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Second-order theories, i.e., theories described by Lagrangians quadratic in second derivatives of the fields, are
carefully examined and their ghost problems isolated and clearly exhibited. In particular, theories with gauge
symmetry were shown to have precisely the same ghost problems as theories without gauge symmetry. It is
also shown that massless theories of the same nature are the limit of massive theories containing ghost states.

The canonical quantization of field theories de-
scribed by Lagrangians quadratic in second de-
rivatives of the fields has been studied by several
people.! Here we present a different but simpler
treatment for these kinds of theories by using the
path-integral method. We are motivated by the
recently suggested gravitation theory? in which the
square of the Riemann tensor enters in the La-
grangian rather than the first power of the curva-
ture scalar, where the canonical quantization is
difficult to implement. The immediate result is
that the propagator in this theory has a double pole
at £%=0 suggesting the appearance of a ghost in the
Hilbert space and signifying that either (a) unitar-
ity or (b) positivity of the energy spectrum might
be violated.

A careful treatment of such a theory seems to be
desirable, in particular with regard to the mass-
less limit, Although our treatment could easily be
extended to theories with higher derivatives, i.e.,
theories which are described by quadratic forms
such as @Eﬁwanl] "®, we will restrict ourselves to
the more specific form of #0(0 - m?)® and we
will also be particularly interested in the m?—0
limit of such forms.

It is our purpose to quantize such a theory using
the path-integral formalism.! In addition, theories
with gauge symmetry will be examined in particu-
lar within the context of the Faddeev-Popov “or-
bit volume” prescription for the generating func-
tional in the presence of higher derivatives. We
will show that in those more complicated cases
where the canonical procedure is difficult to im-
plement, the Feynman rules for a gauge-invari-
ant theory with higher field derivatives in the
massless limit are obtained by modifying the ac-
tion in the obvious way. The structure of the
ghost is also shown clearly,

We begin by first examining a second-order
scalar theory. The Lagrangian describing such a
theory can be taken as

£=-3(8,0,0)(88"0) =3 m*(3, ©)(8* )+ £,(¢) ,
(1)
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where £,(¢) is an arbitrary function of ¢. In par-
ticular, the form £,(¢)=11¢* is sufficient for our
purposes.

Examination of the action leads to the Euler-La-
grange equation

oo 0L, 8L 8L
% 5(8,8,9) _* 5(8,9) " 09

0, (2)
from which the equation of motion is

0L
—m®p=—2%L
0O -m)p=+ 2" (3)
In the usual manner, the generating functional,
from which Green’s functions are obtained, is de-
fined as

W(J)= f de exp[i f (£+J<p)dx] (4)

We would like to obtain a theory having the same
generating functional but describable in terms of
the first-order Lagrangian, We find that the La-
grangian

G=_1 2, L 2 L 2,2 @, =@,
£= -2 (auqol) + 2(au¢2) +2m P, +£’I <_L7;_—> ’
(5)
where a massive ghost field, ¢,, appears explicit-
ly and couples to ¢, through £,;, leads to an equiv-
alent theory.

To show that Egs. (3) and (5) describe equivalent
theories we look at the generating functional de-
termined by Eq. (5).

W(JI,J2)=fd<p1d<p2exp[if(£+J1<p1+J2cp2)dx1 .

(6)

That is, apart from an unimportant multiplicative
constant factor, one can show that

I)[7(‘]1sz)' Tymed = dfm = w(J). (7)

Let us define

me=¢, —@,,
‘;'—' D2
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and take
J1= _J2=J/m .

It is then easy to see that the path integration
over the field ¢ can be done explicitly leading to

Eq. (7). Equation (7), therefore, tells us that Egs.
(4) and (6) describe equivalent theories insofar as
the Green’s functions are identical.

Working with Eq. (6) we can show that m2- 0
limit can be taken with impunity. This is because
we can write Eq. (6) equivalently as

W(J)=exp[i f s,(%)m] f d<p1d<p2exp{i f [ —%(8.,<p1)2+%(am2)2+%m2¢22+%(%—%)}dx%-

Integration over ¢, and ¢, can now be done leading to

W)= expfi [ &(;%,:)dxv]exp{% S faxayZ a6 —9) - g - y3m)] J—fft)} : (8)

Going to the massless limit is now feasible because

. 1 -
Lm —5[Ap(x) = Aple;m?)]=-Ag(x)
where
’ i . 2
AF(x)= Bm2 AF(xvm ) "m2 =0 *

Therefore, in this limit Eq. (8) becomes

m2-0

It is very easy to show that if we start with a La-
grangian

£=-73(0,8,0)(8%8°0) + £,(¢) (10)

the Green’s functions of this theory are precisely
those obtained by the use of the generating func-
tional of Eq. (9).

Therefore, we conclude that a description of the-
ories such as in Eq. (10) could be obtained in terms
of the massless limit without encountering any dif-
ficulties whatsoever. That is, if we insist that the-
ories that contain an intrinsic propagator with
double poles at 2%=0 be describable by first-order
Lagrangians, so that their spectrum content is
clear, one would have to follow the prescription
that we have outlined so far. Moreover, this pre-
scription does not fail in cases where gauge sym-
metry enters as will show later.

In addition, Eq. (8) shows us very clearly the
existence of the ghost coupled to the current and,
therefore, the indefinite-metric nature of the Hil-
bert space. It can also be shown that the generat-
ing functional Eq. (8) is a continous function of m?
at m?=0 and, therefore, the statements made for
the massive model apply equally well for the mass-
less theory. The existence of the ghost in the Hil-
bert space can also be demonstrated by obtaining

lim W(J)=exp[:if £,<£—J> dx}exp[—éffdx dy J(x)AMx —y)J(y):]. (9)

the canonical commutation rules for the fields ¢,
and ¢,.

This is done by requiring the independence of the
functionals

N f dqaldgolcpzexp(i f .f:dx)

and

N f d<p1d<p2<p2exp(i f .de),

where

N= f d<p,d¢2exp<i f fzdx),

under the transformations
@~ ¢+ 0w(x),
(T 2
and
(2l )
Py P+ d0(x),

i.e., the variations that lead to the equations of
motion for ¢, and ¢,, respectively. Following
Ref. 3, we obtain the following commutation rules:
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[@1(35,1'), (pl(y,t)]= "iba(x -3’) ’
[cpz(x,t), fﬂz(v,t)]=i53(x -9).

The rest of the commutators are zero. These
commutation rules readily yield

[a(®), at(")]=2w,06%% - #'),

[A(R),AT(R")] = —29,0%(k - &)

The interpretation of a' and A' as creation opera-
tors is fixed by the requirement of energy positiv-
ity. Thus, the negative sign in the commutation
relation of A implies a negative metric for the
massive particle.

As a prototype of a second-order Lagrangian
with gauge symmetry, we consider

L= —38,F**8,F’, —ym*F* F,,+J, A", (11)

where F,,=98,A, —-3,A,. We will choose to work
in the Feynman gauge 8,A4%=0.

In a way analogous to the scalar theory, we are
led to examine the equivalent Lagrangian

~ J
&= _%(Gw)2+§(Hu,,)2+%mz(Hu)2+7n-‘i (G* —H"),
(12)
where G,,=8,G, -9,G,, H,,=8,H, —8,H,, with
the gauge condition 8, H" =8 ,G*,
Again, the description is in terms of two fields
of which the massive field is a ghost. Now we
show that (12) and (11) describe the same theory.

To do this, we again define the generating func-
tional for (12),

fV:fdGudHub(auG“ -0,H*)

X exp{i f [£+J,(G* —H“)/m]dx} .
As was done earlier, the transformation of the
fields
G,-H,=mA,,
mH,=A,

decouples A, completely, and enables one to carry
out the path integration exactly. This simple cal-
culation gives

W= [ dA,5(8,A")exp{i [ [-38,F"?8, F*, ~sm?F ,, F* +J, A" )dx} ,
[ 1 3 v 14 3 o

i.e., the generating functional of the theory described by the Lagrangian in Eq. (11).

For completeness we note that

= exp[i f dx J&%}]exp{% f S oax dy‘%’i)[Div(x —3) = DE(x =33 m?)] T )} ,

where Df =g, AF,

Use of the gauge condition was made in the in-
version of the quadratic forms, The massless
limit can easily be taken to give a theory described
by

£=-38,F*°9,F", +J A",

It is clear from Eq. (12) that the ghost problem
of such theories is completely decoupled from the
gauge freedom, and, in fact, it can be shown that
it persists even if one considers more complicated
gauge invariance such as in gravitation theory.*

m

r

Theories with second-order Lagrangians, whether
massive or not, fail as far as unitarity is con-
cerned.’

In this treatment, we have shown that theories
with second-order Lagrangians and gauge sym-
metry can be handled in the usual way, and that
nothing extraordinary emerges. The description
in terms of two fields, decoupled in the quadratic
form, one of which is a ghost, is consistent with
previous treatments. However, their nature em-
erges in a much more transparent manner and
their quantization rules are derived from the path-
integral description.
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SRegarding the limit of vanishing mass we would like
to point out that in the case of gravitation and non-Abe-
lian theories [see H. van Dam and M. Veltman, Nucl.
Phys. B22, 397 (1970)] there is a discontinuity as
m—0. It arises because certain helicity amplitudes
which are coupled in a massive theory and which are
decoupled in a massless (gauge) theory do not decouple
when 7 tends to zero. In our case even for m nonzero
one deals with a gauge theory so that the helicity modes
which might cause the discontinuity are decoupled at
all stages, both for m =0 and for m — 0.



