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The connection between Nambu's generalization of classical dynamics and conventional Hamiltonian ideas is
explored. In particular, the possibility of embedding the dynamics of a Nambu triplet in a four-dimensional
canonical phase-space formalism is proved.

INTRODUCTION

Motivated by Liouville's theorem and by the form
of Euler's equations for a classical rigid rotator,
Nambu had some time ago suggested very interest-
ing generalizations of classical Hamiltonian dy-
namics. ' There are two basic elements in Hamil-
tonian dynamics. Firstly, one has an even-dimen-
sional phase space on which the Poisson bracket
(PB) structure obeying the Jacobi identity is de-
fined. Secondly, one has the Hamiltonian form for
the equations of motion, according to which the
evolution in time of a dynamical system is deter-
mined by a single function, the Hamiltonian, and
consists of a time-dependent canonical transforma-
tion. The basic canonical structure is carried by
a single canonical pair of variables, a Hamiltonian
doublet, and the PB can already be set up for func-
tions of a single doublet; generalization to several
pairs is straightforward. In the simplest generali-
zation suggested by Nambu, the primitive Hamil-
tonian doublet is replaced by a set of three vari-
ables, a Nambu triplet. A new kind of PB (not
obeying the Jacobi identity} is defined for three
functions at a time, and time evolution is deter-
mined by two Hamiltonians, not one. A new defi-
nition of canonical transformations can be given,
and Liouville's theorem is maintained.

It is of interest to see to what extent Nambu's
mechanics goes beyond the general framework of
Hamiltonian ideas, and to determine whether a
description using Nambu triplets can be embedded
in a description using Hamiltonian variables. We
shall examine this question in this paper for the
case of a single Nambu triplet, and shall show
that the dynamics of a system described by one
such triplet can always be embedded in a conven-
tional Hamiltonian scheme using two canonical
pairs (four-dimensional phase space). However,
extension of our result to several Nambu triplets
is quite nontrivial and will not be attempted here.
A solution along these lines was proposed by Bayen
and Flato' but their solution was only partial. In
particular they conjecture that one needs at least
three pairs of canonical variables to reproduce the

equations of a Nambu triplet: we disprove this
conjecture. We shall give first a direct proof of
our result, and then analyze the treatment of Ref.
2, which looks upon a Nambu system as a con-
strained three-dimensional Lagrangian system, to
show that this too is in conformity with our general
result. (See also Ref. 3 for further work on Nam-
bu's mechanics. )

In the reverse direction one can ask whether a
general Hamiltonian system can be described in
such a way that its equations of motion appear in
Nambu form. Here one has in mind the generaliza-
tion in which the Hamiltonian doublet is replaced
by an n-tuple of variables, and one has (n- I}
Hamiltonians to give the time evolution. %'e shall
show that as a result of the structure of the canoni-
cal phase space of any dimension, the equations of
motion of any Hamiltonian system can be put into
the Nambu form.

Section I describes the way one can embed the
Nambu scheme in a Hami1. tonian framework, while
in Sec. II we discuss the Lagrangian suggested in
Ref. 2 for deriving Nambu's equations. Use is
made here of Dirac's theory of constraints and of
Dirac brackets. ~ Section III proves the possibility
of writing Hamilton's equations for a system with
any number of degrees of freedom in the Nambu
form.

I. THE NAMBU SCHEME IN A HAMILTONIAN FRAMEWORK

Let x„x„x,be the independent members of a
Nambu triplet. The equations of motion for x& in-
volve two algebraically independent functions
E(x» x„x~) and G(x» x, x3) and are postulated by
Nambu to be

x& = ', j, k, I=cyclic permutationss(z, G)

(I.I)
The problem of embedding this system in the
Hamiltonian framework can be stated as follows:
Construct an even-dimensional phase space with
variables q„.. . , q„,P„.. . , P„; choose a Hamil-
tonian II(q, P) and three independent phase-space
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functions &&(q, P) such that the right-hand sides of
Hamilton's equations of motion for f~ are equal to
the right-hand sides of Eq. (1.1) with g written in
place of x:

H, „s(F(~„4,~,), G(K„4,t,))
s(~., ~, )

tems in phase space that any function on phase
space, which is not a mere constant, can always
be made one of the members of a system of canon-
ical coordinates. ' Without loss of generality, w' e
therefore assume a particularly simple form for
the Hamiltonian H:

(1.2) H(q, P) =P, . (1.7)

'dE BQ BE BQa(x„x„x,) =-

8 Xg 8 X2 8 Xg 8Xy
(i.s)

But this can be interpreted to mean that x„F, and
G are three independent functions of x„x„x3and
so could be used as an independent set in place of
the latter. In particular, x, and x, could be ex-
pressed as certain functions, y, and y„of x„
E, and G, and a(x„x„x,) also becomes a function
t of these variables:

x, = p, (x„F,G), x2 =
cp2 (x2, F, G),

a(x„x„x,) = g(x„E,G).
(1 4)

The Nambu equations of motion (1.1) are then com-
pletely equivalent to the set

x, =)(x„E,G), E=0, G=O, (i.5)

supplemented, of course, by the expressions for
x„x, given in Eq. (1.4).

We now wish to embed Eq. (1.5) in a Hamiltonian
system. We therefore need a Hamiltonian H(q, p),
and three independent phase-space variables
o, (q, p), p(q, p), and y(q, p) to serve, respectively,
as x3, E, and G, obeying the sys tern of PB re la-
tions

(o(q, P), H(q, P)}= &(~, P, y)

ftl, H}=b,H}=0.
It is a known property of canonical coordinate sys-

(The curly brackets denote the conventional PB.)
In particular, discover the smallest value of n
for which this can be done.

Ne shall. solve this problem by expressing the
content of Eq. (1.1) in a different form. The es-
sential point to realize is that Nambu's equations
of motion are so constructed that both E(x„x„x,)
and G(x„x„x,) are constants of motion. As a re-
sult, for a specific state of motion, it is enough
to know how x„say, varies with time; the depen-
dence of xy and x, on t can then be obtained by set-
tmg E(x„x„x,) and G(x„x„x,) equal to the con-
stant values characteristic of that state of motion.
In order that one have a nontrivial system of equa-
tions of motion, one must assume that the right-
hand side of Eq. (1.1) is nonzero for at least one
value of j. Without loss of generality, it can be as-
sumed that

Equations (1.6) then simplify to

~o'(A 4 q2 P2 &(&»y) ~
Bgi

Bp sy =0.
BQ'~ 8g~

These are immediately solved:

p=~(p„q. ,p., ), "y.=y(p„q., p. , ),

~'Y Vj. + z~ 0'a~12~ ~ ~ ~

du/](u, P„q,) =q,~x, =o(q„P„q2), (1.10)

In this solution, all the variables of interest in-
volve only the three Hamiltonian variables
q„P„q„and the following PB relations hold:

y, G}=~G,xi=0, y, x,}~0.
As a second possibility we could choose

E =q„o=P„a=P, ,

du/0(up q2PP2) ql x3 +(qlt q21 P2)

(1.12)

leading to

(E, G}=1, (E, x}+0, (G, x,}220.

This solution involves three arbitrary functions
P, y, and g of the variables P„q2, P2, . . . subject
to the condition that P and y be algebraically inde-
pendent. The independence of o. from P and y is
ensured by the q, dependence of a.

Now the condition that P and y be mutually inde-
pendent shows that we cannot embed Nambu's sys-
tem into a Hamiltonian system with n =1, i.e.,
involving just one pair q„P„but we can certainly
do so with n =2, i.e. , using a four-dimensional
phase space with variables q„P„q„P,. Thus the
assertion made in the Introduction is proved, and
at the same time we see that there is a great deal
of freedom in expressing Nambu's equations in
Hamiltonian form.

To conclude this section, let us give two simple
examples of the very general solution developed
above. As the first possibility, we choose

= P(px q2~ p2) =p2, G =y(p2~ q2~ p2) = q2 ~
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ln this case, me see that I' and G make up a ca-
nonically conjugate pair; the following section
will show that this is just what occurs in the treat-
ment of Nambu's equations in terms of a singular
Lagrangian.

with, of course, the constraints (2.2). We now im-
pose the condition that the primary constraints be
maintained in time: These lead to the weak equa-
tions

II. DERIVING NAMBU'S EQUATIONS k=1
(2.5)

Consider the singular Lagrangian

I.(q, q) =F(q) Q q,
. sGq)

Bg&
(2. 1)

linear in the velocities. This leads to the momenta

BG
PJ =F(q)

8$~

and to the equations of motion

8(F, G)
s (qy) qa)

q g(q, P) =Py —F(q)
sG(q)

(2 2)

The Nambu equations of motion (1.1) are compati-
ble with these equations (with x replaced by q);
as pointed out by Bayen and Flato, ' the Nambu

equations may be deduced from these equations if
we allow for a redefinition of the time variable.
Such a redefinition was to be anticipated in a singu-
lar Lagrangian linear homogeneous in the veloci-
ties, ' and to reexpress its consequences in Hamil-
tonian form one roust use Dirac's theory of con-
straints. '

%e wish to reconcile such a treatment with the
general result of Sec. III; we will show that when
the entire analysis is done, the final phase space
resulting from the Lagrangian (2.1) is indeed just
four-dimensional, and we will exhibit a canonical
system of coordinates for it.

The definitions of the momenta P, conjugate to
the qj do not depend on the velocities j,. and so
reduce to three primary constraints

&G 8G
('Pi A)

= IPSE-&qq P -&eq

&(F,G)

s(&g, qa)
'

&(F,G)
{q1r qk}vk 0 ~vj 5

~(qa ~ qi)

(2.6)

[Here (j, k, f) is a cyclic permutation of 1, 2, 3.]
The final form for the Hamiltonian is

v &(F G)&=2 &gai s, ', yg(q, P)
qw, qrj

eg BG
ykr Pg eq

(2.'1)

This result for H can be understood easily as fol-
lows. Since the number of (primary) constraints
is three, there must be (at least) one first-class
combination. Taking note of the value of the PB
{y&,y~} in Eq. (2.6), as well as the assumption in
Eg. (1.3), we see that the system of three con-
straints y& =P can be replaced by an equivalent set

Clearly, no secondary constraints can be gener-
ated. The matrix (({yz, y~}(( is necessarily singu-
lar, so that from Eq. (2.5) we can evaluate two
of the unknown velocities in terms of the third, or
alternatively express all three v& in terms of a
single unknown velocity v:

which are "weak equations. " Since L, is linear
homogeneous in the velocities, to begin with, the
Hamiltonian is just a linear combination of the y&,

aS' 8G
P = &gkr

8Q'k BQ'r
(p) ~0 (p 0 (p rvP, (2.8)

lf = Q u, y, (q, P), (2.3)

gg 'Uy p

(2.4)

where the v& are the unsolved velocities. The
starting Hamilton equations of motion are then

{q'„q'2}=a(q„q„q,) x 0. (2.9)

At this stage, the motion is restricted to a
three-dimensional surface y = y, = y, = 0 in the
six-dimensional phase space. But by using the

The fir st one, y, is the first-class combination,
and the final Hamiltonian in Eq. (2.7) appears as a
multiple of it. The remaining two constraints,
and q„are second class because
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Dirac-bracket formalism we can explicitly dis-
pense with the second-class constraints y, = y, = 0
and reduce the dimensionality of the phase space
from six to four. We set up the Dirac bracket of
any two functions f and gas

{f,g }*={f,z}

+ ({f,q,}{q„~}—{f,q.}{q„g})ia(q)

(2.10)

The general equation of motion can be stated in the
form

the second illustrative example of Sec. I. To com-
plete the analysis of the four-dimensional phase
space, we must find a conjugate n, to q„having
vanishing Dirac bracket with E and G. Let us
start from the equations

{p„F}=A(J', G, q, ), {p„G}=B(E, G, q,).
(2.15)

The values of these brackets are functions of qf
alone, and since E, G, and q, are independent, we
are permitted to write them in the above form.
Now the Jacobi identity

{P„{&,G}*}*+{&,{G,P,}*}*+{G,{P„I'}*}*=o
d ={fH}, y=0;dt (2.11)

implies, by virtue of Eq. (2.14),

(2.16)

once this is done, the conditions y, = 0, y, = 0 can
be used to explicitly eliminate the variables p, and
p„replacing them wherever they occur (includ-
ing in the Hamiltonian) by functions of q alone:

BA 8B
8F 8G (2.1'l)

which in turn guarantees the existence of a func-
tion A(F, G, q, ) such that

p ~( )
sG(q)

p ~( )'G(q)
1 2

(2.12) aW eWA= —,&G' ~F (2.18)

The Hamiltonian is then a (weakly vanishing) func-
tion on a four-dimensional phase space, for which
we may choose q„q„q„and P, as independent
coordinates.

We now obtain agreement with the result of Sec.
I by establishing that in the q„q„q„P, space we
have precisely two independent canonical pairs
(with respect to the Dirac bracket, of course).
The brackets among qf and p„evaluated using Eq.
(2.10), are

{q,q„} = —e,/a(q),

+ 5f' E 5f E aq

(2.13)

The 4x4 matrix made up of these fundamental
brackets can be checked to be nonsingular on ac-
count of a(q) & 0. This is proof that it must be
possible to construct two canonical pairs out of
functions of qf and p, .

One could evidently choose one pair to be q„P„
however, it is simpler to start from the following
facts:

(2.14)

t These are straightforward consequences of Eq.
(2.13).] We recognize that the two "Hamiltonians"
of Nambu's scheme form a canonical pair, as in

Putting this into Eq. (2.15), we see immediately
that the variable

v, =P, —A(E, G, q, ) (2.19)

satisfies all the conditions needed of a conjugate to
q

{q„v,}*=1, {Z, v, }*={G,v,}*=0. (2.20)

We have thus succeeded in exhibiting two inde-
pendent canonical pairs G, E and q„n, in the four-
dimensional phase space of the system obtained
after converting the two second-class constraints
into identities. Thus the description of the Nambu
system of equations as a degenerate Lagrangian
system ultimately amounts to embedding the for-
mer in a Hamiltonian scheme with two canonical
pairs. The only difference from the treatment of
the preceding section is that a redefinition of the
time variable, dependent on the state of motion, is
now needed

III. HAMILTON'S EQUATIONS FOR N DEGREES OF
FREEDOM

One direction in which Nambu's equation (1.1)
could be generalized is to consider a dynamical
system made up of several kinematically indepen-
dent triplets but governed by just two independent
Hamiltonians. Another direction is to replace the
triplet by an N-tuple of variables x„x„.. . , x„
and two Hamiltonians by (fq - 1) independent Ham-
iltonians H, (x), H, (x), . . . , H„,(x). Then, Eq. (1.1)
gives way to the system
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(x~ ~ H, ~ H„. . . , H~, )
s(x„x„.. ., x„)

(3.1)

We shall show that a conventional Hamilton system
of equations of motion in a 2n-dimensional phase
space, governed by a single Hamiltonian
H(q„. . . , P„), cs.n be put into the above Na, mbu
form for ¹2n.

The main result we need from canonical me-
chanics is the one already used in Sec. I (see Ref.
5): By means of a, canonical transformation one
can pass from q„.. . , P„ to Q„.. . , P„such that the
Hamiltonian becomes, say I'1'.

H(&i Pn) = Pi. (3.2)

~ 8(f, Q„.. . , Q„, P„.. . , P„)
s(Q„Q„.. . , Q„, P„.. . , P„)

(3.4)

we set f equal to Q„. . . , Q„, P„.. . , P„ in turn.
Therefore Hamilton's equations for the canonical
coordinates, and by the derivation property for a
general dynamical variable f, are equivalent to
the Nambu form (3.4). One can now switch back to
the original canonical coordinates g, P because the
transformation q, P —Q, P has unit Jacobian (Liou-
ville's theorem), and we see that Hamilton's gen-
eral equation

(3.5)

is equivalent to

(3 6)

This is the stated equivalence. However, it is
true only locally in phase space since in general
one cannot find (2n —2) global constants of the mo-
tion to go with a given H.

Q„. . . , Q„, P„.. . , P„are (2n —1) independent
constants of motion, and Hamilton's equations are
very simple:

(3.3)

But these same equations are reproduced if in

IV. CONCLUDING REMARKS

We have examined the possible relationships be-
tween Nambu's generalized dynamics and conven-
tional Hamiltonian ideas. For the case of a single
Nambu triplet, an embedding in a 4-dimensional
Hamiltonian scheme is always possible, with,
however, the following being understood: This is
locally possible and is highly nonunique. After
such embedding, one could add a constraint to the
Hamiltonian system, consistent with the earlier
equations, and then only three of the four phase-
space variables wouj. d be truly free.

The extension of this analysis to several triplets
seems fraught with several difficulties. At any
rate, the technique used in this paper does not
seem well suited to an examination of this ques-
tion, since the basic symmetry among the vari-
ables in the triplet was given up in replacing Eq.
(1.1) by Eq. (1.5).

Again, since our analysis was only a local one
in the phase space, we are unable to conclude any-
thing direct about the quantization of Nambu's
scheme. In particular, we cannot picture a quan-
tized Nambu triplet (whatever that may mean) as
consisting of three quarters of a quantum-mechan-
ical system made up of two independent conjugate
pairs of operators obeying the Heisenberg-Dirac
commutation relations.

Finally, one may be tempted to say on the basis
of Nambu's work that while classical dynamics is
capable of easy generalization, quantum mechan-
ics is not. However, such a statement does in-
justice to classical dynamics and springs from the
notion that any system of differential equations can
be taken to be "classical dynamics. " On the con-
trary, the latter discipline has a great deal of
characteristic structure —phase space, symplectic
structure, canonical transformation theory, Lie
algebraic structure of variables, etc.'—much of
which is apparently given up in Nambu's general-
izations. Therefore, Nambu's scheme differs as
much from classical dynamics properly under-
stood as a quantized Nambu scheme is likely to
differ from conventional quantum mechanics.
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