor.
The curves are the result of Solution 2 with o.~(t ) = 1.06
+0.3t. The turnover in the 205-GeV/c data is a t
effect and not connected to the turnover of any triple-
Regge terms.

I

200
I I I

500 IOOO 2000

s (GeV2)

FIG. 5. Data on do/dt dM2 versus s for pp-p +X
at M2=30 QeV2 (Ref. 32). The curves are the result of
Solution 2 (normalized up by 20%) with az(t) = 1.06+0.3t.
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TABLE I. Triple-Regge couplings G&&z(t) = A, &e&& + A2e&2 . For PPP and RRP, A.
&

and A2

are given in units of mb/(Gev/c); for PPR and RRR, X& and )t, 2 are given in units of mb/
(GeV/c). pq and p2 are given in units of (GeV/c)

nz(0) = i.c o.g0) =1.06

PPR

RRP

RRR

nz [(GeV/c) 2)

x'

Ag, A2

2.59, 0.34

2.41, 0.021

18.5, 1.91

18.1

0.29

2623

pg, p2

4.02, 0.90

2.66, -1.49

3.37, -2.20

12.0

A. g, A2

1.24, 0.32

0.922, 0.017

11.35, 1.69

83.7

0.30

2436

3.49, 1.54

3.075,-1.6
5.53, -2.44

2.95

(3.2a)

(3.2b)

where the w'p total cross section is given by

ied. The RRB term is fixed at the value given by
Solution 1 of FF. In addition, the wnP and ggR
terms are estimated as in FF. Namely,

] g ( t)so(-
G-(t)=4, 4, o. ( p) (, „)

s ( t)s oo(r o2)-
G s(t) 4

o't t(w p)
( 2)s

IOO

Triple-Regge Couplings G)lk(t}

mb /(GeV/c) mb / (GeV/c)

~ooooooo f
~WMap

a&

o„,(w'p) = of„(w'p)+ op„(w'p)/Ws, (3.2c)

and where g,»'/4w=14. 5, of, t(wop) =21.3 mb,
o"„,(wop) =19.7 mb GeV. For simplicity we take
b, =0 as in FF.

Solution 2: This solution contains no interfer-
ence terms and has n~(t) = 1.06+ 0.3t, and has a
nonvanishing t,riple- Pomeron coupling at t = 0. The
PPP, PPR, and RRP terms are varied and are
parametrized according to (2.7). In addition the
RRB term is parametrized by

G„„(t)=re ', (3.3)

IO

~ ~
~ ~
~ ~

~ ~
~ ~
~ ~

~o
~ ~
~ ~
~ ~
~ ~

and allowed to vary. The zwP and mmR terms are
given by (3.1a)' and (3.1b), but this time with

o„,(w'p) = of„(w'p)s'"+ ots, (w'p)/v s, (3.2d)

where af„(wop) =15.0 mb and C, (w'p) =34.5
mb GeV (we take rr, =0 as in Solution 1).

The resulting triple-Hegge couplings for Solu-
tions 1 and & are given in Table I and shown in
Fig. 6. When discussing various solutions it is
useful to compare the cosmic triple-Regge para-
meters C,»(s, M') defined in Ref. 12 and used by
FF:

0
C,»(s, M') = (do/dt dM')(r, dt s'

1

IO'
0.0 Oo4 0,8 00 0.4

-t (GeV/c)

0.8

M2 fz (0)

(3.4)

FIG. 6. Comparison of the various triple-Regge
couplings 6;;&(t) arising from our Solution 1 [0&(0)=1.0]
and Solution 2 [o.J.(0) = 1.06] and Solution 1 of Field and
Fox (FF, Ref. 11).
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where ijk labels the triple-Regge term. These
parameters are such that when multiplied by the
cosmic kinematic factor recorded in Table II, they
give the value of the integral

(do/dt dM ')dt .
l

The cosmic parameters resulting from solutions
1 and 2 are compared with Solution 1 of FF in
Table II.

C. Comparison of Solution 1 (e = 0) with FF Solution 1

As can be seen from Fig. 6 the primary differ-
ence between these two solutions is that our Solu-
tion 1 has a smaller PPR term (by about a factor
of 2). This is due to the removal of the Stony
Brook- Columbia 300- GeV/c data'0 which required
a sizeable 1/M' component to fit the shape of the
mass spectra (see Fig. 8 of FF) and to the inclu-
sion of the new Dubna-Fermilab data, "which
show little 1/M' component. In fact these new
data show Mmd&r/dtdM' to be roughly flat when
plotted versus M' for 10~M'(30 GeV' and ~t

~

= 0.035 (GeV/c)', indicating mostly PPP and little
PPR (see Fig. 7)."" This is confirmed by the
fact that at this t value sda/dtdM' very nearly
scales (independent of s) when plotted versus x
(Fig. 7}. A PPR contribution is, however, de-
finitely needed at ~t

~

=0.16 (GeV/c)' to produce
the amount of nonscaling seen by Sannes et al, "
(Figs. 8 and Fig. 9), and in fact our fit results in
a non-negligible PPR even at

~

t
~

=0.035 (GeV/c)'
(Fig. 10}. The fit also has a small RRP term at

~

f
~

= 0.035 (GeV/c)2 producing a slight rise in
M do/dtdM' as M' increases, which is perhaps
seen in the data.

D. Comparison of Solution 1 (e = 0) with Solution 2 (e = 0.06)

The size of G»„(f) is decreased when going
from Solution 1 to Solution 2; however, as can be
seen from Fig. 6 the magnitudes of the over-all
PPP contribution at ~f ~

= 0.035 (GeV/c)' and p, ~
=385 GeV/c are almost identical. One main dif-
ference between these two solutions is that Solu-
tion 2 has a smaller PPR term and a considerably
larger RRR contribution. The reasons for this
can be understood by studying Fig. 9 where we
display the various contributions to sdo/df dM'
versus I/Ws for t =-0.16 (GeV/c)' and x =0.91.
Figure 8 shows that there is a certain amount of
energy dependence in the data to be accounted for
by the triple-Regge terms. In Solution 1 [n~(0)
=1.0] the terms PPP, RRP, and mvP roughly scale
(independent of s at fixed x) and the nonscaling
seen in the data is accounted for primarily by
PPR. On the other hand, for Solution 2 [n~(0)
=1.06] the PPP, RRP, and wwP terms do not
scale. They, in fact, increase with increasing s
at fixed x, which must be compensated for by a
large amount of PPR+RRR. The solution does
this by increasing greatly the size of the RRR
term. Solution 2 has the interesting property that
eventually sdc/dtdM' will rise as the energy is
increased at fixed x, rather than decrease to a
scaling limit.

TABLE II. Cosmi" triple-Regge parameters C~&&(s, M ) [defined in (3.4)], where 0.&(0)
=1+ e, e&(0) = 2, and e „(0)=0. When multiplied by the cosmic kinematic factors in the first
column (in GeV units), the parameters give the value of

0
(do/dt dM')d g

~f

in mb/GeV .

Cosmic
kinematic

factor
FF

Solution 1
ng0) = i.00

Solution 1
n (0)=1.06
Solution 2

PPP

PPR

RRP

RRR

n'mP

p»b (GeV/c)

M' (GeV')

~2 f/(M2)i+ g

M ~(s/M')"
(M2) g/s

1/(sM)

(M2)i + g/+ 2

M/s

0.498, 0.445

0.977, 0.851

3.18,2.59

1.03, 0.94

27.4, 23.3

25.1,21.3

200, 500

20

0.0

0.591,0.534

0.590, 0.527

2.49, 2.00

1.03,0.94

27.4, 23.3

25.1,21.3

200, 500

20

0.0

0.338, 0.304

0.215, 0.192

1.46, 1.17

9.60, 7.97

19.3, 16.4

45.3, 38.5

200, 500

20

0.06
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(a) M'do/dtdM' versus M'
IO

~ PIab = 150 GeV/c

' PIab =585 GeV/c

& =-O.OM (GeV/c)

(b) s do/dtdM' versus x
«0'

~ PI~=150 GeV/c

' P)ab=585 GeV/c

t = -0.055 (GeV/c)

7-
1

—-a p (0)=1.00
~p (0)=1.06

II
T ~ I~IMM

0
0

I

IO 20
M~ (GeV~)

IO
30 I.O 0.98 0.96 0.94

FIG. 7. Data on M do/dtdM versus M [diagram (a)l and sdcr/dpdM versus x [diagram (b)] at t =-0.035 (QeV/c)2
and p&b =150 and 385 (GeV/c) . This data for pp-p +X has been arrived at from pd @+Xby suitable division by the
deuteron form factor {Ref. 23). The curves are the results of Solution 1 {dashed; e~(0) = I] and Solution 2 [solid; o.z(0)
= X.06].

E. Inelastic diffraction cross section

Owing to the Pomeron intercept being greater
than 1 Solution 2 produces an inelastic diffractive
cross section which rises substantially with in-
creasing energy. Explicitly, defining an inelastic
diffractive cross section by (we use r =0.2 here
instead of x=0.1 in order to compare with Solution
1 of FF}

0 ~ as

oD(s) =-
S

filled ~ 1+~-g~~(&)
r dt G„,(t)—
~ 00 s

„1)2-aa~(»
+ Gzzs(t } I/v s

(3.5)

results in the values given in Table III of P» =300
and 1500 GeV/c for Solutions 1 and 2 and Solution
1 of FF. Solution 2 produces almost a 2 mb rise
over this energy region (see Fig. 11), whereas
solutions with nv(0) = 1.0 have less than a 1 mb
rise. In (3.5) the factor of two takes into account
the diffraction peak for each of the two protons
while we only integrate over the region [x~0.8, tVP
~2 (GeV')] of the validity of Regge expansion. A
rise of the small double-diffraction cross sec-
tion should also be included in Fig. 11.' As ex-
pected, the model with n~(0}&l produces a rising
inelastic diffractive cross section as well as a
rising total pp cross section.

F. Diffractive resonance production duality

Assuming semilocal duality one can relate triple-Regge couplings PPP and PPB to diffractive reso-
nance production as follows":

cAJ v2 s 2 f)t~(t) s 2 (x~(t)—(PP-PN*)= —,— dv v (1 —d)G„~~(t) — v &'" +dG~~„(t)—
R v1

(o) (3.6)
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4Q
s do-/dt dM versus l/~s for x =091

t =-0.16 t =-0.20 t=-0.25 t=-0.33

a (0)=~.06
P—-~p(0)=i.oo

OJ

20—

E

IQ—

I

0.04 0.08 Q.I2 0.04 0.08 Q.I2 0.04 0.08 0.12 0.04 0.08 m2

I/~s {GeV ~)

FIG. 8. Data on sdo/dt dM2(pp —p +X) versus 1/Ws at fixed x=0.91 and t =-0.16, -0.20, -0.25, and -0.33 (GeV/c)2
from Ref. 36. The solid (dashed) curves are the result of Solution 2 with 0'~(0) =1.06 [Solution 1 with az(0) = 1.0].

where we have neglected the nondiffractive con-
tributions from Gzzz(t) and G, „z(t) and where
v~=M~' —t -m~', M~=mass of N*, v, = v„
—2M~I", v, = v~+2M„I', I'=width of N*. The
quantity d is a duality parameter which could in
principle depend on t. If i=1 we have normal.
duality (i.e., resonances dual to Regge exchange),
if d= 0 we have extreme abnormal duality (i.e.,
resonances dual to Pomeron exchanges), and in
between we have mixed duality. Given our present
knowledge, the value of d is not known and in fact
many authors argue over this point. Nevertheless,
the energy dependence of do/dt(PP-PN*) is not
affected by the value of d and it is this energy
dependence that is of great interest. Recent ex-
perimental data on PP-PN* (1688) shows that the
s dependence of the N*(1688) is remarkably simi-
lar to that of o„, as expl. icitly demonstrated in
Ref. 16. Thus to an excellent approximation o„,
and o&+ are given by a single function of s which

can be reproduced by a bare Pomeron with
o.~(0)&1.

It is amusing to note that the cross section for
N*(1688) production is 0.56+0.19 mb (Ref. 15)
at v s =45 GeV. Assuming d=0 in (3.6) and using
our G~~J, (t) from Solution 2 [n~(0) =1.06] yields
a value of 0.48 mb, whereas Solution 1 with
a~(0) =1 predicts 0.35 mb. This does not, of
course, imply that d= 0 but it does show that Eq.
(3.6) together with a rising PP-PN* cross section
implies that n~(0) &1. In a model with bare Pom-
eron intercept above unity both the elastic and
diffractive cross sections are predicted to in-
crease as s becomes large.

IV. ANALYSIS OF TOTAL-CROSS-SECTION
AND ELASTIC-SCATTERING DATA

Having determined the triple-Regge couplings
for a solution with n~(0) = 1.06 we now attempt
to fit the high-energy PP elastic3' and total-cross-
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s do-/dtdM vs I/~sfor x=09I t=-QI6
40

ap(t)=l-0+0. 3t ap(t)=l06+03t
fjg RRR vary RRR

(p) (b)

7-
a (t)=j.oo o.st
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(oj

Contributi0ns to M d~ldt dM
8

vs M PIpb =385& t="0.035

a (t)=L06+ 0.5f
P

(b)

50-

C9

~ 20-E

5-

~V
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PPP

l
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PPP

PPR
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M (GeV2)

PPP
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RRP

amp

0.04 0.08 O.I2 0.04 008 O.I2

I/~s (GeV ')

FIG. 9. Contributions to sdo/dt dM2 (pp p +X)
versus 1/Ws at x =0.91 and t =-0.16 {QeV/c) from the
various triple-Regge terms arising from Solution 1 with
nJ, (t) =1.0+0.3t [graph (a)]and Solution2with nz(t) =1.06
+0.3t [graph (b)].

section data from ISR and Fermilab using the
bare-Pomeron perturbation expansion (Fig. 1)
and formulas (2.12}, (2.13), and (2.14).

The bare Pomeron has trajectory u~(t) =1.06
+ 0.3t. We take r = 0.1 in (2.12) and fix M,' =m~'.
The latter comes from our assumption that duality
holds down to the elastic state. If we make the
further assumption that c~ =a, in (2.12) (see Ap-
pendix C), we are left with the following five
parameters: f„f„a„a„and cs. The values

FIG. 10. Contributions to M dc/dt dM2 (p +p —p +X)
versus Mt at t =-0.035 (GeV/c)t and p„b =386 GeV/c
from the various triple-Regge terms arising from Solu-
tion 1 with nI (t) =1.0+0.3t [graph (a)] and Solution 2
with nI (t) =1.06+0.3t [graph (b)]. The RRR contribu-
tion to Solution 1 is small and not shown.

of these parameters resulting from a fit to the
data are given in Table IV. Comparisons between
the data and the resulting fit are shown in Figs. 12
and 13. The precise values chosen for x and Mo
are not crucial. The following comments are
appropriate:

(a) The intercept of the Pomeron o.~(0) —1
= & =0.06 is mainly determined by the s dependence
of the rising total cross section.

(b} The break at t = -0.1 (GeV/c)', as mentioned
in Sec. II, is approximately determined by f, and
a„which supposedly parametrize the sum of the
contributions of (srrP) and (BItP}'.

(c) The (PPP)' term is small and falls off as
I tl increases (owing to the assumption that c~
=a, ).

(d) The (PPR}' term rises as l t l increases
because of the factor &"~', c„&0. This is sug-
gested by the large-l tl behavior of the triple-
Hegge couplings G»s(t} and G»~(t) (see Table
I and Appendix C).

(e) The dip at t = —1.4 (GeV/c)' comes from the
destructive interference between the pole term

TABLE III. Values of the inelastic diffractive cross section o &(s) (mb) [defined by (3.5)]
arising from the PPP and PPR triple-Regge terms at Phb ——300 and 1500 GeV/c. Also shown
is the difference Qo D between these energies.

o & (300 GeV/c)
PPP PPR

o D(i 500 GeV/c)
PPP PPR

Boa
PPP+ PPR

FF Solution i
n (0) =1.00
e~(0) = i.06

3.90
4.68
4.86

2.42
1.49
0.94

4.8i
5.8i
6.87

1.94
1.22
0.87

0.44
0.87
i.93
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2

Diffractive vs P{ob

fl (t)=L06+ QSt

TABLE IV. Parameters determined by the total-
crass-section and elastic-scattering data fx =O.i,
Mo =mp, cJ, =ay, G~»{0)=i.56, G»a{0)=0.988).

0.06

19.0 mbGeV"

2.4i (GeV)

8.2i mb GeV

l000 I500 2000
P( b (GeV/c)

202 9.57 (GeV) '

-i.99 (GeV)-'

FIG. 11. Behavior of the inelastic diffractive cross
section o~(s) (mb) [defined by Eq. (3.5)j arising from
the PPP and PPB and total=PPP +PUB triple-Regge
terms of Solution 2 with nz(t) = 1.06+0.3t.

and the (PPR)' term. The position of the dip
moves inward as s increases, because the ratio
of the pole contribution to that of the (PPR)' term
behaves like sa& +/lns=s ""&'~2/lns, which
decreases as s increases.

Our description of pp elastic scattering is simi-
lar in nature to the fits provided by Collins, Gault,
and Martin, ' with the important exception that
their work corresponds to the weak-coupling
solution [G»~(0)= 0], whereas ours is a strong-
coupling result [G»~(0) 0 0]. They obtain a bare-
Pomeron trajectory a~(t) = 1.07+ 0.22t and re-
produce the diffractive minimum as an inter-
ference between it and a "core" term. This
"core" term is "explained" as a weak PP cut effect
and is calculated by arbitrarily parameterizing the
Gribov vertex (with increasing exponentials in
] ti). (PPR)~ bubble term is analogous to the
"core" term of Collins, Gault, and Martin. We
attempt to rationalize the needed t dependence
of this term by observing the behavior of the
triple-Regge couplings, however, both methods
are equivalent since the Gribov vertex and the
triple-Regge couplings can be rel.ated. In fact,
in principle the fixed-pole residue at t =0 (sime
of PP cut) can be obtained by taking the difference
between even- and odd-moment FMSR from in-
clusive data. 9 " As yet, the data do not seem
to be sufficiently accurate to al.low a reliabl. e esti-
mate though the authors of Ref. 36 do find the
cuts to be smaller than would be obtained from
a box diagram corresponding to the elastic PP
intermediate state [Fig. 1(b)], which is what our
results indicate.

The possibility of a bare- Pomeron intercept
above unity has been examined in several recent
works. Capella and Kaplan' attempted an approx-
imate summation of the bare perturbation expan-
sion including higher-order terms and compared
their results with the total-cross-section and pp

V. SUMMARY AND CONCLUSIONS

We have performed a triple-Regge analysis of
pp p3f with bare-Pomeron intercept above 1 and
compared the results with fits using the more
conventional n~(0) = 1. The triple-Regge couplings
thus obtained are then used in the calculation of
the elastic amplitude in the bare perturbation ex-

0-, t versus stot

45-

I & & ) i I

500 Iooo
I I

s (GeV )
5000

FIG. 12. Fit to the PP total cross section in the range
500~ s ~3000 GeV2 with a model that consists of a bare
Pomeron with o,~(0) = 1.06 and bubble-term corrections
f.Fig. 1(b)] calculated from the triple-Regge couplings
of Solution 2. The data are from Ref. 38.

elastic-scattering data at t = 0 and obtained
0.1. Capella, Tran Thanh Van, and Kaplan'

further applied the bare perturbation expansion
to wN, KN, and NN total cross sections and elas-
tic-scattering data at t=0, obtaining c = 0.13. In
their calculation of the cut terms they have y
diagrams whose t dependence at larger t needs
to be investigated (we only have the bubble terms).
Obviously more theoretical work is needed to
understand the unknown t' dependence of the triple-
Regge vertex [i.e. , the b' parameter in (Al)i.
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the case of the M (1688).
(g) Triple-Regge solutions with e~(0) & 1 produce

a much greater rise in the total inelastic diffrac-
tive cross section over the ISR energy range (see
Table III and Fig. 11).

(h) Thetriple-Regge couplings G~»(t) and G„s~(t)
do not behave like a single falling exponential
(ebb). In fact, both these couplings like to increase
as

~ t~ increases for
~
t~» 0.6 (GeV/c)'. This per-

haps indicates the presence of helicity-flip cou-
pling s.

(i) One can get an adequate fit to the existing
total pp cross-section and elastic data using this
formalism.

(j) The s-channel approach has a simple inter-
pretation in terms of a bare Pomeron and an ab-
sorptive correction generated by the contributions
of various intermediate states p+p -X,+ X, includ-
ing the elastic intermediate state.

(k) The break in da/dt(pp-pp) at small
(
t

~ [[ t)
= 0.1 (GeV/c)'] may be attributable to the (wvP)b

and (RRP)' bubble term contributions.
(I) The dip in do/dt(pp-pp) at large (t [ [( t[

= 1.4 (GeV/c)'] may be attributable to the bare
Pomeron interfering with the (PPR)' bubble term
However, it is necessary for the (PPR)' term to
rise from its relatively small value at t=0 to a
value large enough to produce this cancellation at
~
t

~

= 1.4 (GeV/c)'. This interpretation does ac-
count for the slight movement of the dip inward
as the energy increases.

From a theoretical viewpoint, our approach suf-
fers from the following limitations:

(m) Once it is determined from the triple-Regge
couplings that the bubble terms are small at E=O,
then the precise values of these couplings do not
play any role in determining the total pp cross-
section behavior. The cr...(pp) behavior is given
primarily by the bare-Pomeron pole [with n~(0)
=1.06] and lower-lying Regge trajectory correc-
tions.

(n) I'n general a triple-Regge vertex g„.b(t„ t„t')
depends on three variables. Our triple-Regge
analysis determines this coupling when ty tg

and f,"=0, whereas calculation of the bubble terms
requires knowledge of g„.~ at t, = t, = —,'t' with t' not
necessarily vanishing. The triple-Regge analysis
determines the bubble terms at t =0 only and there
are unknown extrapolation factors (parameterized
as s") away from t=0. The cancellation between
the (PP R)2 bubble term and the bare Pomeron at
t = -1.4 (GeV/c)' mentioned in (k) thus depends
solely on this unknown extrapolation which must
increase with ~t~. It is suggestive, however, that
since GJ,»(t) increases as ~t~ increases that this
behavior might remain even when the presently
unknown I; dependences are included.

In view of the foregoing points we emphasize that
in order to achieve further understanding of pp
elastic scattering with our approach it is important
to consider the following:

(o) The contributions of the bubble terms at t = 0
are much smaller than what one would obtain from
a box diagram corresponding to the elastic pp in-
termediate state by itself. To understand the dif-
ference one must consider in detail the inclusive
sum rules which involve the fixed-pole residue in
Reggeon-particle scattering. These residues, as
is well known, are related to the Regge cuts.e'~'
Using existing data, however, little can be said
at present concerning the size of the fixed-pale
residues.

(p) In view of the necessity of having an increas-
ing t behavior for the (PPR)b term, an understand-
ing of the b' term in the exponent of the triple-
Regge coupling is needed. ~'

We note that the same formalism can be applied
to other scattering processes to ascertain if any
new and useful freatures emerge. Chu, Desai,
and Stevens~' have applied this approach to g p
charge-exchange scattering with some success.
Also one may need to introduce absorptive cor-
rections for the inclusive scattering as in the
present treatment of elastic scattering. This
should be particularly important in the diffractive
production of resonances where there is some evi-
dence of a structure in t.~
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APPENDIX A: TRIPLE-REGGE VERTEX

Here we consider the t dependence of the triple-
Regge vertex. In Fig. 3(a) we have described the
triple-Regge vertex@„.b(t„ t„t') defined in an ex-
ponential form as

(t. t P) + (0)+bgt~+byt2+bgt'

where i, j,k denote different trajectories. The
prime in b,' is present to emphasize that g„.„ is
not symmetric in interchanges involving the sub-
script k (i.e., g,zb Wg, bz, for instance) even if all
the three trajectories are the same. This is a
well-known result arising from the fact that the
0 channel carresponds to maximal helicity flip.

We will reserve the symbol a for the coupling
between a Reggeon and external particles [see
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Fig. 3(b)]; thus the particle-particle-Reggeon
coupling will be given by

Zt(t) =Z,e'«. (A2)

In particular, we have for the IP P coupling

gPPP( lt27 t') =gPPP( ) ' """"P".

(t) P gPPP( ) &2(apabp)tgZ ' &0~

PPP 16& P P~

(A3)

The conventional triple-Regge coupling used in
the triple-Regge analyses is given by [see Fig.
3(c)]

E, 8'~'F. e'~'I',
Gt&b(t) —

16 g &t(bt, —t, t2 = t, t' =0)$t gt*

i t 2 (0)&(atabt+attbt)tg ga=
16~ ~&» j'

whereas for the I'I'R coupling

gPPR(t» t2, t') =gPPR(0)e P" P'2

2g
(t) P RgPPR( & 2(aP+bP)tg

Note that bP is, in general, different from bP.

APPENDIX B: BUBBLE-TERM CALCULATIONS

Here we calculate the contribution of the bubble term [i.e. , the second diagram in Figs. 1(a) and 1(b)],
which in an s-channel picture involves the processes P+P -X,+X,-P+P. The total contribution to the
elastic amplitude can be written as

N(t1)+O(t2)
1 2

l~ dM (M 2%1(t) dM 2(M 2)at2(t) A1 t1+A2t2+A t
M1 M2

(S2)

We can integrate over t, and t„using the following formula valid for large s:

where M, and M, are the invariant masses of X, and X, and the momentum transfer variables t, and I;,
correspond to the processes p+P-X, +X, and X,+X,-p+p, respectively, and where A„A„and A' in-
clude the t dependence of the triple vertices. As we stated in Sec. II we will ignore the possibility of in-
terference terms arid, therefore, take n = n = z,. We shall also consider only the cases where the tra-
jectories (2, and n2 are both Pomerons or both Reggeons, so we take (2, = o(2= n (Bl) .now becomes

e"' dt dt S ) pa(t )+1&p(t )2
1 2 dM 2(M 2)a(t) dM 2(M 2)n(t)eAt1+Atb

1 1 2 2 M, 'M, ' &

where q and p' are the center-of-mass momenta of the initial pp and the intermediate X,X, systems, re-
spectively, and where t . is the minimum value of t, and t, :

(M,' —I,') (M,'- m, ')
S

where m~ is the proton mass. The result is

tdM'(M') (" dM (M') (" ~ +
p. J 1 1 2 2 M2M2

where

SI3=A+ Koln 2 2 ~

1 2

From (B4) and (B5) wenoticethat theexponential factor eastm(a sharply reduces the contribution coming
from the upper limit of M, ' and M,'. This is the so-called "t „effect." One can, therefore, to a very
good approximation, replace the upper limits of M, ' and M, ' by simply (t s)'~', where, with some average
I3,

1
— && 1,2B
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and we can safely assume

P =0 ~

(87)

The contribution (85) now reads

t/eA't (rs) dM 2 (rs) dM 2 eAt/2(S/M 2M 2)ep (t)
1 2

where o.„(t)=2(2o(0) —1+ 2not is the cut trajectory due to two (2o trajectories.
(i) We first consider the bubble terms (PPP)' and (PPR)' where oo, & ()(: We can make a further ap-

proximation, which reduces the integral in (87) to an extremely simple form, by noticing that since M,
and M, ' are much smaller than s throughout the integral, we can neglect ln(M, 'M, ') compared to Ins and
take the denominator in (87) out of the integral to obtain

&&A,'tS a0, (t& (rs) j./2 (rs)l/2 ~ 2

,' (M,') -~; (M, ') - "
2A+ 2+o~lns g 2 Mx ~

20 0

(BS)

eA tSa~ps(t) (~S)(sf pps)/2 (M 2)p ppo 2
0

2A+ 2@0'lns e —a„ (89)

The accuracy of the approximation made above in going from (87) to (BS) depends on how fast the integrand
falls off in M, ' and M2', which in turn depends on the value of n —Qpc.

.
1n- ()(„= &+ 2()-(p —fOr (2o=n~, ()(=()(~,

1 p j.= —2 —26+ (Q)( —2 Q~)f for (2p= Q~) G = Q)t

(810)

(811)

Thus in general our approximation (BS) should be satisfactory. A possible exception to this could be the
case (810) at small t corresponding to the PPP term where because q is very small the falloff in M, 2 in
(BS) given by (M, ') ' ' is not very sharp. However, the end product (89) is algebraically so simple and its
consequences to the amplitude so transparent that we shall continue to use our approximation also for the
PPP term.

With the above approximation the contribution of the bubble diagrams are given by (apart from the
normalization and signature factors)

( 2ap+ 2++ 5p) t (t~) (x)r Ps)/2 (M 2)Rg& R 2
0

4Qg + 2+~lns Gg —Q
for (lo =(xp, Q =Q~ (PPP),

(812)
R+ 2 8+~&)t

4bp+2a~lns
-(t S)(PR-Pc)/2 (M 2)&)t &s- 2

for no=(2~, a=(hatt (PPR),
Rg —Qc

(BS')

where a, = 1+2e+2e~t.
(ii) We now consider the bubble terms (RRP)' and (((((P)2 where a„&(2: In the integral (87) we notice

that if (2„&a then in contrast to the case (i) discussed earlier it is the upper limit M(2 = (rs)'/2 =Ms'
which will dominate and hence one can replace ln(M, 'M, ') by In(rs) in the denominator to obtain, instead
of (BS) and (89) the following:

«S c~Oc~«) + (rs) / d'~ 2 / &rs)

(M 2)p cmpc, 2 (M 2)Q' pop
M, ~e2 M2

&eA'(snop(t) -
(t,s) (n nos) /2 (M-2)p- pps

0

2A —2n0'lnx C —Q0
(89')

We notice immediately that since o(„=2(2o —1+ snot and n = 1+e+ (2„'f, for both the Reggeon (no = az) and
the pion (ao=()(,) one has n —ao, & 1 for all values of t. Therefore, with negligible error, one can ignore
the M,' term to reduce (89') to

C(t)s n~( t ) (89")
Therefore, the Reggeon and the pion bubble term simply renormalize the Pomeron residue function.
We note that it is possible to have a very sharply falling C(t) at t =0 because of; '~e presence of the pion
propagator term in g„„.
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FIG. 13. Fit to the Pp elastic differential cross section with a model that consists of a bare Pomeron with nz(0) =1.06
and bubble-term corrections [Fig. 1(b)] calculated from the triple-Regge couplings of Solution 2. The data are from
Ref. 37.

pansion shown in Fig. 1. We find the following:
(a) The s dependence of cr„,in the ISR range is

consistent with o.~(0) = 1.06.
(b) Triple-Regge solutions with a~(0) =1.06 are

equally capable of fitting the existing pp -p+K
high-energy inclusive data.

(c) There is no indication of a vanishing of the
triple-Pomeron coupling G~~~ (t) down to

~
t

~

= 0.035 (GeV/c)' (see Fig. 4).
(d) There is evidence of some slight Pomeron

shrinkage in inclusive pp -p + X'scattering [e~
=0.3 (GeV/c); see Fig. 5].

(e) Triple-Regge solutions with a~(0) & 1 do not
exhibit Feynmann scaling. They have the property
that sdo/dt dM'(pp p+X) at fixed s will decrease
over the Fermilab energy range but instead of ap-
proaching a scaling limit (i.e. , becoming indepen-
dent of s) will start to increase in the ISR energy
range as does g„,(pp).

(f) Triple-Regge solutions with n~(0) & 1 predict
via FMSR and duality that diffractive resonance
production, pp -p +1@', cross sections will nomic
the o„(pp) energy dependence (i.e., both will rise
in the ISR range). This has in fact been seen for
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APPENDIX C: G; k(t) = X,e 1'+ X&e~~

In Appendixes A and 8 the triple couplings were
assumed to be single exponentials. However, in
fitting pp -p+X inclusive data we find it necessary
to parameterize the triple-Regge couplings as the
sum of two exponentials [see (2. 1) and Table I],
the large-

~

t
~

inclusive data requiring a flatter or
even an increasing t dependence for some of the
triple-Regge couplings. In this section we con-
sider the consequences of such triple couplings
to the elastic cross section. We mill consider
specifically, the (PPP)' and (PPR)' contributions.

If, instead of (A3), we write for the PPP cou-
pling

gppp(t) t2~t'}=a'p'pp(Q}e' ')" '"+
+g(2) ( Q)

let p(+(1p (+2()pf (Cl)

gppp s p
+ 4'+ 2n'lns (C3)

From the knowledge of G»P given in Table I
and of ap (= a,) in Table IV we obtain (in GeV ')

ap=2. 4, bp=0. 54, dp= -0.43.

Thus in view of the smallness of bp and dp the sum
inside the square brackets in (C3) will be essen-
tially a constant in t. The value of bp cannot be
determined from inclusive analysis since the G's
correspond to t'= 0. However, the factor e'p'~p"
is, for fixed t, and t„ the residue function for the
maximal helicity-flip amplitude for Pomeron-pro-
ton scattering, which will most likely be a de-
creasing function of ~t~. Therefore, it is rea-
sonable to expect (C3} to be an exponentially de-
creasing function in t. In order to have as few pa-
rameters as possible we will assume the square-
bracketed terms in (C.3) to be simply 1j2o. 'Ins. It
is under these assumptions that we have written
the expression for the (PPP) contribution to the
elastic amplitude in (2.12). We have further as-

G (t) =g(» (Q)e2(~p+&p)(+ G(2) (Q)s2«p+~p)(

(C2)

then the triple-coupling contribution to the bubble
term (PPP)' given by (B9) will instead be

(1) Opt (1) (2) (bp+dp) t/2
(~ +y ) g gpppe p gppp gpppe

4bp+ 2n'Ins 2(bp+ dp)+ 2()('Ins
--+

sumed bp = 0 to minimize the number of parameters
(see Table IV).

For the PPR coupling, if instead of (A4} we
write

~(2)2 edpt&PPRe

4dp+2a' lns
(C5)

From G»„given in Table I we obtain (in GeV '}
bp =0.33, dp = -2.0.

We note that in contrast to PPP we have a very
large rising exponential term in the square brac-
kets in (C5). The denominator of the third term
is negative for the s values of interest. This is so
because we have incorrectly integrated up to
t =- . When the correct finite upper limit is
chosen, appropriate to the range in t of our analy-
sis, one finds the denominator to be positive but
very small. Thus the third term is, indeed, quite
large and rising.

In addition, we note that for fixed masses t, and
t„e'R"R" is the residue function for the maximal
helicity-flip amplitude for elastic Pomeron-proton
scattering with Reggeon exchange. Generally, the
helicity-flip amplitudes have slower decrease in

~
t

~
compared to the non-helicity-flip amplitudes.

Furthermore, residues for Reggeon exchange fall
more slowly in ~t

~
than those for the Pomeron ex-

change. We anticipate, therefore, that (az+b~)
is quite small. It is then plausible that the entire
expression in (C5) can be given by a rising ex-
ponential. In our phenomenological expression
(2.12}we have approximated (C5) by a single term

e2cR t

2n' lns

and the fact that cR is found to be negative from
the elastic data is perhaps not too surprising.

~g(R) (Q)gpt)+Op(2+bJ(('

and (C4)

G (t) G(1) (Q)sm(ap+))p)t + G(2) (Q)e2(ap+dp)(

then the triple-coupling contribution to the bubble
term (PPR)' will be, instead of (B9),

(a)2 (1) (2) (&p+4p) t /2
(a„+O' )~ gPPRe " gPPR gPPR~

4bp+2n' lns 2(bp+dp) +2()(' lns
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