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Axiomatic lower bound on the slope parameter

Seichi Naito
Department of Physics, Osaka City University, Sumiyoshiku, Osaka, Japan

(Received 8 December 1975)

The axiomatic lower bound on the s- and u-channel slope parameter, denoted respectively by B,(s) and

B,(u), is investigated with the help of the unitarity of the S matrix, s- u crossing symmetry, and the
analyticity and polynomial upper boundedness of the scattering amplitude. The result is that at least one of
Bl(s) and B2(u) has the lower bound Bl(s) & const X s (lns) ' ( & 0) for some sequence of s i Qo or

B2(u) & const X u (lnu) (& 0) for some sequence of u) oo.

I. INTRODUCTION

It will be useful to know what kinds of restric-
tions on observable quantities can be derived from
the general principles on the scattering ampli-
tude. The celebrated restriction of this kind is
the Froissart upper bound on total cross sections'

o).)(s)(constx (lns)' as s-~.
On the other hand, Jin and Martin' obtained the

lower bound on total cross sections

and B,(u) has the lower bound

B,(s) ~const && s '(lns) ' (&0)

for some sequence of s-, or

B,(u)) const && u '(Inu) ' (&0)

(1.3)

(1.4)

for some sequence of u —~.
In Sec. II we formulate our general principles.

In Sec. III we derive the lower bound on the slope
parameter. In Sec. IV we discuss our result and
compare it with the other bound.

o;., (s)) const&& s '(lns) ' (1.2) II. FORMULATION OF THE GENERAL PRINCIPLES

for at least one sequence of s —~. In deriving
(1.2), they used as general principles the unitar-
ity of the S matrix, analyticity in s and t, s-n
crossing symmetry, and the polynomial upper
boundedness of the scattering amplitude.

In this paper we use the same general principles
as those used by Jin and Martin, and investigate
the axiomatic lower bound on the s- and ~channel
slope parameter [denoted respectively by B,(s) and

B(u)]. The result is that at least one of the B,(s)

For simplicity we consider the spinless elastic
scattering A+B-A+B (s channel) coupled by cros-
sing to 2+B-2+8 (u channel). If we include spin,
the same result we obtain in this paper holds for
the imaginary part of the helicity-nonf lip scat-
tering amplitude.

The analyticity in s and the polynomial upper
boundedness of the scattering amplitude F(s, t) make
it possible to write the dispersion relation with
two subtractions, '

1 2

F(s, t) =A(t)+B(t)(s —o+ ,'t)+-
jr

ImF, (s', t)

(~ ~~ )2 {8 —(T+ 2t) (S —8)

ImFrr (u t)
)2 (zl —0'+ pt) (B —2o'+ s+ t)

(2.1)

=A(t) -B(t)(u —o+ —,t)+ ds'(u - o+ 2t) ImF, (s', t)
)g „&~,»2 s' —0+ 2t ' s' —20+u+ t

ImFiz(u', t)
)2 (Q 0'+ 2 t) (8 Q)

A B

(2.2)

where

and

ImF, (s, t)=8m
&

~(21+1)imf', (s)
))s ~

I l=o

&& P, (cos8, ) (2.3)

with

ImF„(u,t) =8))' g (2l+ 1)imf", (I)
II E=O

x (Pc )sgoii) i (2 4)
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and

s+ t+ n = 2M„'+2M~' —= 20',

E,(s, t)= E-(s, t), (2.5)

sA(s, O)f ——fsf as fsf-
tp

Similarly

F» (u, i) =E(2o -u —t, t).

Here s (u), k, (kz), and 8, (8«) are the center-of-
mass (c.m. ) energy squared, the c.m. momentum,
and the c.m. scattering angle in the s channel (u
channel), respectively.

The unitarity of the S matrix gives the con-
straints

0~
I
f', (s')I ~lmf', (s')~1

sp'~, {u,o)l= —lul" » lul-" Q E.D.
tp

(2.11)

III. DERIVATION OF THE LOWER BOUND ON THE

SLOPE PARAMETER

0 —
I
f"(u') I' —Imf" (u') —1,

so that we have from (2.3) and (2.4)

(2 6) In this section we present the derivation of the
lower bound on the slope parameter. For this
purpose we prove that at least one of S,imF, (s, 0)
and S,imE»(u, 0) has the lower bound

ImF, (s', 0)~ 0,

S,imE, (s', 0)~ 0,

ImF»(u', 0))0,
(2.7)

s,imF, (s, 0)) const && s '(lns) ' (&0)

for some sequence of s -~, or

s,imF»(u, 0)) const && u '(lnu) ' (&0)

(3.1)

(3.2)

s pmE„(u', 0))0,

with the simplified notations

for some sequence of u -~.
In the case where at least one of the four con-

ditions

and

8
sP', (s, 0) -=—E(s, t)

t-"p

(2.8)

8
s g„(u,0) =-—F(2o —u t,t)—

g po

Next, we prove that the polynomial upper boun-
dedness of the scattering amplitude

lim s's, ReF, (s, 0) = 0,
$» 0O

lim s'S,lmF~ (s, 0) = 0,
$» OO

lim u'S, ReE» (u, 0) = 0,
Q» 00

(3.3)

(3.4)

(3.5)

E ( f) "dt'-
2mi Jc t' —t

(2.10)

where C is the circle with

l
t 'l = t, ,

& min (4M„',4M''). Then we have

(2.9)

leads to the polynomial upper boundedness of Sg,
(s, 0) and S,E«{u, 0). {Throughout this paper we
explicitly prove relations involving E„sincere-
lations involving Ez, can be similarly obtained. }
The analyticity in f of E, (s, t) leads to the Cauchy
integral formula near t = 0.

limu~e&lmE«(u, 0) = 0
g» ce

(3.6)

lim s„'B,ReE, (s„,0) = c, (00),
n»~

lim s„'s,imE, (s„,0) = c, (40),
n» oo

limu„'S,ReE„(u„,0) = c, (&0),
n» oo

(3.7)

(3.8)

(3.9)

does not hold, there exist nonvanishing constants
cy c4 and sequences s„-~ and u„-~ such that at
least one of the following four relations holds:

so that

2m' Jc

(3.10)»mu„'s pmF«(u„, 0) = c, (wO).
n

Equation (3.8) [(3.10)] satisfies (3.1) [(3.2)]. On
the other hand, (3.7) [(3.9)] is shown to lead to
(3.1) [(3.2)]. From (3.7) we have
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L0«' s4iegz(s, 0)i'-s' Szz Q (2l+ 1)(l'+ l)f ', (s)
u, s-4 i=o

I
—(16zz)'s' Q (2l+ l)(l'+ l) Q (2l+ 1)(l'+ l)

~

f', (s)
~

' Sz-zs'L'S zimFz(s, 0)
- l=o L=O

(3.11)

at sufficiently high energy s =s„.Here we used the Schwarz inequality, the unitarity constraint (2.6), and
the fact that the existence of the nonvanishing constant c,'/2 makes it possible to make a reliable estimate
of 8+z(s, 0) by the partial waves up to

L =Zv s lns (3.12)

provided K is taken sufficiently large. Substituting (3.12) into (3.11), we find (3.1) Q.E.D.
In the following we prove that theze never occurs the case zvhen (3.3)-(3.6) hold simultaneously. From

(2.1) and (2.2) we obtain after a tedious but straightforward calculation

8 D3
Sgz(s, 0) =——E(s, t) =D,(d+D, + ' +D, (&d)+Dg(&d)+D, (co) (3.13)

8 D3
SP'zz(u&0) —= E(2o-u —t, t) =D,(u+D, + '+D, ((o)+D,((u)+D, ((u)& (3.14)

where

B(0) 1 ", ImF, z((u&+ o, 0)

B(0) 1 ", ImFz(~'+ o, 0) S,imEz(&u'+ o, 0)+ S,imFzz(zd&+ o, 0)
r (d

S glmEz ((d + o& 0)+ S glmFzz(M + o& 0)

,
( )

1 ", ImF, ( '+ 0', 0) —ImF„(&d'+,0) e,imF, ((d' 0, 0) —SI mF„((d'+o, 0)
CO ~ l2

P

1 1,w SPmEzz(ur&+o 0)
D~ 41 —= ——— d(d

(d ZZ (d +Cd

lmEzz (&u'+ o, 0)
((d + (d)

] 00

D, (td) —= —— d(u'
7T p

1 )",ImFz(e'+ o', 0)

D, =
) d&& [s,lmEzz(~& y o, 0) —S,ImFz(&u& ~ o, 0)],1

7l Jp
(3.16)

co 'jl
p (0 —(d

with

(d=—S —O'= O' —Q

In (3.15), the integration variables s' and u' have been rewritten as a&'+ o, so that p—= 2M„Ms. Considering
the case where (3.4) [(3.6)] holds, we have inequalities

0~ S PmFz(s, 0) &s as s-~
[0~ StlmFzz(u, 0) &u as u-~].

Furthermore, (3.16) [(3.17)] and (2.6) give

O~imEz(s, O)&16zz+c,s ' as s-~

(3.16)

(3.17)

(3.16)
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[O~lmF«(u, 0)&16m+ c,u ' as u-~], (3.19)

since we have

Ws Ss ') s,lmF, (s, 0)=8w „(2l+1)(l'+l)Imf',(s) —
4 ImF(s, 0) —8m Imf', (s) .

S l=l
(3.20)

With the help of the above-obtained inequalities
(3.16)-(3.19), various integrals in (3.15) can be
evaluated. First, the constants D„D»D» and

D, defined by (3.15) are found to be finite. Second,
the uniform convergence' of the integrals (3.15)
for &u'D, (~) and oPD, (&u) gives

&o's p'»(a —ur, 0) = ~'D, (u))+ (u'D, ((o) f, +g-, (&),

(3.29)

whel e

1 ",~"egmF, (&u'+ a, 0)

P
CO

lim uPD, (&u) = —— de'e'S, imF, z(v'+ a, 0) (—= —f,)
QN +00 7 p

(3.21)

= (d D6(&)+fx (3.30)

lim &o'D, (&u) = —— dco'v'B, imF, (&u'+ a', 0) (= -f,).
g&aOO 7T p

(3.22) = (o'D, ((u)+f,. (3.31)

Third, we haves from (3.15), (3.18), and (3.19)

lim D,(e) = lim D, (&u) = 0. (3.23)
Q) M+00 g+ aOO

Finally, it is proved in the Appendix that (2.11),
(3.3), and (3.4) [(3.5) and (3.6)], and (3.15) lead to

1 r"
n, =——

i d(u'ImF, ((u'+ a, 0)
7f p

(3.32)

At this stage, assuming that (3.3)-(3.6) are
satisfied, we consider two cases in terms of e,
and n, defined by

lim &uD, (&u) = 0
(3.24) and

D, = D2= D2= 0, (3.25)

lim @AD~(&u) = 0 .
g&aCO

Then, (3.3)-(3.6), (3.13), (3.14), and (3.21)-(3.24)
give

p 00

d(g ImF«(&d + oq 0)
7r Jp

Case (A): n, = ~ or n, = ~.
Case (B): n, &™and n, &~.

(3.33)

so that

D, = —lim &uD, (&u) (~0)
Q) W +OO

= —lim (oD, ((u) (~0), (3.26)

When n, (n, ) is infinite as in case (A), (3.28)
[(3.29)] is shown to contradict (3.3) and (3.4)
[(3.5) and (3.6)] by applying the Phragmen-Linde16f
theorem' to

which means

D, =O. (3.27)

Substituting (3.25) and (3.27) into (3.13) and (3.14),
we find

(u'8 p', ((o+ a, 0) = (o'D~(e)+ uPD5(~) -f, +g, (&u)

(3.28)

(3.34)

g, (~)
Jf,((u)=, -

( )
(3.35)

Proof. First, g, (&u) has a polynomial upper
bound by (2.11), (3.15), (3.17), (3.19), and (3.28).
Next, [&u'D, (ur)]

' is bounded in the region
fl= {~i [cubi 1, 0(e~ —,'g]., and analytic since
(3.15), n, =~, and the formula

CO

([(~ ~&2)~ 2+ ~& + 2(g'(d& + 2(d~ QPs(&d + (ds)+ (01 ] +5[2(di(ds(d (&d + cos)+ 2&dy & ]]'
(~ + Q7 ((d + &ds + &dy

(3.36)
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give

lim [uPD, ((o)] ' = 0,
I td I

0 ~~8~fl' /4

with

(d = M~+ g, (di =
~

(d
~

eI ~8

(3.37)

ImFz, (u, 0) ~ const &( u(lnu)' as u -~,

we obtain the lower bound on the s - and u-channel
slope parameter [denoted respectively by B,(s) and

B,(u)]. The result is that at least one of B,(s) and

B,(u) has the lower bound

Therefore, H, (m) is analytic and polynomially up
per bounded in the region R. Furthermore, (3.3),
(3.4), (3.21), (3.28), (3.34), and (3.37) lead to

sPmF, (s, 0)B,(s) —= ' ' ~ const && s '(lns) ' (&0)l~, e, o

(3.48)

lim H, (&u) = -1.
g «+CO

On the other hand, we find

lim H, (&o) =0
I cu I «~

8=f1 /4

with the help of (3.37) and

lim g, ((o)=0,
I o) l«~
8~/4

(3.38)

(3.39)

(3.40)

for some sequence of s -, or

B,(u) = "
0

~const && I '(Inu) ' (&0)
spmF„(u, 0)
ImFrz u

(3.49)

for some sequence of u- ~. In the special s-u
crossing-even case, we have both (3.48) and (3.49),
since B,(a) =B,(a).

lim uPD, (u&) = n, -
g «+00

(3.41)

which is obtainedfrom (3.30) and (3.16), since the
integral &u'D, (&u) is uniformly convergent. ' How-
ever, (3.38) and (3.39) contradict the Phragmen-
Lindelof theorem. '

Now the remaining case is only (B). In this
case &u'D, (&u) in (3.28) [e'D, (&u) in (3.29)] is cal-
culated by (3.15) as'

IV. DISCUSSION

In this paper the axiomatic lower bound on the
s- and u-channel slope parameter [denoted respec-
tively by B,(s) and B,(u)] has been investigated with
the help of the unitarity of the S matrix, s-u cros-
sing symmetry, analyticity, and the polynomial
upper boundedness of the scattering amplitude.
The result is that at least one of B,(s) and B,(u)
has the lower bound

lim (u2D5((u) = —o,
g««00

(3.42)

Then, (3.3), (3.4), (3.21), (3.28), and (3.41) [(3.5),
(3.6), (3.22), (3.29), and (3.42)] give

B (s) ~ const x s '(lns) ' (&0)

for some sequence of s - , or

B,(u)~ constxu '(Inu) ' (&0)

(4.1)

(4.2)

lim g, (u&) = f,+f, + n,
Q) «100

(3.43)

lim g, (e) = f, +f, + o',
g««00

(3.44)

Q~= Q2=0. (3.45)

However, (3.45) is nothing but the physically un-
realizable condition

ImF, (&u'+ v, 0) = ImF«(u&'+ a', 0) —=0. (3.46)

Thus, we have proved that it never occurs that
(3.8)-(3.6) hold simultaneously.

Our conclusion is that we have at least one of
(3.1) and (3.2). If we use the Froissart bound'

ImF, (s, 0) ~ const && s(lns)' as s -~

(3.47)

On the other hand, we have (3.40) and the corre-
sponding equation for g, (&u). Therefore, the Phrag-
mdn-Lindelbf theorem' applied to g, (u&) and g, (ur)

leads to

~) IOI0

3 6m', &

(4.3)

which has been given by MacDowell and Martin. '
Their bound is the good bound to make a compar-
ison between the experimental values of both sides.
But unfortunately their bound (4.3) does not give

for some sequence of u- ~. In the special s-u
crossing-even case, both (4.1) and (4.2) hold, since
B,(a) = B,(a).

In the process of the derivation of the lower
bound, the following situation complicated the
proof. The integrals (3.32) and (3.33) of the scat-
tering amplitude happen to diverge by the contri-
bution of the S waves, although we treat the case
of the partial derivative in t of the scattering ani-
plitude to be strongly damping with s. As a result,
in order to treat S,F(s, 0), we need a technique
which is more complicated than Simon's technique'
in treating F(s, 0).

We compare our result with the other lower
bound
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a lower bound with respect to s, since their analy-
sis allows a value B(s)=0.-In fact, the situation
B(s)=—0 is realized when only the && wave exists in
the s channel. On the other hand, our result gives
the lower bound for B,(u), even in this special situ-
ation.

»m (T,(~)(=~,
I cd I» ~

(A4)

per bounded in the region B,—= («& ( l
&u ~ 1,

0&8 ——,'&&) [R =-(«&((&o( 1, --,&T& 8&0)], where
e =

l
u&

l

e". The constant N in (A3) is the constant
in (2.9). Then, (2.11) gives

APPENDIX

In the case where (3.3) and (3.4) hold, we shall
prove only

lim e D,(e) = Q,
g»+&0

since

lim u&D, (ur ) =0
g»F00

(A 1)

(A2)

is similarly concluded from (3.5) and (3.6).
First, we define the functions T, (&u) and T (e)

by

T (&)= &+&&/&&&2+&&&&&&»& &&2S F (~+ o Q) (A3)

so that T,(~)[T (v)] is analytic andpolynomiallyup-

where n is some constant. Furthermore, (3.3)
and (3.4) give

lim T,((u) = 0. (A5)

holds throughout the region R,. Therefore, we
have

(
sp (~+ && 0)

l pl
~(-"""'"&/"~'~

1 a,nd 0& l|&l —~"
With the help of (A7), we can prove (Al) as fol-

lows. Equation (3.15) is rewritten as

(AV)

Applying the Phragmdn-I indelbf theorem' to T„(&u)
satisfying (A4) and (A5), we find that

(T,(e)
l
&P (P is some constant) (A6)

D,(~) i 8, ImF—,(~+ o, 0)

j 1/Id 1-1/t&& 1-6/Q) 1+1/(d &&0

= lcm — dx+ dx+ cR+ dx+ &h Bt ImF&(&&&x+ g~ 0)
P/~ 1/ld 1-1/~ 1+ 6/I&/ 1+1/Q)

-=5,((u)+ 5, (u))+ 5,(~)+ 5,(u))+ 5,((o). (A8)

From (3.16) we have

1
0 & s& ImF&(&u+ o', 0) &—

~

so that

0 & 8, ImF, (~+ v, 0) &A (A is some constant)

for any &u(~/&). Then, 5,(ru) in (A8) is evaluated by (A10) as

0& -5,(u) )&—(u
'/' as

(A10)

(Al 1)

Next, (A9) gives the estimation

1 1/td 1
0—-5,(+)—,— dx, as &u- ~

(d 7& &/~&/4 X (1 —X

and

1 1
0—5, (&u) ———, as ur -~.

7T (d

On the other hand, 5,(~ )+ 5,(&s) in (A8) is rewritten as
/" 1

5,(&o)+ 5,(u) = lim — d$ —[s,lmF~(&u+ erg+ o', 0) —S,imF&(v —up+ o', 0)]4

(A12)

(A13)

1 &
j./4)

+ lim — dg[s&lmF, (&u+ &up+ o, 0)+ s,imF, (e —&up+ o, 0)] -=d, (~)+d, (~).
6»0 ~6/M (A14)



2890 SEICHI NAITO

Then, d~(&o) in (A14) is found by (A9) to be

2 10~ d, ((o)———
4 as &o-~.

7l' (d
(A15)

J
d(d +

~' =e~~, -ff&/&0

Finally, the analyticity of sg, (&o + a', 0) in the cut &o plane gives the following expression for d, (~ ) in (A14):

1 1
d, ((o ) —s,ReF, ((u+ c, 0) = —— d(d I s g &((d + co + v~ 0). (A16)

2K' J~s ~~~ o&e&ff (d'

Therefore, (A7) and (A16) lead to

~d, ((u)-s,Res, ((u+v, 0)
~

~P(o """'"'~"I'"as ro-~.

Then (A1) is concluded from (3.3), (3.4), (AS), (All) —(A15), and (A17).

(A17)
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