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Fermion-pseudoscalar scattering: A source-theory analysis*
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In a pseudoscalar-coupling theory, we calculate the fourth-order fermion-pseudoscalar scattering amplitude

using source-theory methods. The space-time extrapolation of one of the double-spectral forms is ambiguous.

However, when the ambiguity is shifted to the accompanying single-spectral forms, it is found that their

extrapolation is unambiguous, leading to a determinate result for the scattering amplitude.

I. INTRODUCTION

The past fern years has seen the development
of a new approach to high-energy particle physics,
called source theory, ' mhich is an alternative to
the two now accepted approaches, operator field
theory and dispersion relations. Embodying
both causal and noncausal techniques, source
theory has been successfully applied to a wide
range of problems, most notably those of quantum
electrodynamics. "Here me apply the causal
methods of source theory to a nonelectromagnetic
fourth-order scattering process which has the
added feature that the space-time extrapolation
of the double-spectral form (DSF) is ambiguous. 4

For definiteness, we consider a theory in which a
fermion, "N," with mass m, and a pseudoscalar,
"n," with mass p. , interact by means of a local
pseudoscalar coupling. %'e could consider the
same process with fermions and pseudoscalars
of various masses' but all that mould be added
is algebraic complexity, assuming no anomalous
thresholds.

The nN scattering process can be described in
terms of two invariant amplitudes. In Sec. II we
calculate the DSF weight functions for these
amplitudes, We find that one of them implies
large contributions to its spectral integral from
large values of one of the spectral masses. This
spectral mass region actually corresponds to a
single-spectral form (SSF) so that the large-mass
behavior of the DSF can be removed in favor of
an SSF. This can be done in a variety of ways
leading to an apparent ambiguity in the space-
time extrapola. tion. We make a definite choice,
thereby shifting any possible remaining ambiguity
to the accompanying SSF. The amplitudes for
causal forward scattering in the NN and rN chan-
nels are calculated in Secs. III and IV, respective-
ly. The weight functions for the SSF are then
determined by comparison with the DSF evaluated
for this kinematic situation. We here find that
the space-time extrapolation is unambiguous.
Therefore, the combination of double- and single-

spectral forms yields a determinate result and
only the split up is ambiguous. In Sec. V we com-
plete the calculation of the scattering amplitude
by including propagator and vertex correction
insertions, while a few concluding remarks are
contained in Sec. VI.

II. DOUBLE-SPECTRAL FORM

The interaction of the tt (field Q) and N (field g)
is described by the primitive Lagrangian term

'4r'r,-44 .
We start the calculation of the fourth-order nN

scattering amplitude by considering four causally
localized sources (l is later and 2 is earlier in
time than 3 and 3') which interact by the exchange
of free particles. The causal process is depicted
in Fig. &. The corresponding vacuum amplitude
for this process is'

, I' (dP, ) (dP, ) (dK, ) (dK, )
(2tr)4 (2tt)4 (2tt)4 (2tt)&

x (2tt)'0(P, P, -K, --K,Q

x tI,(K,)y, ( P,)y'(1)q-, (P,)y, (K,),
(2)

where

J'= (dk)5((P, -k)'+m') 0((P, -K, -k)'+m')

x 5((P, -k)'+m') 0(k'+ p, ')

FIG. 1. Causal process leading to the double-spectral
form.
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(I)=(y,[m y-(P, —k)]y, [m -y(P, —K~-k)]

xy [m +y(k P-)]y ) . (4)

The evaluation of Eq. (4), after mass extrapola-
tion, implies

A, =y(1 -', d '[(x+4)(y + 2) —z(x+ 2y + 12) + 6z']),

i 1
2m4 W5 (6)

with

Here ( ) means an average value and J' describes
the kinematics of the free internal particles. In
terms of the two spectral masses

M'= -(P, +K,)'=m'(y+1),
M" = —(K, +K,)2 =m'(x+4),

and after mass extrapolation, ' we find (y.
' =m'z)

A, =1-—,'d '[(x+4)(y+2)' —z(y+2)(x+12)

+ 2z'(y + 6) —2z'],

where

d = (x+4)(y+1) +y' —2zy —4z+ z'.

For large values of y,

A~-y,

(10)

(12)

5 = (x+ 4)[y'x —2z(y + 2)(x+4)

+ z (x+4y + 20) —8z'] .
The dynamics is contained in (I). The two in-
variant amplitudes for the scattering process
can be defined as

1(I)=m' A, +A, —y(K, -K,)

(7)

(8)

which means that the A, amplitude cannot be
space-time extrapolated simply, because there
are abnormally large contributions from large
values of y. As in Ref. 4, the large-y behavior
corresponds to an SSF and can be removed in a
variety of ways, so that the extrapolation is
ambiguous. A convenient rewriting of Eq. (9), in

preparation for space-time extrapolation, is

A, = —,(K'+m'){1 —~ d '[(x+4)(y+2) —z(x+2y+12)+6z']) = —,(K'+m')A, , (13)

where K'=(P, +K,)'=-M' under the causal conditions. Once this form of A, has been chosen, the DSF is
unique and the ambiguity has been shifted to the accompanying SSF. The space-time extrapolated DSF is

4 r
(0,(0 )=( d(m'x)d(m')') 4 (z+ &

)('(z+
& jy

1 - 1 1- n q+$x — (-s„'+m')A, +A, —y —. s p Z+ p Z—
2 2

x I) + [),m (y + 1)]6+ [q, m (x+4)] (dZ)(dr/)(d)), (14)

where 9, operates only on A,[$,m'(y+1)] and 8 =8 -8 operates only on the pion fields. The region of in-
tegration is determined by the nonvanishing of Z [Eq. (3)]. If the y integration is performed first, the
limits are

1
y &y, = —( 2[zx'+ z(4 —3z+ z')x+ z'(2 —z)']'~'+zx+ 2z(2 —z)), x& 0, (15)

while, if the x integration is performed first, the limits are

x+4& c(/P, y+1& (1+hz)', (16)

where

o. = 4(y2 —z y —4z + 2z'), P = y2 —2zy —4z + z2 . (17)
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III. NN SINGLE-SPECTRAL FORM

A convenient method to calculate the contact terms (that is, the SSF) in the NN channel is to first cal-
culate the causal forward scattering amplitude in this channel. The causal process is depicted in Fig.
2. The causal vacuum amplitude for this case is

(0, ~0 ) = - ', ", ', ', (2n)'6(P, +P, , -k, -k, .) y, (k,)y, .(k, .)q,(-P,)y'I'y, ,(-P, .),
g' (dP, ) (dP, ) (dk, ) (dk, .)

(18)

where (Q =k, +k, )

1I' =4mn d~~d&u, (2n)'5(P+q -Q) . . . ; y, (m —yP)P, -P '+p. ' P -k, '+m'

&& y, [m -y(p —k, )]y,(m +yq)y, +(2- 2')

For the calculation of I' in the forward direction, defined as the momenta%, and P, being in the same di-
rection, we retain the general vector structure but calculate the coefficients in the forward direction. '
If we define [—Q'=M" =m'(x+4)]

a)2 1I'= —
4 B, +B, —y(k, —k, ) (20)

we find for the coefficients

2 x+4 —2z -y ( p 1 2z 2z 1
+2 = ———'

+ —[x+(2 —z)']+ —[x+(2 —z)']- —,'(x+4 —2z —y) L(-y)+(y--y)
X P 2x 2 x p y

(21)

1 x i- z' 1
B2 = —— (x+4 —2z -y) + — +—z (x+4- 2z+y) + ——(x +4x+8z —4z ) —d x —1 I (-y)

2 yP x+4 —4~ p 4 y

-(y- -y)
Here we have used the notations

1 x+z x+4 —dzxy)I. +y =—ln'
p, z x+4 —2zay

p, = x(x+4 —2z) + (x+ 2z)y.

(22)

(23)

(24)

y'=x(x+4 —4z).

The only possible contact term supplementing the DSF which contributes in this channel is
4

(o lo )=i », ( d(m x)d (x —
d)d (zz —)x'zd (xz —

) d (2 —-;)z[xm'( z4)1(dz)(xdx+), (26)

assuming that the spectral integral exists. Application of the DSF [Eq. (14)f together with the SSF [Eq. (~6)]
to the causal conditions considered above must reproduce the results presented in Eq. (20). This con-
dition leads to the equations

(27)

1

"dy 1 1 1

~, M5
' y+C y+C, 2 x+4

where

C, =-, (x+4 —2z ay),

(28)

(29)
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and y+ is given in Eq. (15). Evaluating the integrals, we verify Eq. (28) and calculate )( from Eq. (27):

1 x+4 —2s -y p 1 2z 2s 2 x+4 -4s
y = — —— + = ———+ —(x+4 —4z+z')+z L( y-)x+4 x 2p 2x 2 x p 2y

x(@+4—3z)+4z(1 —z)
2(1 )

x +4x —4xz —4z'
r 1,(, 4 8 4, ) ( ))

yp p 2

(30)

Since, for large values of x,

X- 1/x,

the space-time extrapolation of the SSF contact
term [Eq. (26)] is unambiguous and there is no

necessity for further local contact terms.

IV. mlV SINGLE-SPECTRAL FORM

Using

-q' =M'=m'(y+1),

the two invariant amplitudes can be defined as
[see Eq. (17) for(8]

1I = ~P a+b —y(k, +k, )

In the forward direction

(34)

(35)

The four processes that contribute to causal
forward scattering in the n'N channel are shown
in Fig. 3. For this section we will only consider
Fig. 3(d) and will return to the remaining pro-
cesses in Sec. V. The corresponding vacuum
amplitude is

k, =k2,

and it is straightforward to find"

(36)

2(y+1) y+4 —3z 1 y+z 1+9
12-82 6 2 p2 l-p '

g' " (dP, ) (dk, ) (dP, ) (dk, )
4m' „' (2w)' (2w)' (2((')' (2v)'

x 5(P, +k, P, -k,)P,(-k, ) l((—(P,)

x y'4, (P,)y, (k,), (32)

where (Q =P, +k, )

1I =4mnd(d&d'(d(, (2m)45(Q -p —k)y,
k y,'m+y —k,

2(y + 1) y + 2 —z

y+2 —z l +8
li' l —6

Here we have defined

l = [P'+(y+1)ng' =y'+2(1 —z) y —z'.

(37)

(38)

(39)

1x (m yp) y, -' ~ +y~ -k2~
(33) The SSF contact term in this channel can be

defined as

(0, (0 ) =( (8, f d(~'x)e(z+ z) t((&+ &) r'(((, +x, —y —. 8) t((& —
2) ('(& —

2) &.(( I'(v+()1(&~)(&(),

(40)

FIG. 2. Causal process for m -NN.
(a) (b) (c) (d)

FIG. 3. Contributions to causal ~N scattering.
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assuming the spectral integral exists. When the
DSF, Eq. (14), together with the contact term,
Eq. (40), are calculated under the causal con-
ditions considered above, they must reproduce
the results of Eq. (35). This implies the equa-
tions

and

dx
X&+X 4 „&,=~0 &

gy/8 4 ++ V
(41) FIG. 4. Single-particle exchange.

X2+ g2=M3 b.
(8 4 x+4

Performing the integration on x, we find

X&=X2=o,

(42)

(43)

tering amplitude, that of single-particle exchange
which is shown in Fig. 4. Here, the ~NN form
factor, I', is evaluated at the unphysical point of
all particles being on their mass shells, with

so that there are no contact terms in this channel. F(p', m', Q(Q' = -m')) =g(1+kg'+ ~ ~ ~ ), (44)

V. INSERTIONS

Besides the processes depicted in Figs. 3(a)—3(c),
there remains one more contribution to the scat-

and we are only interested in the first correction,
All of these processes can be viewed as in-

sertions into the lowest-order result,

(0+ l
0-) = ig'-', f (dx)(dx')( (x)((x)y y,G,(x —x')y, ((x)((x) . (45)

The first of these, Fig. 3(a), is given by the propagator correction. The causal process leading to the
correction is shown in Fig. 5. The corresponding vacuum amplitude is

(0 lo )=-(,"f ~, , ((())i f,a~-, d~ '(rw)'g()-( -e)i, (m vp)y((()-). ,

When the mass-normalization conditions are imposed, we find that the correction, which is to replace
G,(x-x') in Eq. (45), is

1 —,
& g dM MS 1 yQ y' zy 2z

G, Q G i
(Q Z +

m+yQ ' 16m'm M'+Q' y+1 y' m 2(y+1)

where we have expressed the result in momentum space and used Eq. (34). We can easily convert this
to the two invariant amplitudes if we note that (in a mixed notation)

yQ 11 1-—= —1+ ——y —. 8.
m 2m i

(46)

(47)

(48)

The remaining processes, Figs. 3(b), 3(c), and 4, lead to the introduction of the form factor F(p', m'; Q)
into Eq. (45). For the calculation of this form factor, we consider the causal process shown in Fig. 6.
The vacuum amplitude here is (Q =P, +k, )

(0,~0 ) = -g' ', ', da&~de, (2))') 5(Q -p -q)p, (-k, )p, (-P,)y y, k ) y, (m -yp)y, p~(Q) .

(49)

FIG. 5. Fermion propagation function correction. FIG. 6. Form factor for a virtual fermion.
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If we define the form factor by means of
to

(0,~0 ) =ig' (dx)(dx')P, (x)y, (x}y'y,F(y, ', m', x —x')g, (x'), (50)

then, after imposing the normalization condition, Eq. (44), for yQ = -m, we find, in momentum space,

(51)

where

y+1 y+1 y'+4(2 —z)y+8-6z+z' I 6+f = —2y + y+2+z ln l— (52)

y+2 —z y+1 y+2 —z l+P

and P and l are defined in Eqs. (17) and (39), respectively. Then the replacement in Eq. (45) is

(54)

Also, we can use Eq. (48) to write this result in terms of the two invariant amplitudes.

VI. CONCLUSIONS

The total result is given by the double-spectral form, Eq. (14), the single-spectral form, Eq. (26), and
the lowest-order result, Eq. (45), with the two replacements, Eqs. (47) and (54). In particular, the sN
scattering amplitude is given by

=i (2s)46(p, +0, —p, k, )(d&—o„d~„d~»d&u, ,)'~'

4

xuP, y'~2mg'y, [G, (S)+G,'(S)+ V(S)+(S-U))y, +

X Mp 2 2

4

+
4n'2 &

1 1 - s+1 u+1 1 1 1
cfxcfg -A~ + +A. , - —y k, +k,)t+x+4 i ' s+y+1 u+y+1 ' s+y+1 u+y+1 ~

(55)

where

S =p, +k» S'=m's,

T=P, -P„T =m t,

U=Pg-k, U =m u.

(56)

From this, the helicity amplitudes and differential
cross sections can be easily calculated using the
methods of Ref. i.

The crucial issue under study in the above anal-
ysis, as in any causal consideration, is the pres-
ence, or absence, of contact terms and their
determination. Gauge invariance, ' charge and
mass normalization (see Sec. V}, and consistency"
are important conditions, when applicable, for
their calculation. Also, as occurred here and in
Ref. 4, the structure of the spectral weight func-
tions can indicate that contact terms are required,
that additional information of a more local char-
acter is needed. The ambiguity of the DSF im-

plied the necessity of the SSF. However, inde-
pendent of this ambiguity, it is well known that the DSF
need not contain all the nonlocal structure of the
scattering amplitude, that SSF are, in general,
necessary. So the question reduces to the extra-
polation of the SSF which is related to the local
character of the interaction. If the SSF is am-
biguous, again indicated by abnormal behavior
of the weight function for large values of the
spectral mass, we learn that a local scattering
term must be present in the primitive interaction.
On the other hand, if the SSF is unambiguous, as
it is here, no further local information is required.

The above calculation can be contrasted with the
corresponding dispersive approach. ' Besides our
simpler mass choices which were made for con-
venience and clarity, the main differences are the
following. Our DSF is developed from a causal
process which is then mass and space-time ex-
trapolated as opposed to considering a Feynman
diagram and applying the Cutkosky rules and
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unitarity. The accompanying SSF are determined
by a comparison with a physical scattering act,
that of causal forward scattering, in contrast to
a mathematical subtraction at an arbitrary point.
The source-theory approach can be characterized
as employing physical processes and ideas as
compared to mathematical analysis for the dis-
persive method. As such, source theory is more
straightforward and intuitively clearer.
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