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Green's function theory of unstable particles
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A general form for the propagator G,b(x, y) = (0~ T($,(x)pb(y))~0) of n scalar Hermitian fields based on

causality, Poincare invariance, and the completeness of the set of states having timelike momentum is found,

which is consistent with a dynamical model of the fields coupled to currents. This provides a unified theory of
stable and unstable particles, which are poles of the matrix on the real axis and on the second sheet,

respectively. The pole residues are in general not orthogonal, unless there is a symmetry, so the Fourier
transform of the matrix, though having an exponential form, is not a semigroup. The case of symmetry

breaking for n = 2 is interpreted as PC violation in K decay and is analyzed explicitly.

I. INTRODUCTION

It has been known for a long time that the Wig-
ner-Weisskopf (see for example Refs. 1 and 2)
approximation can be applied to describe the law
of time evolution in weak nonleptonic decay of the
E' meson, where CP invarianee is violated. This
technique is not rigorous in the sense that the
physical states are not well defined. A more rig-
orous mathematical formulation has been given
to this and similar problems of the decays of un-
stable particles by Horwitz and Marchand. "
They have been able to show that the law of time
evolution of unstable particles can be approximated
by an exponential, a result which agrees with the
Wigner-Weisskopf approximation, but they have
noticed that the semigroup property of the time
evolution, which is a necessary consequence of
this approximation, could be violated. This
question was investigated later on, ' and it was
found that the semigroup law is indeed violated in
a way which does not depend on the weak coupling
constant. It is valid up to Ps- 10 ', where P is the
relative size of CP violation.

This result can be applied to nonrelativistic
decays. But what about the relativistic case?
Here one has to use the framework of field theory
in a way which can be applied also to unstable
particles. It is clear that one cannot define a field
for an unstable particle because of the nonexis-
tence of its asymptotic states. Rather one defines
a fundamental field which describes a localized
excitation, which produces a spectrum of masses
ranging down to a lower limit characteristic of
the field type. This is in fact Schwinger's" point
of view of field theory and is different from the
conventional one, in which to each particle is
assigned a field. ' " This point of view is also
better for the description of unstable particles,
because stable particles can be viewed as poles
on the real axis of the Green's function, which is

the vacuum expectation value of the time-ordered
product of the field. In the same way unstable
particles are those poles on the second sheet of
the analytically continued" '" Green's function.
In this sense, stable and unstable particles are
treated on the same footing in the Green's func-
tion, and if it is known the whole spectrum of
masses can be found. This is for the case of one
fundamental Hermitian field analyzed by
Schwinger. '

But still it is possible to define several fundament-
al fields where the different degrees of freedom cor-
respond to spin or to charge. (Here charge means
any sort of charge, which is defined as the generator
of some symmetry group, and which is a conserved
or almost a conserved quantum number, used to
define physical states. ) In this case the Green's
function has a matrix form and its analytic struc-
ture can be found from the structure of the inverse
matrix. Similar works were done" "along this
line, but the main difference between the approach
followed here and the others is first the basic
assumption about the existence of fundamental
fields used to describe physical phenomena; here
we do no|,' assign a field to the unstable particle.
Moreover, here we do not use a specific dynamic-
al model; the structure of the propagator is
found only from the general assumptions of Lor-
entz invariance, causality, and the existence of
a unique vacuum state. In the above-mentioned
works, models were used to find the structure of
the propagator.

From now on the rest of the proof is rather
straightforward. The time evolution is found by
taking the Fourier transform of the Green's
function. In the pole approximation this gives an
exponential law of evolution. But since the pole
residues are matrices rather than numbers, the
semigroup law of time evolution is violated;
namely if U(f) describes the time evolution then
U(t, )U(t, )&U(t, +t,), unless there is some sym-

2891



2892 I EAH MIZRACH I 13

metry which forces the equality. It seems that
the violation for the two-dimensional case is up
to P' as in the nonrelativistic case. Here it is
important to point out that the fact that unstable
particles with "complex" mass (i.e. , complex
poles in the analytically continued propagator)
share many formal properties of true stable
particles led some authors' ' to the assumption
that unstable particles form a basis for a non-
unitary representation of the Poincare group with
complex mass. This result makes the law of time
evolution a semigroup, which is valid only approx-
imately according to the result of this work.

The paper is organized as follows: In Sec. II
we give a brief review of Schwinger's' paper but
in a slightly different form, which makes the
proofs simpler. In Sec. III we work out the case
of n Hermitian coupled scalar fields. We prove
generally that the existence of a symmetry re-
duces the problem to the one-dimensional case.
In Sec. IV we work out the case of symmetry
breaking for n = 2, and we estimate the validity
of the semigroup law.

II. THE CASE OF ONE FUNDAMENTAL FIELD

-i[c-i( ) ]
x' P(s)d s
8 8 —S

Hence

C-'(z) = —~'+z —z
p(s)ds
8 —S

(2.5)

G '(z) --~ for z - -~ [provided that fp(s)ds con-
verges, which is a necessary result of (2.9) and

(3.13), which is derived later] has no poles for
z & 0, and is an increasing function of z (z &0)
because

for z =x+iy means that y=0. Therefore, the
function G '(z) -z is regular everywhere in the
complex plane, with the exception of the positive
real axis. [There are no poles in G(z) for z & 0,
because such a pole becomes a particle with imag-
inary mass m =v z.] The positive real axis is a
branch line due to the continuous spectrum of
G(z). Yet there might be isolated poles in
G "(z) —z, on the positive part of the real axis,
which are zeros of G(z). Therefore, the function
z '[C '(z) -z J vanishes at infinity in the cut plane,
and has a pole at the origin, so it can be written
in the form

Our basic assumption here is the existence of
a local scalar Hermitian field, which satisfies
the causality condition (commutativity of field
operators with spacelike separation). The vacuum
expectation value of the time-ordered product of
the field is given by

dG '(z) sp(s)ds
dz (z —s)'

This inequality is a result of the relation

1
. [G(x+zy) -c(x-zy)]&0,

2gg

(2.6)

(2.7)

~

~

4
(» -»')C(k) (2.1)

c(x, x') = z(Oi c (x)c (x') e(x,-x,')+e(x')c (x) e(x,'-x, ) iO)
which one gets when G(z) is written explicitly in
terms of x, y [dB(s) & 0]. From (2.7) one gets for
any y&0

The spectral representation for G(k) is
2'L31

[G '(x+ iy) —G '(x —iy)] &0, (2 6)

c(k) = dB(s)
—S+ Zf

(2.2) which by using (2.5) becomes

where B(s) is a real non-negative function (for
a Hermitian field), which tends to zero when
s-0 and approaches unity for s-~, in such a
way that fdB(s) = 1." From (2.1) it follows that

dB(q') =g(»)'6'(P —q))(04(0)(n)['dq'. (2.3)

sp(s)ds
(x —s) +y

This last relation is (2.6) for y-0, x& 0.
G(z) has no poles for z &0, therefore A. '&0. De-

fine

Therefore, the function G(z) defined by

() 1' d»(s)

can have no complex zeros because

(2.4)

(U. ,' = X'+ p(s)d s,

so that

G '(z) =z -p, ,'- sp(s)ds
8 —S

(2.9)

(2.10)

=0

dB(s)(x —s) . dB(s)
(x —s)'+ y' (s —x)'+ y'

which means that for large k',

G(k')
g2-+

aors

p 0
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sp(s)d sP. =00+ 2 ~

P, ~ —S
(2.11)

Poles of G(z) for z &0 are zeros of G '(z) given by

G '(p )=0,
such that

butions strong (S) and weak (W):

p(s) = p, (s) + prr (s),

p, (s)=0, s

pi)( )= ) - oir os (2.18)

These poles are located between 0 and s„which
is the beginning of the cut [the integral in (2.11) is
from s, to ~].

In order to find the time behavior of G(z), one
has to find all those terms which might give sig-
nificant contributions for certain values of t.
Therefore, we define the analytic continuation of
the function into the second sheet. New poles
which are found there become very important
when they are close enough to the real axis. In
order to be able to do the analytic continuation,
we assume that the function p(z) is continuous
across the real axis and is analytic in the strip
up to the point z.

Let us assume for the moment that there are
no poles on the real axis; therefore, the analytic
continuation of (2.10) becomes

G (z) = z —p, , — + 2rriz p(z)
rr o

" sp(s)ds
Z —S

(2.12)

sp, (s)
p. ] —s (2.19)

lose this property due to the additional cut con-
tributions of the weak interaction, but if p~(s) is
small enough and sufficiently well behaved, new
poles are found on the second sheet close to the
original ones. They are given by!( )!„f"~.l )!,Zq —P.0 +

Z] —S

—2riiz,.p~(zr) .
So for small p~(s)

P)r (s) « Ps(s) ) s& sos .
All those s«& p, '& s0~ which were poles on the
real axis in the absence of weak interaction and
given by

where z p(z) is the discontinuity across the cut which
begins at s0&0. If Imz is small enough one can
approximate

~ CO

SP S)
-1

G" (z) = p.
' —p, o' —P, ds+ riip, 'p(p, ')0 2

$0

(2.13)

Sgg +w ~'

y,. = -Imz,. = rip, ,"p~(p, !').
Here

0W &~ aS
12

(2.20)

p, =Rez.

Poles on the second sheet are located at the
points

(2.14) lp' —p I-o(p (p ))

The Fourier transform of (2.2) gives the time
dependence of the Green's function

z = p, ,'+ ds —2rriz~(z ),
"

sp(s)
z —s p (2.15)

(k» )
d~o ik t lf—B(S)
27r ko —% —s+ r, E

(2.21)

and for small Imz~

(2.16)

G(%, i) =

where

dB(s)
S

E,= (s+k')"' (2.22)

y = -Imzk= rrp, ~'p(p, k'). (2.17)

Poles on the real axis should be added, if they
exist, as zero points of G '(z) on the first sheet.
An addition of a weak interaction may change the
location of such poles from the real axis into the
second sheet if the threshold s,w is less than p,

'
(p, ,

' is the real pole). Here p(s) has two contri-

The poles on the real axis are the dominant con-
tributions to (2.21). The contribution of the cut
can be dominant for certain values of t, so by
deforming the contour of. integration into the sec-
ond sheet, it can be approximated by the poles
there, provided the contribution of the branch
point is small and the integral at infinity can be
neglected, see also Ref. 12. In this approximation
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G(k, t) is given by B,~(s) is a Hermitian matrix, and from PCZ' in-
variance one gets

G(k, t)= p ~-e ' ~'+p e ' ~p' (2.23)
2E,. 2E B.*,(s) =B,.(s) =B„(s), (3.4)

B,. and B~ are the pole residues at the correspond-
ing points p, ,

' and z~ given in (2.11) and (2.15),
respectively,

B, = b.i
1+ f sp(s)d s/(p, .' —s)' ' (2.24)

bp

1+ f sp (s)d s/(z~ —s)'+ 2~i(d/dz) [zp(z)] ~, ,
(2.25)

E, = (z~+P)"' =Z, -iy, /2E„
E —(~ 2+$2)1/2

P P

(2.26)

(2.27)

III. THE GENERAL CASE OF n FUNDAMENTAL FIELDS

p, ~' and y~ are given in (2.16) and (2.17). E, has.
a similar form to (2.27) but with p, &' replaced by

p, ', which is given in (2.11).
The pole approximation is valid when t is large

enough, and for this order of t, G(k, t) has an ex-
ponential form. The propagation of stable and
unstable particles is given by G(%, t). Stable
particles are poles on the real axis located at
the points p, ', and unstable particles are poles on
the second sheet at the points z~, with mass p, ~
and width y~. Poles on the real axis wander to the
second sheet when a weak interaction is added
whose threshold for decay s~& p,

' for certain i.
Hence stable particles become unstable, decaying
under the weak interactions, and their mass is
shifted due to the additional interaction. This
was noticed also by Horwitz and Marchand' in
the Lee model for the nonrelativistic case, and

by Matthews and Salam' "in the relativistic case.

making the matrix real symmetric with non-nega-
tive diagonal elements. Moreover, its matrix
elements vanish for s ~0 because there are no
physical states with q' «0 (there is no known
physical spinless state with q'=0). The matrix
G„(z) defined by

( )
dBnh(s) (3.5)

=Z dBgg SAX —P)S . 3.6

~(x,—y, s) is the well known" b, function defined

by

h(x —y, s) = S'(x —y, s) + b, (x —y, s) .
From the properties of a(x —y, s) and the as-

sumptions about the equal-time commutator one
gets from (3.6)

&0)[a,y, (x), y, (y)] ~„. „[0)=-i5„5'(x-y)

= -i dB~(s) 5'(x —y)

has a cut along the positive real axis and its dia-
gonal matrix elements have no complex zeros. If
there were complex zeros, then ImG„(z) =0 at
the zero point; however, ImG„(z) ~Imz and there-
fore Imz =0. (The integral which multiplies Imz
cannot vanish, because the integrand is positive. )

G,~(z) behaves like 5,~/z for large z. To prove
this, one has to take the derivative with respect to
x' of

&0
~ [y,(x), y, (y)]lo) =is'.,(x —y)

Suppose that there are ~ fundamental Hermitian
scalar fields (n = 2, for example, is the case of
m', E, ,), whose commutators are zero for space-
like separation; their Green's function is an
nx n matrix:

G, (x, x') =i(0(T(Q, (x)@ (x'))[0) . (3.1)

or

Hence

G„(z),~„— dB„(s)=1

(3.7)

This is a function of (x -x')' from Lorentz and
translational invariance. Its Fourier transform
has the spectral representation

G„(z)-0 for z - -~, and is a decreasing func-
tion of z in the region -~&g&0 because

G„(a')= dB~(s)
—S+ ZE

(3 2) dG„(z) dB„„(s)
dz - (z —s)' (3.8)

where for s=q'

dB„(s)= P (2m)'(0 (P,(0))n)(n ( @,(0) [ 0)
(0) dB„.(s)

s (3 9)

x 5'(P„—q)dq'. (3.3)
therefore, there are no zeros in G„(z) for -~&z& 0.

The matrix elements of G '(z) have a cut on the
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[G' () 51 '- "" " (»0)z z-s
Hence

( )
M„„(s)ds

z -s (3.11)

where X„,M„(s) are symmetric real matrices.
For high k', G '„(k') ~5„k'. Now

G '„(k'), k'5. , —X., — M„(s)kfs,
~k

positive part of the real axis because of the cut
in G„(z). They have no poles unless z is in the
region 0&z&~, because if there were any, then
at least one of the diagonal elements of G(z)
would be zero out of this region, which is not
possible as we have shown.

So the matrix elements of [G '(z) -z]z ' have a
pole at the origin and vanish at infinity in the cut
plane:

which means that X '„&0. This does not neces-
sarily mean that X„&0, unless the diagonal ele-
ments of G„(0) are dominant, so that detG(0) & 0.

The form (3.14) for G '(k') is not surprising,
and one could get it from a dynamical model of
the fields coupled to currents J', (x). But here we

got it only from the assumptions of causality,
Poincar6 invariance, and the completeness of
the set of states having timelike momentum (P' & 0).

The Green's function (3.2) has a cut whose thres-
hold is sp& 0, with possible poles on the positive
part of the real axis. The contribution of the cut
can be approximated by poles on the second sheet"
provided that the contribution of the branch point
is small, and the integral at infinity can be ne-
glected. Suppose for the moment that there are
no poles on the real axis; then the analytic con-
tinuation is

G,' (z)=(z —p, , )5, —
J

" ds
I'" sM„(s)
Sp

and hence

M„(s)ds, at 5 . (3.12)

+ 2~zM.,(z) (3.1V)

Let us define
Poles on the second sheet are those points z,

such that

so that

=X„+ M„(s)ds, (3.13)
detG ' (z)1.=..=0.

Define

G '".,(z) =z5., -M.",(z).

(3.18)

(3.19)
~ sM sos

G ' (k') =(k' — ')5
~b '2 ~&

~ k2 (3.14)

The behavior for high k' of G '„(k') is like
5„(k' —p, ,'). Here g, ' can be interpreted as a bare
mass associated with the field Q, (x) (if we can
show that p.,'& 0), and can be connected with the
spectral function B„(s):

Then if r, (z) and h, (z) are the right and left eigen-
vectors of M"(z), respectively, with eigenvalues
p, ,(z), such that

M"( z)~, ( )z= },( z)~, ( z),

(3.20}
k, (z)M "(z)= p, (z)k, (z),

then the orthogonal idempotents defined as the di-
rect product of these vectors,

On the other hand,

2

k —k' k'( k'k2 pg

If we compare these two relations after using (3.V)

we get

R, (z) =~,(z) ek, (z),

satisfy

R,(z)R, (z) = 5,,R,(z),

PR, (z}=I,

(3.21)

(3.22)

(3.23)

SdB~k(S) = Jlk 5kk . (3.15)

From this equation, one finds that p, , &0, and so

where I is the unit matrix. From (3.22) and (3.23)
it is clear that G(z) can be expressed in terms of
R,(z) and p, (z):

X„+ M„(s)ds =p, , &0.

Another relation which can be found is
( ) g R,(z)

, z —u, (z)
' (3.24}

G.,(0)=
' "'"=(.-)

~k

(3.16) (3.25)

So the poles of G(z) are those points z~ such that

L, (z~, ) =z,, —p, ,(z~ ) =0,
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(3.26)

(3.27)

or from (3.19)

~, = Tr[M"(~,)~,]. (3.28)

If y =-Im and p, =Res satisfy y « p.~ „ then
from (3.17), (3.19), and (3.28)

and the pole residues are

a,.(z,,)
1 —(dldz) p,.(z) ~, ,

Clearly, each of the functions 1,.(z) may have
more than one pole, or even none. g~ are in
general not orthogonal, not even if the poles are
zeros of different functions 1.,(z), unless they are
at the same point, because the orthogonality re-
lation in (3.22) is valid only when R, (z), R,. (z) are
taken at the same point z. The pole residues are
not Hermitian because G '"(z) is not Hermitian,
so they are not projections on the eigenspaces of
the residues of the poles.

If I'~ is the projection on the range of g&, then
from the fact that z~ is a pole of G"(q) one gets

Tr[G '"(z,)p, ] =0,

a weak interaction, whose threshold for decay
s«&s„changes the location of the real poles
p, ' (s«& p, ' &s,) and they wander to the second
sheet, close to the real axis. The time-dependent
Green's function in the pole approximation is given
by

G(k', t, )G(k', f,) ~G(k', f, +t,). (3.33)

The same result was also shown to be valid in the
nonrelativistic case. '

In case there is a symmetry of the interaction,
if Q,. are the generators of the transformation.
then the fields Q,(x) are supposed to transform ac-
cording to a certain representation of the group

[q', P,(x)] = C.'„P (x) (i = 1, . . . , m; a, b =, . . . , n),

G(k2 f) —g +0 8-iz t~g oi -isii (3 32)2E,. 2E,.

E, is given in (2.26) and (2.27) for complex
poles, and E, in (2..27) for real poles. Since

g~g~, co for p tp', even in the pole approximation
there is no semigroup, i.e. ,

" sM(s)=Tr I p, +p

y, = ii p, ,2Tr(M(p. ,')P,],

(3.29)

(3.30)

(3.34)

where rn is the number of generators, and C,', is
the representation of the algebra.

The unitary representation of the group elements
U is given by

the p.,' are given in (3.15).
Poles on the real axis, if there are any, should

be added, and their residues g,. are built from the
eigenvectors of M(z) on the first sheet, so they
are Hermitian for real z,. = p,'. Here

0= exp(ie,.Q'). (3.35)

If the vacuum is invariant under the transforma-
tion (which means that the symmetry is not spon-
taneously broken)

=Tr jJ + 2 ds I; (3.31) UI0) = I0),

then

(3.36)

for p. ,-'&so and P,. is the projector on the eigen-
space of g ~ .

As for the one-dimensional case, an addition of

G.,(x,y) =&01 7'[Uy. (x)V-'Vy, (y)p-']i 0&.

For an infinitesimal transformation

G.,(x,y) =(01 T[(1+i~;e')e.(x)(1 —i~;e*)(1+i', q*)y, (y)(1 —i~;V*)]10),

and hence

G(x, y)=G(x, y)+ie,.[c'G(x,y)+G(x, y)C'r], (3.3'7)

relation

[C*,G(x,y)] = 0. (3.40)
Cl.e. ,

O'G(x, y)+ G(x, y)C' =0. (3.38)

This is a very strong restriction on G(x, y) because
if K(x,y) is the orthogonal matrix which diagonal-
izes G(x,y) (G is symmetric), then (3.40) becomes

But we know that for a Hermitian basis lp, (x)],
A(x, y)D'(x, y) = D'(x, y)A.(x,y),

~'ab ' ~'ab ~&a& (3.39)

which can be proved by taking the Hermitian con-
jugate of (3„34), and using the fact that PJ(x)= P, (x);
therefore, (3.38) becomes the well-known

a(x, y) = Z(x, y) G(x,y)Z'(x, y),

D'(x, y)=JC(x, y)C'If' (x, y},
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and A(x, y) is a diagonal matrix. IV. THE CASE OF SYMMETRY BREAKING

Dt~(x, y)[A»(x, y) A-«(x, y)] =0 (no summation)

G,„(x,y) = a(x, y)6,~. (3.41)

This reduces the problem to the one-dimensional
case. Since in this case G(x,y) is diagonal, the
pole residues are orthogonal and we have the semi-
group law. An example of this case is given by
Schwinger for g'. There are two Hermitian fields
which form a two-dimensional vector, transform-
ing under a gauge transformation p(x) - e""q)(x),
where q is the charge matrix. Invariance under
this transformation makes G(x, y) of the form
(3.41).

If the symmetry is a discrete one like PC-=8,

G.,(x,y) =&olz[ey. (x)e-'ey, (y)e-']Io&,
(3.42)

G.,(x,y) = n,q,&ol T[y, (x)y, (y)]l o&,

where gab are the phases of the fields after the
transformation, and J= (x', —x). But from Poin-
care invariance and the symmetry of G,~(x,y) it
follows that it is a function of (x-y)', therefore,
for all those indices, such that 7)J},= —1 (a» 5),
G,~[(x-y)'] = 0 because G„[(x-y)'] = —G,~[(x-y)'),
i.e. , |",b is diagonal:

G.,[(x-y)'] =A.[(x-y)']5., (3.43)

So here also the problem is reduced to the one-
dimensional case. An example is the case of
Ky K2 fo r which G,b is 2 x 2, and because of PC
invariance, it is diagonal. Here also we have the
semigroup law, with pole residues being ortho-
gonal.

If the symmetry is broken, the nice features
we found are no longer valid. But if the symmetry
breaking is small, one can estimate the validity
of the semigroup law. This will be done briefly in
the next section. "

for all i, i.e., G»(x, y) = G«(x, y) for all those in-
dices 5, d such that D',~( xy)»0 (i)» d). Here there
are m-independent antisymmetric matrices D'(x, y);
therefore, A„(x,y) and hence G„(x,y) become a
multiple of the unit matrix

We found in the last section that the propagator
is diagonal, if there is a symmetry. " In a broken
symmetry, the off-diagonal terms complicate the
problem. Here we shall try to estimate the valid-
ity of the semigroup law for z =2. For definite-
ness, let us consider the K„K„and so p, (x)
(a= 1, 2) are the fields with PC =a 1 respectively,
and define

&o I4 i(0) I q+& =gf i'(q')

&oI e.(0}Iq+& = gPf."'(q*),

&ole, (0}lq-& =gPf' '(q'}

(o I y, (0) I q -& =gfl '(q'),

(4.1)

Bw (q2} Bw(0) (q ) + p 2Bwo) (q2) (a —1 2)

B„(q')=PB~(q'} (a»f)} (a, f)=1, 2).
(4.2)

B,~o (q'), B~~' (q'), B~~(q') are functions of the
fI')(q ), which appear in (4.1); they are O(g'),
and for p =0 (no symmetry breaking) B"(q') be-
comes a diagonal matrix.

The inverse of the propagator is given in (3.14).
From (3.15), p,

i")' is shifted by the weak interac-
tion, the additional term is O(g'), and there is
another term O(g'P'}, which measures the sym-
metry breaking

W2=
P,

W(0)2+ p2 W(l)2

where p,
~ is the shift of p,,"' and

(4.3)

ps'(i)2 s Bw(f) s ds g -0 1
'ow

(4.4)

The matrix A.,~ given in (3.16) can be split into
a strong and a weak contribution:

where fI')(q') (i =1, 2) are invariant functions of
q', g is the weak coupling constant, and p is a.

parameter, which measures the CP violation.
Iq+& are CP eigenstates with CP=+1 respectively
and momentum q.

From (3.3) and (4.1) B~~(q'), which are the con-
tributions to the spectral functions due to the weak
interaction, have the following form:

"B22 s ds — B„s ds
Sp

G -'(0) =)).=
det( f"[B(s)/s]ds]

ds,
S

"B„(s)
d

S

(4.5)
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B„(s)=B,",(s) +B„(s). (4.6)

The lower limit for integration is s«or sos de-
pending on the integrand; here

gator are p, ,st)2 given by

(st)2 (st)2+ aa
" sM" (s)

&a &Oa + (st)2
os

(4.12)

B",, (s) are the spectral functions contributed by
the strong interactions. They form a diagonal
matrix because strong interactions conserve Pc

Expansion of ill (z) —(z ~(st) )25
sM.', (s)

dS
z —s

OS

Using these definitions, the full propagator can
be written in the form

to the first order in g' gives

A.~g-A.gg+A. ,t, +O(g ),
w'here

ab ab
soS S

~w -~t~t b ds
Bw (&)

ab aa bb
'ow

(4.7)

(4.8)

(4.9)

" sM„(s)
s ~ —Ssow

+ 2~fzM. , (z) . (4.13)

In order to find the pole residues on the second
sheet, one has to find the eigenstates of G '"(z)
with zero eigenvalues. We will not give their ex-
plicit dependence on G '"„(z); they are given in
our previous paper' [Eqs. (2.21)-(2.24)]. We only
quote the main result, which is the same for the
relativistic case as for the nonrelativistic case.
If gz(zz), gz(z~) are the pole residues correspond-
ing to the states ~Kz), ~K~), respectively, then

Here a, b=1, 2.
In order to find the matrix M„, which appears

in the inverse of the propagator, one has to use
(3.12) and (3.13), so it is easy to find out that

M =M" +M +O(g') (a=1, 2),
(4.10)

M, ~
= M~~+0(g') (a Xb) (a, b =1,2),

where

M,.-o(g') + o(g'p ')

and

M., ™O(g'p) (s»).
Higher-order terms in g p' contribute but they

were neglected. In the absence of weak interac-
tions G "'„(z)has the form

1st
( ) (st)2 ca i

z —ssos

(4.11)

with pe,
"~' given in (3.15). The poles of the propa-

gz (zz )g~(z~) O(p ') (4.14)

This effect can contribute an additional phase to
the decay rate in regeneration experiments, if one
considers them as successive scatterings, with
free propagations in between. '
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g,(z,)g, (z,)=[1+O(g')]g,(z,) (f =S, ~). (4»)

We find also from (4.13), (3.19), and (3.28) that the
corrections to the masses in (4.12)due to the weak in-
teractions are O(g')+O(g'p') and the lifetimes of
the unstable particles are O(g'). Their evolution
in time is almost exponential, since

G(k', t, )G(k', f, ) =G(k', t, + t, )+O(P') (4 16)
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