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We confront the problem concerning the renormalizability of massive Yang-Mills theories in which the mass
term for the vector fields has been inserted by hand. Explicitly, our starting Lagrangians are of the type
studied in the past by Veltman and Boulware and found to be nonrenormalizable. We rely heavily on
Boulware’s analysis in which the basic point of view is to split the massive Yang-Mills fields into transverse
and longitudinal components. The latter carry all the nonrenormalizability pathologies which manifest
themselves in terms of certain nonpolynomial factors involving the longitudinal fields. The fact that these
factors cannot be removed via a redefinition of the longitudinal fields leads to the conclusion of
nonrenormalizability. We call the problem on hand, namely the removal of the bad nonpolynomial terms,
Boulware’s problem. We study this problem closely, within the context of the adjoint representation of the
gauge group [we restrict ourselves to SU(2) for the most part] employing the language of differential
geometry. We prove a theorem according to which a necessary condition for solving Boulware’s problem is
the introduction of extra fields. In the case of SU(2) we find an explicit solution which requires the
introduction of a triplet of scalar fields belonging to the adjoint representation of SU(2). We interpret the
additional fields as ghost, or superfluous fields—most probably corresponding to the ghost fields of
spontaneously broken gauge theories in the R gauge. Here we note a basic difference between our program
and that of Cornwall et al. First of all, our interpretation of the fields which combine with the longitudinal
ones in order to remove the nonpolynomial factors as ghost fields is not evident in the treatment of Cornwall
et al. Finally, unlike the case in Cornwall et al., we do not just show the existence of the transformation which
removes the undesirable terms but also give the explicit conditions which bring about this result in the case of
SU(2). A proposition relating the models under consideration to spontaneously broken gauge ones is also
presented. We argue, without explicit proof, that the combination of this proposition with our main theorem
corresponds to building a spontaneously broken gauge theory in the R gauge, having started from a non-

Abelian theory with mass inserted by hand.

I. INTRODUCTION

Explicit renormalization of Lagrangians con-
taining massive Yang-Mills fields was first car-
ried out by ’t Hooft' and, subsequently, by Lee
and Zinn-Justin.? The procedure followed in Refs.
1 and 2 to construct renormalizable models of the
massive Yang-Mills type can be summarized by
the following two observations: (a) A set of scalar
fields belonging to a representation of the sym-
metry group is introduced into a manifestly gauge-
invariant Yang-Mills Lagrangian.® (b) The mecha-
nism of spontaneous symmetry breaking is em-
ployed in order to generate a mass term for the
Yang-Mills fields.

In the present study we adopt a reverse point of
view. Namely, we start with a massive Yang-
Mills Lagrangian which is nonrenormalizable and
systematically study those extra conditions which
open the way to renormalizability. The models
under study are of the following type: Every term
in the Lagrangian is manifestly gauge-invariant
except for the vector-field mass term. More ex-
plicitly, we shall concentrate on the kind of mod-
els studied in the past by Veltman* and by Boul-
ware® andfound by them to be nonrenormalizable.
We shall show that, under a certain assumption,
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what is needed for opening the way to renormal-
izability is the introduction of additional, non-
physical scalar fields which, in the case of SU(2)
at least, belong to the adjoint representation of
the group.

To be specific, we prove a theorem to the fol-
lowing effect. Suppose we are given a massive
non-Abelian theory of the type described above.
A necessary condition for removing from such a
theory certain nonpolynomial factors in the longi-
tudinal fields, whose presence is responsible for
the nonrenormalizability, is the introduction into
the theory of additional fields. In the case of SU(2)
we have an explicit solution in terms of a triplet
of ghost scalar fields belonging to the adjoint rep-
resentation.

Having dealt with renormalizability aspects we
shall proceed to examine “gauge invariance” as-
pects of our massive Yang-Mills models. We
shall show that certain conclusions arrived at in
our recent study on the Abelian case® can readily
be extended to the non-Abelian case. What we
find can be summarized as follows. Suppose we
add to a Yang-Mills model of the aforementioned
type an appropriate number of physical scalar
fields. Then, if we require a certain kind of
“equivalence;” to be explained in Sec. IV, with a
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manifestly gauge-invariant model this addition
would force the latter to be of the spontaneously
broken symmetry variety.

We shall interpret the simultaneous addition of
the unphysical and the physical scalars mentioned
above as building up a spontaneously broken gauge
theory in the R gauge—having started with a theo -
ry in which the mass was inserted by hand. How-
ever, we shall not attempt to solidify this state-
ment in the present study through explicit calcula-
tions.

At this point we must note several basic differ-
ences between our program and that of Cornwall
et al.” These authors also confront the problem
of removing nonpolynomial factors from their
formalism. Tree unitarity, a requirement of
gentle high-energy behavior of S-matrix elements
in the tree approximation, guarantees the exis-
tence but does not give the explicit form of the
point transformation which leads to the removal
of the nonpolynomial factors. Our approach does
lead to explicit conditions which bring about the
desired result, in the case of SU(2) at least,.
Finally, our interpretation of the (extra) fields,
which combine with the longitudinal fields to re-
move the nonpolynomial factors, as ghost fields
is not evident in the treatment of Ref. 7. Our be-
lief is that the present work and that of Ref. 7 are
in many ways complementary. Each study em-
phasizes different aspects of converse routes to
spontaneously broken gauge theories. In our case
the preoccupation is with respect to those extra
ingredients which pave the way to the construction
of renormalizable models of the massive Yang-
Mills type. The authors of Ref. 7, on the other
hand, face head-on the problem of high-energy
behavior of S-matrix elements (in the tree ap-
proximation), thereby responding more directly
to the ultraviolet problems of massive Yang-Mills
theories.

In Sec. II we review Boulware’s work on massive
Yang-Mills Lagrangians. Given the bad behavior
of the massive vector field propagator
(&= byub »/m?)(p* —m?)™, it is important that we
separate its transverse projection ( gw— by Du/b?)
X (p% — m?)"! so that the renormalizability diffi-
culties can be isolated. This splitting helps to iso-
late those factors which are responsible for the
nonrenormalizability of the theory.

We concentrate on these factors in Sec. III. We
characterize our difficulties as intimately con-
nected with the fact that we are dealing with in-
finite-dimensional Lie groups and algebras. It
becomes of central importance to study some as-
pects of the adjoint representation of such groups.
This we do in a differential geometric context.

We prove our main theorem which gives an ex-

plicit solution to Boulware’s problem once we have
introduced nonphysical scalar fields into our theo-
ry. These fields belong to the adjoint representa-
tion of SU(2).

In Sec. IV we deal with the symmetry aspects
of our program. Our underlying point of view is
the following. A prerequisite for a given massive
non-Abelian vector-field model to be renormal-
izable in the true sense® is that it must possess
a number of dynamical degrees of freedom equal
to those of some manifestly gauge-invariant model.
If this did not hold true, it would not be reasonable
to expect that the symmetry, which the massless
counterpart model manifestly exhibits, could be
somehow buried inside the massive one. In this
connection, we establish the previously men-
tioned relation between the massive Yang-Mills
models we are studying and ones which exhibit
spontaneous breaking of the local symmetry.

In Sec. V we give our interpretation of our find-
ings in the preceding two sections. However, it
must be noted that an explicit renormalization
program which incorporates the features of Secs.
III and IV must be carried out before our interpre-
tations can be substantiated. This we intend to do
elsewhere.

II. “NONRENORMALIZABLE” MASSIVE YANG-MILLS
LAGRANGIAN MODELS

By definition, Yang-Mills fields are vector fields
belonging to the adjoint representation of a local
symmetry group. Accordingly, the massive Yang-
Mills Lagrangians we want to study will have a
large sector identical to that of a manifestly gauge-
invariant theory. Following Veltman* and Boul-
ware,® we consider Lagrangians which are gauge-
invariant in all respects except for the vector-
field mass term, The latter is inserted by hand.
Prior to the works of Refs. 1 and 2, one hoped
to show renormalizability for such models in
analogy to familiar massive quantum-electro-
dynamical formulations in which the vector field
is coupled to a conserved current. Unfortunately,
the non-Abelian cases exhibited unmanageable
difficulties which prevented the programs in Refs.
4 and 5 from succeeding.

The philosophy kehind Boulware’s general ap-
proach, which constitutes the main subject of this
section, was the following. Given the propagator
of a massive vector field with its bad power be-
havior, one should first try and split it into trans-
verse and longitudinal parts. It is in the latter that
all problems should reside because the propagator
corresponding to the former has a well-behaved
form. Once the renormalization difficulties have
been isolated in this manner one concentrates
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one’s attention on the longitudinal fields.

Before proceeding we need to establish our nota-
tion. We find it preferable to use a language which
both saves us from a maze of indices and shows
the intimate connection between Yang-Mills fields
and the (local) algebra of the symmetry group.
Thus, an SU(2) Yang-Mills field ®,(x) can be ex-
pressed as (we adopt the summation convention
throughout)

®,(x)=B5(x)t,, 2.1)

where the {,, a=1,2,3, are thought of as the basis
vectors of the SU(2) algebra and Bj(x) are the
components of ®,(x). It should be noted that it is
sometimes advantageous, for the sake of clarity,
to employ components instead of algebra elements.

The antisymmetric tensor $*” as an algebra
element has the form

gpu =8“(B,, - av@u - ig[&p’ (Bv]

=Got,. (2.2)
We have the familiar component relation
Gly=9, B} -9, B} - igt, B} B, 2.3)

where the {,,, are the structure constants of SU(2).
A gauge transformation on a“(x) is given by

®, (%)=&, (x)=S(x)®,(x)S™*(x)
+—§;S(x)a,,8‘1(x), @.4)

where S(x) belongs to the local SU(2) group (ad-
joint representation). As we shall discuss to some
extent in the next section, S(x) can be put in the
form

S(x)=efa®ita, (2.5)

where £(x)=£,(x)¢, belongs to the local SU(2) al-
gebra,

The gauge transformation (2.4) on ®,(x) implies
that 8" transforms under the adjoint action of the
group, i.e.,

8y (%)= 81 () = S(%) 8, (x) S} (x). (2.6)

In general, we shall admit into our models mat-
ter fields which belong to some (irreducible for
simplicity) representation of the group. Suppose
we form an array § from the matter fields. Then
the gauge action on ¥ will be given by

Y(x) =y’ (x) =R(x)y(x), .7

where R(x) is the representation of S(x) in the
space of fields.

Let us assume that the basis {¢,} chosen for the
algebra is orthonormal. We write symbolically,
i.e., avoiding to show explicitly that we are in
essence calculating traces,
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(ta )tb)=5:zb- (208)
It follows that
(®,,®,)=B3B}. (2.9)
For convenience, we shall write ®,®" in place of
(®,,®,).

With these conventions in mind, the simplest
massive Yang-Mills field Lagrangian we can write
and which subscribes to the specifications we have
already given is

==18,,8" - m*®, B, (2.10)

A more general version admits the presence of
matter fields ¥ belonging to an (irreducible) rep-
resentation of SU(2). It has the form

-16,8 - b, 0 g0, 18y, (211)

where £, contains purely matter field terms, con-
sistent with gauge invariance, and j, is a con-
served current made up of minimal-coupling in-
teractions. The latter has an expansion in the
SU(2) algebra

Ju=i%t,. (2.12)

The Lagrangians given by (2.10) and (2.11) de-
scribe precisely the kind of theories we want to
study. Henceforth, whenever we refer to “start-
ing Lagrangians” or “models of interest” and so
on, we shall mean theories of the type (2.10)
and/or (2.11).

By their very nature, Lagrangians (2.10) and
(2.11) remain invariant under gauge transforma-
tions (2.4) and (2.7) on the field variables in all
but the mass term. For example, it can easily
be shown® that, under a gauge transformation,
(2.11) becomes

£/ =-19,,9" +g@j, +&,

~im? (@, + é S )o, 500 (2.13)
The following question is of immediate interest.

Can (2.4) be utilized so that (Bu(x) is replaced by

a triplet of transverse vector fields G, = A} ¢,

plus a scalar field triplet £ =%, corresponding

to the longitudinal degrees of freedom? This would

be desirable because, as can be seen from (2.13),

a large part of the resulting Lagrangian will in-

volve transverse Yang-Mills fields whose propa-

gators have the well-behaved (power-wise) form?®

ng.ab(p; m)= —i5¢b<gpv - %}(ﬁz -m2)t,

(2.14)

We then wish to know whether we can always per-
form a decomposition of the form



2814 C. N. KTORIDES 13

1 -
&“(x)=e§a“e'§+ge§a“e £ (2.15)

where the components Aj and §;, a=1,2,3, cor-
respond, respectively, to transverse and longi-
tudinal parts for our original Yang-Mills field BS.

This problem is solved in Ref. 5. It is shown
that there indeed always exists an S(x)=e*%*’ such
that any given Yang-Mills field ®,(x) can be writ-
ten as the gauge transform of a transverse Yang-
Mills field @,(x). The components of the latter
can be expressed by

3
At =;fp;(x-x')sg(x')dx', (2.16)

where the P} (x —x’) have the properties

8P (x —x') =0, (2.17a)

[ dx P =x) Py ("= x) =8, (=57, (217)

Z fdefl (x"=x) P (x"-x)=g,,0(x" - x")
i

-9,8,D(x"-x").
(2.17¢)

It now follows from (2.13) that Lagrangian (2.11)
splits into two parts £, +£,, where

£, =-18,,8" - m?*@,@" +g@,j* +&,  (2.18)

and
£,= —;’{;—{c“s-l(msu) - %[s‘l(xmsle} :

2.19)

We note in passing that (2.15) with the ensuing
relations (2.16) and (2.17) has a welcome implica~-
tion in conjunction with, at least, path-integral
quantization of the theory. As showninRef. 5, when
one passes from the measure [d®]=11,,,, . dBix)
to the measure [d@][dS] a determinant factor
enters which can be represented as a Faddeev-
Popov (FP) ghost'® particle integral. Thus,
transformation (2.15) plays exactly the same role
that gauge invariance transformations play in
massless Yang-Mills theories. We conclude that
Lagrangian (2.18) describes iz all vespects a non-
Abelian gauge theory with an extra advantage: It
has a built-in immunity against infrared diver-
gences. Accordingly, £, behaves nicely as far as
renormalizability is concerned, and we can con-
centrate exclusively on £, given by (2.19). We
shall therefore turn our attention to this part, We
find it advantageous to express £, in terms of the
longitudinal scalar fields £,. We note that

8S (x)
0&(x)

3,S(x)= 9, E(x). (2.20)

Since S(x) belongs to the SU(2) group, 8S(x) can be
thought of as a tangent vector, i.e., as an element
of the respective algebra. As readily calculated
by Boulware® 6S{x) has the expansion

0S(x) = S(x)Q,5(£)0E,¢,, (2.21)
where!!
g_
Q) = <e : 1> I SLAC® 2.22)

Let us also introduce G,,(£) by
Gab = (QQ T)ab . (2-23)

Formally, G can be thought of as the scalar prod-
uct

6=Q,Q. (2.24)

Inserting (2.20)-(2.23) in (2.19) we finally obtain
£,=8¢=-320,£, G0 (£)0, £,

+gm?3,£,Q,,(8) A} . (2.25)

The nonrenormalizability of the theory is an after-
math of the nonpolynomial character of Q,,(£) and
Ggp(£). This can be seen best if we consider what
happens in the corresponding (massive) Abelian
case. We take the Abelian analog of (2.11)

L=-1 w FH %sz“B“ +gJ*B, +£,. (2.26)

Suppose we quantize the theory by the path-inte-
gral method. The generating functional for the
vector-field Green’s functions is, of course, given
by

Z[J]=ZB"f[dB]exp[ij(£+J“Bu)dx] ,

(2.27)

where J,, is a classical c-number source and Z ;™!
is the usual normalization factor.

After a Stlickelberg decomposition'? which sepa-
rates the transverse from the longitudinal parts
of B,, denoted by A, and §, respectively, one can
readily show® that the integration over ¢ can be
done separately, and that it contributes a factor
which can be absorbed in the wave-function re-
normalization for each charged field present in
the theory. Actually, this factor is of unlimited
degree corresponding to, formally, an infinite
number of subtractions. Accordingly, one does not
have, in this respect, renormalizability in the
sense, e.g., of usual quantum electrodynamics.
However, as Boulware argues, the S matrix shows
no effects of nonrenormalizability on account of
such a factor. Crudely speaking, one can think of
having replaced a charged spinor ¥, e.g., by
l,b' e 13 (')lp.
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The question facing us, then, is whether an
analogous procedure works in the non-Abelian
case. Thus, one wants to know what happens,
within the context of path-integral quantization at

m2
2
g

GelJ] =Z§“f [d£] [det*2G) exp[—

where det2G enters because we have changed in-
tegration variables from S(x)=e® to £. The source
functions J are related to the sources K’ of the
transverse vector fields'® by

1
b A . — K
Jh=AL - — K.

(2.29)
Now, the essential difference between the Abe-
lian and the non-Abelian cases is that in the latter

the longitudinal modes interact with the trans-
verse modes. Accordingly, there is no hope that
the integration over the §,’s will yield a factor
independent of all the other fields leading to the
renormalization factor interpretation of the Abe-
lian example. On the other hand, there is still
some hope left. It can be expressed by the follow-
ing question. Is it possible that £, describes a
“subtheory” in which the £,’s behave, for all prac-
tical purposes, just as charged fields behave in
the presence of gauge vector fields? Put in a dif-
ferent way: Could £, describe, apart from a
term 3G$, G}, which is already included in £, any-
way, a theory which is equivalent to a non-Abelian
gauge theory in which the £.’s play the role of the
charged fields? If this answer were affirmative it
would follow that the £, part of the theory would
be renormalizable by standard arguments. But
this would have been the case if there were a
transformation of variables &— £(¢’) such that
0,0 = Qup(£)9, ;. (2.30)

In that case, the £, part would assume the fa-
miliar form of a nicely behaving, non-Abelian
gauge theory.'* However, Eq. (2.30) is not inte-
grable and the sought-for transformation is not
available. As a result the A{ will be coupled,
through the aug,,Q,,,,(g)A,'; term, to propagators of
the form

(T(E,, "+ E,),
(2.31)
EuiEauiga‘(xi)Qaibi(g(xi))’ i=l,...,n

which behave badly at high momenta. One con-
cludes that the nonpolynomial character of Q,,(&)

fdx(%auga Gabau §b+gau§aQasz):l ’

least, when the integral over the longitudinal fields
is evaluated. To be explicit, consider the gen-
erating functional for longitudinal field Green’s
functions

(2.28)

and G,,(£) in (2.25) is responsible for the nonre-
normalizability of the theory. In passing we note
that had we been able to diagonalize the two non-
polynomial terms in (2.25), i.e., if (2.30) were to
hold true, then det2G would be equal to unity.

We now wish to remark on the presence of mat-
ter fields in our model. The redefinition (2.15),
which splits the massive vector fields into trans-
verse and longitudinal parts, must be accompanied
by a redefinition ¥ — R(x)p of the charged matter
fields. Now, R(x) has the form

R(x):egd""Ta, (2.32)

where the T, are representation matrices of the
group generators in the space of the fields. In
turn, (2.32) implies that a renormalization factor
of unlimited degree which makes its appearance
in the Abelian case will also appear in the non-
Abelian case.

Finally, it is of interest to note the analogy with
the following result obtained in Ref, 7. Tree uni-
tarity, a concept closely related to renormaliza-
bility, implies that the scalar sector of a Lagran-
gian which originally has any general (even non-
polynomial) form, such as (2.25), should be
brought into a diagonal form. Thus, transforma-
tion (2.30) must exist by tree unitarity. Of course,
the authors of Ref. 7 do not face the same impasse
as Boulware because they have additional scalar
fields.

We shall proceed, in the next section, to lift
the renormalizability barriers by investigating the
conditions under which the diagonalizability of the
nonpolynomial terms becomes possible.

III. NECESSARY CONDITIONS FOR
DIAGONALIZABILITY
Our considerations in the preceding section have
led us to the unwelcome terms in our Lagrangian

£g=_%au gaGab(‘s)au£b+gau§aQab(£)Aub’ (3'1)

where G,, (£) and @,,(£) are nonpolynomial ex-
pressions in the longitudinal scalar fields £,(x),
a=1,2,3. The nonpolynomial character of G,,(£)
and @,, (&) is responsible for the renormalizability
problems surrounding the models we have been
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studying. If we were in a position, through a
transformation of variables &= £(£’), to bring £,
to the form

£§’=_%ap£;au £,§+g’6“£;A“a, (3-2)

then we would not have had renormalizability dif-
ficulties in the first place. Unfortunately, no
transformation £ - £(£’) which takes (3.1) to (3.2)
is available.®

To make progress we turn our attention to the
manifold of the longitudinal fields. We shall em-
ploy, to this end, the language of differential ge-
ometry. For the convenience of the reader we
gather a number of facts which will prove useful
to subsequent developments.

Let us recall that the Lie algebra of a Lie group
is the tangent space at the identity element of the
group manifold. As such, it is a flat linear vector
space. An element belonging to the adjoint rep-
resentation of a Lie group G is, by definition, an
element of the Lie algebra g.'* The adjoint rep-
resentation of G on g is a mapping G ~GL(g),
where GL(g) stands for the general linear group
of transformations on g as a vector space. Let
o€ G. The adjoint action of 0 on A€ g is specified
by

ad(0)A =4’, e* =efete™t, ef=g. (3.3)

The above prescription makes sense once we have
introduced the exponential mapping exp, sometimes
e for short.'® Itis a mapping from g to G, i.e.,

if Ac g then e?€G, such that e®=¢, where 0 stands
for the zero vector in g and € denotes the identity
element of G. In addition, exp maps lines in g

onto geodesics in G.

Note that since g can be thought of as a (flat)
manifold in its own right exp is a mapping between
manifolds. Consequently, its differential dexp is
a mapping between their respective tangent spaces.
But since g is flat, it can be identified with its tan-
gent space at each point. Hence, dexp maps g
onto itself. The differential of the exponential
mapping will play a crucial role in our subsequent
analysis.

Givennow that g is a linear vector space, we can
always choose for it an orthonormal basis
tyy...,t,. Each element A of g is then of the form

A=A, . (3.4)

Through the exponential mapping, we can assign
the coordinates (A,(x),...,A4,(x)) to the group
element e*. These coordinates form the so-called
canonical or normal coordinate set for the group
manifold.

Having gathered the above useful facts we shall
proceed to study in a systematic manner various
matters of importance connected with the adjoint

representation of a gauge group. We shall con-
centrate, for the most part, on SU(2).

Naturally, the subtleties inherent to gauge
transformations can be traced to their local char-
acter. Accordingly, one must deal with infinite-
dimensional groups. Since, in particular, a co-
ordinate set for the group manifold is an »n-tuple
of functions, questions related to the presence of
derivatives immediately come up. Thus, consider
the su(2) element £=¢,(x)t,, a=1,2,3. Just as
£, is a function, assigning the number £,(x) at x,
9,&, is a function as well, assigning the number
3,&,(x) at x. [We assume that the index u is fixed
so that one must not worry about the different
Lorentz character of £,(x) and 8,&,(x).] Then,
certainly, 8,£=9,£,(x), is an element of su(2).
Can we use the 8, &, (x), u fixed, to replace the
£, (x) in providing a (normal) coordinate set
serving to describe the group manifold? Alterna-
tively, can we parametrize su(2) through the
8, £, (x), ufixed?

The answer to the above question is, in fact,
negative. Had it been affirmative we would have
actually had, at the same time, the solution to our
main problem posed at the beginning of this sec-
tion. This statement should become evident once
we have proved the following.

Lemma 3.1. For each element 8, & of su(2)
there exists another su(2) element D, ¢ which can-
not be put in the form 8, ¢/, £’ su(2). (The index
u is fixed throughout.)

Proof. Consider the exponential mapping. As
pointed out earlier, it can be thought of as a
mapping between manifolds, su(2) and SU(2) in the
present case. However, let us be more general
for the moment and talk about g and G. The flat-
ness of g implies that dexp maps g onto itself.
But since g is identified with its tangent space at
each point, we must specify that point of g whose
tangent space we are considering. In particular,
D, ¢ defined by

Dy t=dexp,d,¢, (3.5)

where £ is that su(2) point whose tangent space we
are mapping, is an element of su(2).

Recall now the well-known formula!” for any Lie
algebra g

e-adX

1-
4eXPY = oy

where (1 - e¢~%¥)/adX stands formally for
>re (~adXx)" /(r+1)!. Accordingly
(Dy£), =0, £, Qpa(8), (8.7

where Q,,(£) is the same expression appearing in
(3.1).
We also see, in comparison to (3.1), that

Y, X, Yeg (3.6)
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augacabeu'sb:(DuE’ng)’ (3-8)

where (, ) denotes the scalar product in su(2).

But we have already pointed out that one cannot
find a transformation of variables £ - £(£’) such
that 8, &, (x)Q,, (&) and 8, &, G, (£)9,, £, become
3,&; and (8, £, P, respectively.® This simply
means that there exists no £’e su(2) such that
D,E=8,¢".

From the arguments in the above proof there
are a number of realizations to be made. To begin
with, it becomes quite obvious that the diagonal-
izability problems which arose in the first place
are intimately connected with the “bad character”
or insufficiency of the gradient functions to param-
etrize su(2).

Secondly, the nonpolynomial factor G,,(£) enter-
ing (3.1) cannot be interpreted literally as a metric
tensor for the longitudinal scalar field manifold.
In fact, the latter is flat since it is merely the
vector space su(2). Itis, perhaps, more appro-
priate to view G,,(¢) as a factor which relates the
inner su(2) product (8,&,8,£) to the inner su(2)
product (D, £, D, £). Its nonpolynomial character
is responsible for the fact that the latter product
cannot be put in the form (3, £/,8,¢’), i.e., that
the 8, &, (x), u fixed, are insufficient to furnish by
themselves a coordinate set suitable for the des-
cription of the group manifold. On the other hand,
G,5(£) has some formal features of a metric ten-
sor. For one thing, it is a symmetric matrix.
Accordingly, its diagonalization is subject to spec-
ifications which, in general, apply for the metric
tensor of a Riemannian manifold.

Finally, lemma 3.1 has introduced the object
D, ¢ which we shall call the exponential gradient
of £. D, is some kind of a gradient operator.
However, it lacks several basic properties of such
operators, e.g., D,(£+¢)#D,E+Dyt. It will
become of central importance for the balance of
this section because of its fundamental involve-
ment in gauge transformations. This can immedi-
ately be seen by the following.

Lemma 3.2. D, & transforms, under the action
of the adjoint representation of SU(2), in a manner
similar to the gauge transformation of a vector
field. The transformation properties of D, £ under
the adjoint action guarantee the multiplicative
group property of gauge transformations for a
vector field.

Proof. We start by recalling the identity

Dyt=eta,e"t. (3.9)

Comparing with (2.4), one immediately sees that
a non-Abelian vector field transforms under the
gauge action by

®} (x) =ad(ef )&, (x)+ D, ¢. (3.10)

To obtain (2.4) explicitly observe, first, that by
(3.3) we have

e2dE®By(0) = oL By (D)=L (3.11)
Recalling the operator identity

AePA™ = tPAT (3.12)
we obtain ,

ad(e®)®, (x) =e* ®, (x)e™* (3.13)
and thus recover (2.4).

Applying (3.13) to D, & we have
ad(e*)D, t=etet (3,6 ")t . (3.14)

But
efet(d e F)e"t =efefo (e tet) - eta et .
(3.15)

Now ee® is just another group element ¢°, where

2

1
o=t+grgr5Elegr (6L eler. (16)

Accordingly,
ad(e*)D,£=D,0-D,¢, (3.17)

which shows, once we formally denote D,0=(D,¢)’,
that D“E transforms under the adjoint action in a
manner analogous to that in which ®, (x) trans-
forms under the gauge action.

Consider now two successive gauge transforma-
tions on ®, (x) parametrized by £ and &', respec-
tively,

®, =ad(e®)®, +D & (3.18)
and
® =ad(e5')&; +D &
=ad(e*’)ad(e®)®, +ad(e®') D, E+D, £’ .
(3.19)
But
ad(e*')ad(e®)®, = et @, e e’
=ef® e”"
=ad(e”)®, , (3.20)
where
1 1
p=b+ &+ oo (&, El+ g7 g, & £l
On the other hand,
ad(e*’')D,£=D,p-D,E. (3.21)
Therefore,
&y =ad(e’)®, +D,p, (3.22)
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which establishes the (basic) multiplicative group
property of gauge transformations.

From lemma 3.2 we immediately have the fol-
lowing.

Corollary 3.1. D ,§ is the covariant gradient of
gauge transformations.

Proof. Since D, & has a Lorentz vector-field
index, its gauge transform is given by (3.10), i.e.,

(D, =ad(e*')D,E+D, & . (3.23)
Using (3.17) we deduce
(D, ) =D, (E+& +3[£,E]+--), (3.24)

or, in other words, (D &) is of the form D,p,
p&su(2).

It becomes evident through what we have shown
so far that the presence of exponential gradients
in the expressions in (3.1) is not accidental but an
integral part of the gauge scheme. Furthermore,
the inability to put D, £ in the form 8,£’ suggests
that no contemplation which restricts itself to the
longitudinal field variables £,(x) only can succeed
in replacing the exponential by regular gradients
of fields. Explicitly, at this point we can list the
following two conclusions:

(a) The presence of nonpolynomial factors in
(3.1) must inevitably be accepted as an integral
part of the covariant gradient of gauge transforma-
tions, i.e., D &.

(b) Any attempts to circumvent the present im-
passe must look beyond the longitudinal scalar
field manifold; an enlargement of some sort is
needed.

We shall now turn our attention to the nonpoly-
nomial factors we have encountered and establish
necessary conditions for their removal. This we
do by proving the following.

Theovem 3.1. A necessary condition for re-
moving the exponential gradients from (3.1) in
favor of regular gradients, or, alternatively, to
diagonalize G,,(£) [and Q,,(£)] in (3.1), is the in-
troduction of additional fields. Such an introduc-
tion should not increase the rank of G,,(£) as a
matrix. In the case of SU(2) the only ambiguity-
free solution is the complexification of & [©su(2)]
in the exponential gradient, or, more generally,
the replacement £— (£,71), n&su(2), in D, & This
means that, in the case of SU(2), the additional
(scalar) fields belong to the adjoint representa-
tion.

Proof. We shall concentrate on G,,(£), or,
symbolically, G(£). It is a symmetric zXn ma-
trix where 7 is the dimension of the Lie algebra
g. It is constructed from functions £,(x) which
are components of elements belonging to a space,
i.e., g, whose discrete dimension is n. Conse-
quently, its rank 7 at each point x must be v<n,

We assume, as is the case for su(2), that all
components of £(x) participate in the construction
of G(£). Accordingly, » =n. From this follows
that G(£) has $n(n +1) independent elements. Con-
sequently, its diagonalization involves 3n(n +1)
conditions. Once more we see that a mere re-
placement £— £(£’) cannot, in general, achieve
the diagonalization because &’ introduces only 7
components to satisfy 37(z +1) conditions. But

snn+1)>n for n=2,

We conclude that for any non-Abelian gauge group
(n>2) the diagonalization of G(£) must involve
more than the z longitudinal scalar variables which
are available. Hence, a necessary condition for
the above diagonalization is the introduction of
additional (field) variables—in general 37(z~1),
less if the rank of G(£) is not maximal.

Consider the most general way of introducing
the additional fields, namely the replacement
£~ £(Z) where Z(x) is a 3%(n +1)-component field.
Let us recall that G(£) enters as a factor between
regular gradients in (3.1). Thus, the transforma-
tion £— £(E) implies

o) (o)
Gp(E) = Gy () = e 2k

0%, 0%,

k,1=1,2,...,3n(m+1).

Ga(E(E)), (3.25)

This means that G(£) is actually replaced by the
[3n(+1)]x[3n( +1)] matrix G'(Z). Furthermore,
since in general all components of = participate
in building up G’(E), the rank of the latter could
be maximal, i.e., 3n(z+1). We see that, in gen-
eral, to diagonalize G'(Z) we must impose, once
more, 3m(m +1) conditions on m variables, where
m=3n(n+1). In other words, an arbitrary substi-
tution £~ £(%), where E has more components
than &, will not solve our problem but, in fact,
worsen it. On the other hand, = cannot have fewer
components than £ since that would correspond
to the physically meaningless situation of reducing
dynamical degrees of freedom.

There is only one way out of our present im-
passe. The addition of any field variables must
not be accompanied by a proportional increase in
the number of conditions for diagonalizing G’.
Now, the size of G inevitably increases with the
introduction of extra variables, as can be clearly
seen from (3.25). The only way to minimize the
rate of increase in the number of conditions is to
impose that the rank of G remains constant,!®

Let there be given a symmetric m Xm matrix
A of rank ¥<m. It can be shown!® that A has only
smm+1)—5m - 7Ym =7 +1) =37@m —r +1) inde-
pendent elements. Now, if the size of G’ is mXm
it means, from (3.25), that we must have intro-
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duced m variables (i.e., fields) in the place of the
original ». Therefore, for the diagonalization of
G’ it must be true that

37@m -7 +1) =m. (3.26)

This is actually the best we can do in balancing the
number of conditions against the number of avail-
able variables. Now (3.26) has solutions

r=1, r=2m,. (3.27)

The first solution is rejected outright, for a
non-Abelian group, on physical grounds; it im-
plies the reduction in dynamical variables. The
second solution, although mathematically nonsen-
sical (it suggests that the rank of a symmetric
matrix is larger than its number of rows or col-
umns), will be interpreted by us in a backward
manner. Our interpretation will lead us to an un-
ambiguous solution concerning the diagonalization
of G(£) in the case of SU(2). Furthermore, the
uniqueness of this condition will guarantee the
uniqueness of our solution.

We start by recalling that the sum of two sym-
metric m Xm matrices A and B of rank 7 each is
a matrix of rank <27, provided, of course, that
7 <$m. Suppose, on the other hand, that we in-
sert A and B into larger 2m X 2m matrices and
add them as follows:

A0 00
+ =C. (3.28)
00 0 B

Assuming that the ranks of both A and B were
maximal, i.e., (A)=7 (B)=m, then, indeed, the
rank of C could be as much as 2m. Of course, we
have not added properly the two m Xm matrices.
However, we may think of A as representing the
first matrix in (3.28) and B as representing the
second. Accordingly, C is also thought of as an
m Xm matrix of rank 2. This point of view con-
stitutes the key to our present interpretation.Z®
Before proceeding further we should point out
that the way A and B were placed into the larger
matrices is crucial. Had we added them, e.g., as

A 0 0 B

00 00

we would never have been in a position to obtain a
matrix of rank greater than m.

Identifying the matrix A above with G(¢£) we see
that, in the case of SU(2) (x=m=7=3), we need a
second 3X 3 matrix to fit the scheme just present-
ed. With this observation as a guideline we shall
now go ahead to exhibit an explicit solution to our
original problem for SU(2). Once we have given
our solution, we shall examine it in the light of

the above interpretation of the unique condition
v =2m.

Consider the replacement of the exponential gra-
dient Dy¢ by

Dyt=dexp o &~dexp,o,(E+in)=Dyg,  (3.29)

where n&su(2). Note that D, ¢ is not an exponential

gradient, i.e., it is not of the form d exp, ;,0u(& +in).
Next we introduce the following scalar product

to replace (Dy£,D,£):

(D, Dp) =DpL 1Dt (3.30)
Now

DP ga = all Ea + iapﬂa + %Czcgc(aﬂ ‘Eb + iapnb)

1 .
+§Cg°cge§bge (Bubq +18mg) + <+ (3.31)

and similarly for D, ..
For (3.30) one straightforwardly obtains

(:Dug, Dy §) =9y §uGab(§)a,, gb

+ 814G g (£)0ym, - (3.32)

Note that G,, enters boik right-hand side terms as
an expression of the £,’s only.

Consider the redefinition £~ £(¢’), n—=n(n’),
where £/, n’csu(2). We have

8&, O
(Dug,Dut)=08,E; "5‘2'2' ‘G-EZGbc(g')au &

, 61, O

+apna3%2%%26bc(g')aﬂn;. (3.33)
For simplicity, we denote f2=6¢,/6, and
ht=06n,/0n,. We then immediately obtain the diag-
onalization conditions

FUENFAE)Gye(E) =04 (3.39)
and

Ry g )Gye(£') = 84y (3.35)
or

A AENFAE) + B hg(")]Gpe(E') = 84y . (3.36)

But (3.36) describes six conditions on the six
variables &/ ,7n., a=1,2,3, so that it is, in gener-
al, solvable. This is enough to establish the nec-
essity of introducing the 5,’s. Viewing conditions
(3.36) as an algebraic system of six equations for
six unknowns, for each point x, one can resort
to numerical methods for a solution.

In passing we note that the same procedure
which diagonalizes G(¢) also diagonalizes Q(£) in
(3.1). Indeed, (3.34) and (3.35) are basically the
squares of the conditions necessary to diagonal-
ize Q(£).

Looking at (3.32) it becomes straightforward to
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recognize the parallelism with the way we inter-
preted condition 7 =2 in (3.27). The two matri-
ces on the right-hand side correspond to A and B
and the way they were introduced, i.e., through
the complexification of £ in Dy&, corresponds to
putting them together as in (3.28). Thus, C is
viewed by us as a 6X6 matrix which, after diag-
onalization, has the form

-
rz

utD*

(3.37)

(8un%)?
- -
Note that the replacement 9, £,G,,(£)8, £,
=~ 8, £,G gy (£)0u £, + 8um, G,y ()3y7m, Would not have led
to a solution. It would have corresponded to hav-
ing a matrix C of the form (4 2) so that its rank
could not possibly have been 2m.

It follows from the above that the role of the
exponential gradient Dy £ has once more proved
crucial. In fact, one could trace the success of
our program for SU(2) to the property D,(£+in)
#Dy&+iDyn. This property is responsible for the
nontrivial mixing of the £ and 5 terms in (3.32).

There are, now, only two other possibilities
along the same lines which could have led to six
conditions for six variables:

(2) Dyt—~d €XD 44, 9u(E +in),
(b) Dy £~ dexp,o,(+7).

It can easily be seen that either case would cor-
respond to C built up of three m Xm matrices, i.e.,
of the form

A D
C= . (3.38)
D B

There is nothing formally wrong with such an
approach since the requirement » = 2m can be gen-
erally fulfilled by C in (3.38). However, at least
the first of the above substitutions would have am-
biguous physical interpretations. In fact, (a) ac-
tually implies the enlargement of the gauge group.
The reason is that d exp,,;(£+in)=Dy £ #Dy§ is
properly an exponential gradient of an element
belonging to the complexified su(2) vector space.
It would then appear that we have enlarged our
gauge group to SU(2)x SU(2) and, therefore, in-
creased the number of gauge fields.

Replacement (b) is not as problematical as (a).
However, since £+7n=0csu(2), the introduction of
dexp,8, 0 into our formulas casts an ambiguity with
respect to gauge transformations. This is because

Dt is the covariant derivative of gauge transfor-
mations (recall lemma 3.2) so that the addition of
n without the simultaneous addition of a new al-
gebraic direction (namely, the imaginary axis)
may lead to inconsistencies. Whether this criti-
cism really applies or not is an open question.

Even assuming now that our criticism of re-
placement (b) is not valid, one may safely con-
clude the following. The procedure which works
and is consistent with our interpretation of the
unique condition » = 2/ in (3.27) regarding the
diagonalization of G(£) is, in the case of SU(2),
the introduction of additional variables via the
extension £- (£,7),nEsu(2). The replacement
£~ (&,m) occurs in the exponential gradient D, ¢
appearing in (3.1). Finally, such a procedure
implies that the additional scalar fields must
belong to the adjoint representation of SU(2), i.e.,
they form an SU(2) triplet. This completes our
proof.

The introduction according to theorem 3.1 of
extra fields via the complexification procedure,
or, more generally, £ (£,7), n€su(2), shows
that we have not really gone to a space of fields
with a higher discrete dimension. In fact, we have
drawn our extra fields from the space of the £,’s
rejecting, at the same time, the replacement
Dyt= Dyt (£=&+in) which would have correspond-
ed to a true complexification of su(2) and the
doubling of (real) dimensions. What all this sig-
nifies is that it would be incorrect to view (£,7) as
a vector belonging, for each given x, to a six-
dimensional space, Consequently, we are led to
interpret the n,’s as variables without dynamical
significance; the n,’s are not new dynamical vari-
ables. Instead, we interpret them as ghosts, or
superfluous fields.**

As a final remark we should point out that our
explicit solution for SU(2) is not contingent on our
interpretation of condition » =2 in (3.27). The
latter was simply invoked in order to guarantee
the uniqueness of our solution.

1V. CONNECTION WITH SPONTANEOUSLY BROKEN
GAUGE THEORIES
The quantization of theories which involve gauge
vector fields presents the well-known problem of
how to handle redundant components which do not
correspond to dynamical degrees of freedom. The
choice of gauge is, in fact, a necessary step for
eliminating nondynamical field components. Well-
known questions immediately arise surrounding
the choice of gauge, e.g., covariant gauge vs in-
definite-metric Hilbert space, manifest unitarity
in the S matrix, etc. In the case of spontaneously
broken non-Abelian gauge theories, it has been
recognized that the choice of gauge is also inti-
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mately connected with renormalizability, In the
so-called unitary (U) gauge®® in which all re-
dundant field variables are eliminated, renormali-
zation is not obvious. In the renormalizable (R)
gauge, on the other hand, where extra fields, i.e.,
fields not corresponding to dynamical variables,
are retained, the renormalization program goes
through.!'? The role of the extra fields is vital for
unitarity.

What we would like to examine now is whether
our findings in the preceding section have any
implications connected with spontaneously broken
gauge theories. From now on we follow Ref. 7 in
abbreviating the latter by SBGT. Before proceed-
ing with our analysis it is important at this point
that we make our position clear on the following
interpretation: We adopt Utiyama’s?® point of
view according to which gauge fields enter a theory
not @ prioré but through the requirement that the
gauge transformation, which is responsible for
charge conservation, be local in character. This
(physical) requirement leads to the condition that
the gauge fields be “manifestly” massless.?* But
masslessness together with irreducibility under
Poincaré transformations implies that a (physical)
gauge field has two degrees of freedom. Accord-
ingly, the reduction of the dynamical components
of a gauge vector field to two, from the available
four, is not a (mathematical) consequence of fix-
ing the gauge. Rather, fixing the gauge follows
from the (physical) requirement that each gauge
field has only two dynamical components. Further-
more, we maintain that the original, manifestly
symmetric Lagrangian of an SBGT involves vector
fields of two degrees of freedom (each) even be-
fore a choice of gauge has been made. This is im-
portant in view of the fact that the R gauge, at
least, is fixed not in the original, visibly sym-
metric configuration but after the spontaneous
breaking has been accounted for via the redefini-
tion of the (scalar) fields.

As is well known, the symmetric configuration
in an SBGT involves a number of scalar fields,
some of which have nonzero vacuum expectation
values. A redefinition in terms of shifted fields,
which have vanishing vev’s, produces mass terms
for all or some of the vector fields. Suppose,
then, that there were m gauge vector fields in the
original (symmetric) configuration and » scalar
fields (z >m). The dynamical degrees of freedom
are 2m+n. The redefinition produces m massive
vector fields (we assume, for simplicity, that the
whole symmetry breaks) which account for 3m
degrees of freedom. The m would-be Goldstone
bosons have given the gauge fields a longitudinal
part. This means that the scalar sector of the
Lagrangian must now account for only z-m de-

grees of freedom. The difference between the

R and U gauges, now, is the following. The

first keeps n scalar fields anyway, calling the
m~redundant fields ghosts.?! We prefer the term
superfluous. The U gauge does away with the
superfluous fields and keeps as many field compo-
nents as there are dynamical degrees of freedom.
We view our extra fields 7,, introduced in the
preceding section, as exactly those m-redundant
fields which are an integral part of the R gauge.
In fact, according to what we have argued at the
end of that section, the very manner by which the
n, were introduced shows that they should not
assume any dynamical significance. Their role
is simply to cure the renormalizability pathologies
which our starting Lagrangians presented. How-
ever, such an assertion cannot be truly estab-
lished before we show a connection between the
models we have been studying and models of the
SBGT variety. The reason is that unless we know
that our Lagrangians of interest are in some
sense equivalent to manifestly gauge-invariant
Lagrangians, the bridge between the two being
perhaps spontaneous symmetry breaking, there
would not have been a gauge to fix in the first
place. Therefore, we must now turn our attention
to the following question: Under what circum-
stances is a Lagrangian such as (2.11), or one
that has been augmented by the addition of the
1.'S, equivalent to a (manifestly) gauge-invariant
Lagrangian? Furthermore, we would also like

to know what is the nature of such a link, if any.

We have dealt with exactly the same question
for the Abelian case in Ref. 6, where we argued
as follows, Suppose we are given a theory which
involves a massive vector field minimally coupled
to all matter fields. Then, the addition of a
single physical, real scalar field x together with
the requirement that the above theory (including
X) be related, in a way to become evident shortly,
to a “strictly” gauge-invariant one, forces the
latter to be an SBGT. By a strictly gauge-invari-
ant Lagrangian, we mean one in which all matter
fields are charged and are minimally coupled to
the gauge fields. Any extra fields are inserted
in a way consistent with gauge invariance (e.g.,

a real scalar field belonging to the trivial re-
presentation of the gauge group) spoil strict but
not manifest gauge invariance.

With this distinction in mind let us begin our
present considerations by looking at the following
Lagrangian:

£,=-1G{, G}’ ~sm*B B +2B} j !
+ L+ L+ 8y (4.1)

This expression is actually (2.11) enlarged by the
addition of the scalar field x. The By are coupled
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minimally to all matter fields, generically de-
noted by ¢, except x. Thus, the j¥ in (4.1) is not
necessarily the same as the j ! appearing in (2.11).
The latter is conserved whereas the former is not,
if x-Bj, couplings are present. £, includes kinetic
and self-interacting terms of the real field x, and
£,y stands for all, if any, interaction terms be-
tween x and the other matter fields.

Consider next the strictly gauge-invariant theory
described by the following Lagrangian

oesym: -iG;‘aV Ga'“y + £,/, - %Vu qka“(p;"
+8ALI+ V(a0 3), (4.2)

where V, denotes the usual covariant derivative

and the ¢,, £=1,2, are complex components of a
scalar isospin field ¢. For convenience, we intro-
duce the notation

o <¢1+i4>2>_ (4.3)
¢3 + l¢4
Also, ji'(x) in (4.2) must be a current which re-
sults from minimal-coupling terms.

Suppose now we make a decomposition of the
massive vector fields Bf, into transverse and
longitudinal parts. We adopt the infinitesimal
version of this decomposition, strictly for con-
venience. We have

a a . 1
BY=AY+i Bt £,A%+--0,6,40(8%),  (4.4)

where A':, is a two-dynamical-component transverse
vector field.

We shall now imitate the second of the two ap-
proaches in Ref. 6 based on identifying, as m—0,
the transverse components of B; with gauge fields,
i.e., we identify the A"Y’s in (4.2) with the A{’s in
(4.4). Such an identification is based on an analogy
J

with the Abelian case where we know that for m#0,
but small, the transverse component of a massive
vector field obeys the same equation as a massless
gauge field. The existing difference in the zero-
mass limit of non- Abelian fields do not affect the
above conclusion. As there is now a one-to-one
correspondence between dynamical degrees of
freedom in (4.1) and (4.2), we make the pairings
¢, &, a=1,2,3, and ¢,~x. Since scalar fields
are one-dimensional objects, we can write
ba=E,+0E,, ¢d,=x +Ayx. These relations actually
define Ak, Ay (which must not be thought of as in
finitesimal). Forsimplicity, we shall identify the ¢,
with £, a=1,2,3, even though this is incorrect,
strictly speaking. Our present conclusions are
insensitive to the above simplification while our
task becomes significantly lighter. In a forth-
coming study we shall investigate in detail the
zero-mass limit implications of non-Abelian
fields in connection with the present discussion.
For now we rely on our analysis in Ref. 6 for all
assumptions and simplifications we are making.

From (4.1) we have the following equation of
motion for Bj:

auGgp— zB':l +gj?1+igtachz wazo . (4.5)
Similarly, for A’ we obtain

o na F ol ¢ b -8
aquu +i8 tabcAuGuv+g'.7;,‘

+88" 9015 95(3u D1 +18"9ix®xAY) =0, (4.6)

In writing (4.6) we have followed Weinberg’s no-
tation.”® Note that in our specific case i, j,k run
from 1 to 4.

Inserting decomposition (4.4) into (4.5) we ob-
tain

9y G‘:w - mzATL - ig”l tabc Eb A(:A —mau ga _m20(£2) +gj?‘+igtabcA; G:v —ggtabctcdegdAi)GZu

+iglapc0y E Gyt iglancGh,0(£2)=0. (4.7)

We now identify the A} with the A}, the £, with the ¢,, »=1,2,3, and g with g’. It follows that Gy = Gl

which leads to the identity

gljim +g’Sau ¢j(ap¢i + ig’sblkq)kAz:A) =- mzAz - ig"l tabcd)bAi_ mau d)a - m20(¢2) +g’j?ﬁ - ggtabctcde ¢dAlel wa

+ 2'g tabcav ¢CG;V + igtachZu 0(¢2)- (4- 8)

We assume that the original theory (4.1) is stable about its vacuum so that (A{) =(¢*=(x) =0,
a, =1,2,3, What remains is to examine (¢, (=(Ax)). For this purpose we follow Higgs®*® and expand
the various fields about their equilibrium points, i.e., A} ~(A%) +0A%, ¢*~(¢,) +5¢,. Substituting in
(4.8), retaining terms to only first order in the infinitesimal variations, and keeping only the
vacuum expectation value (vev) (¢, ) (whenever it appears) we obtain

89004(4)0(9,P3) + 8707 ") = 8" (99 1 (94)?0 AL ==m>0 A%, ~mb(8,$,) +2 (85 , (4.9)
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where the notation (85}), denotes that 6} is to be
evaluated at equilibrium values of the fields.
It is not hard to convince ourselves that

(675 =(8jp) =0 . (4.10)

Indeed jj involves only matter fields from the set
¢ which have not been varied in the first place.
On the other hand, jj would present problems
only if it had a term linear in x which would intro-
duce a 6¢, factor. But, clearly, such a coupling
would be of the form 8"y A{, a fixed, which can
easily be transformed away. Any other coupling
involving x could not possibly be linear in y, in
which case vanishing vev’s, i.e., (x) (=0), would
be present in front of the variations.

Taking into account the anti-Hermiticity proper-
ties of the 9,;; matrices® our identity finally as-
sumes the form

(§<¢4> —m)6(3u¢a)+(gz<¢4>2 —mz)ﬁA‘IIIEO ¢
(4.11)

Since the variations are arbitrary, their coeffi-
cients should vanish individually, We conclude

0#(¢p,)=m/F . (4.12)

The following two points should now be noted.

(1) The infinitesimal nature of decomposition
(4.4) is inconsequential to our proof. Indeed,
terms in 0(¢?) would not have contributed to
identity (4.9) even if they were not negligible. The
reason is that they would have involved vanishing
vev coefficients in front of each infinitesimal
variation.

(2) The strictly gauge-invariant model (4.2) does
not necessarily have to be restricted so as to ad-
mitonly an isospin scalar doublet of the form (4.3).
Any representation of SU(2) which involves four or
more scalar fields would do. That it is necessary
to have at least four becomes evident from (4.9).
Indeed, if we identify the first three scalar fields
in (4.2) with the longitudinal modes &, a=1,2, 3,
we would need a fourth scalar with nonvanishing
vev if identity (4.8) or (4.9) is to hold. Otherwise
we would be led to the conclusion m=0. If, on the
other hand, we had more than four scalar fields,
identity (4.9) would imply that at least one of the
¢, k=4, must have a nonvanishing vev for the
(bare) mass m to be different from zero. Note
that, in general, if (4.2) involves n scalar fields
¢, then we must introduce into (4.1) #-3 extra
physical scalar fields.

In conclusion we see that a model involving
massive non-Abelian vector fields cannot possibly
be equivalent to a strictly gauge-invariant model
unless the latter describes an SBGT. We have
thus extended our previous findings for the

Abelian case to the non-Abelian case. We can
summarize our conclusions as follows.

Proposition. Consider a Lagrangian model in-
volving massive non-Abelian vector fields B*
which belong to the adjoint representation of SU(x).
In particular, there will be n2-1 longitudinal
modes [#2-1 is the dimensionality of su(»)].
Suppose we add to this model % additional scalar
fields (k> 0) such that n2 +k — 1 is equal to the real
dimension of some complex representation of
SU(n). Further, suppose the following:

(a) The Bj are minimally coupled to all matter
fields except to the k extra scalar fields.

(b) The transverse components of B can be
identified, in the zero-mass limit with non-
Abelian gauge fields A{ belonging to a strictly
gauge-invariant field which includes the n2%-1
longitudinal (scalar) modes as part of an
3(n?+k —1)-dimensional complex representation
of SU(n).

Then, the aforementioned strictly gauge-in-
variant model must correspond to an SBGT.
Furthermore, assuming that all vector fields in
the original model had the same (bare) mass m,
we have that m=g{¢), where g is the strength of
the coupling of the n% +% —1 charged scalar fields
to the gauge fields and (¢) is a factor built up
from nonvanishing vev’s of some or all of these
scalar fields other than the n%-1 which correspond
to the longitudinal modes in the original model.

V. CONCLUDING REMARKS

In Sec. III we found that a necessary condition to
lift the nonpolynomial factors which presented ob-
stacles to the renormalizability of massive Yang-
Mills Lagrangians is the introduction of super-
fluous scalar fields belonging to the adjoint repre-
sentation of SU(2). In the preceding section we
showed that the addition of extra physical scalar
fields to a massive non-Abelian model such that
there is a one-to-one correspondence in dynamical
variables with a strictly gauge-invariant model
forces the latter to correspond to an SBGT. Our
feeling is that the simultaneous addition of the
superfluous and the physical scalar fields corre-
sponds to building up an SBGT in the R gauge. If
this is correct, it means that we have been led to
an R-gauge non-Abelian massive vector-field
formulation of an SBGT starting from a model in
which the mass was inserted by hand.

As already pointed out in the Introduction, our
study as well as that of Ref. 7 investigate different
aspects of converse, with respect to renormali-
zability, routes to SBGT. The ultimate objective
is to formulate a uniqueness theorem regarding
such theories. As far as our approach is con-
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cerned, the next step is to explicitly carry out a
renormalization program for the models we have
studied augmented by the addition of the extra
scalar fields (both the superfluous and the physical
ones). We shall not undertake any such program
here. We only wish to comment briefly on what we
think the role of the extra physical scalar fields of
Sec. IV could be. After all, is it not enough to use
the 71,’s of Sec. III for the renormalizability pro-
gram to go through?

Let us recall, at this point, Boulware’s pro-
gram® which motivated the present study. As he
clearly shows in the case of the massive Abelian
vector field and as he argues for the non-Abelian
case, the diagonalization of the longitudinal kinetic
terms leads to renormalizability in the sense of a
finite number of necessary renormalizations.

One is still left with an infinite, i.e., nonpoly-~
nomially bounded, wave-function renormalization.
It is our feeling that the role of the additional
physical scalar fields, which are necessary for
the equivalence of a massive model to a strictly
gauge-invariant model, is in fact to solve this
problem?2® It is mostly for this reason that it
becomes important to carry out an explicit re-
normalization program which shows precisely the
roles of the n,’s as well as those of the additional
physical scalars of Sec. IV. We also remark that
a transverse massive vector field—such as we
obtain after the diagonalization—with its nonlocal
propagator corresponds, in isolation by itself,

to a nonunitary theory. The hope for rectifying
this pathology lies in the presence of physical
matter fields which couple to the transverse
(massive) vector field. The physical scalar(s)

of Sec. IV provide such an alternative.

A second point of curiosity, which also merits
further investigation, is that both the work of
Sec. III and that of Sec. IV seems to favor two
unitary groups, namely U(1) and SU(2). We noted
that the diagonalization involves $m(m+1) condi-
tions. The complexification method we employed
involves 2m variables. Irrespective now of our
interpretation of the condition » =2m in (3.27), we
see that the straightforward necessity requirement
of having as many conditions as variables gives

2m=sm(m+1). (5.1)

But (5.1) is satisfied only for m =3, Thus, ignoring
for the moment gauge groups which are direct
products (i.e. nonsemisimple), we see that the
complexification method is especially tailored for
SU(2). Furthermore, we notice that for m=1,
sm(m+1)=1. This means that for the Abelian
case, U(1), the longitudinal mode of the vector
field does not need a partner in order to bring its
kinetic term into a nonpolynomial well-behaved

form. This is indeed what happens. On the other
hand, we notice that for groups with m > 4 the
complexification method is insufficient unless
G, (£) possesses other symmetries which reduce
the number sm(m +1).

In a similar way, our approach in Sec. IV also
seems to favor U(1) and SU(2), however, not in
as prohibitive a way as theorem 3.1. To be ex-
plicit, consider the unitary group SU(n). Its defi-
nition as a group of transformations is the follow-
ing. An element of SU(n) is a unimodular matrix
which leaves invariant the quadratic form

EN RSN ST A (5.2)
where the z; are complex numbers, i.e., coordi-
nates of an n-dimensional complex vector. Let us
now note that the most basic terms of Lagrangians
(kinetic and mass terms) are bilinear forms.
Furthermore, if a given Lagrangian possesses an
internal symmetry, then such bilinear forms must
be left invariant by the action of the underlying
symmetry group. Suppose we restrict ourselves
to global unitary transformation on the scalar
sector of a field Lagrangian. Substituting the
complex numbers by complex fields it follows that
the natural action of SU(z) is given on an n-tuplet
of complex scalar fields. Now, a complex m-di-
mensional representation of SU(n) would still in-
volve Lagrangian kinetic terms which make up the
bilinear form

—3(0,0,8,0%+++ +8,0,8,0%). (5.3)

We note that such a bilinear form is, in fact, also
left invariant by the natural action of the group
SU(n) which is meant to be the symmetry group
rather than SU(m). Suppose now that the group
action is localized, i.e., we pass to the gauge
group. One would only have to look at the number
of gauge fields in order to read the internal group
of symmetries. This number should equal the
dimensionality of su(z). We know that

dim{u(n)] =2, dim[su(r)]= ni-1. (5.4)

We now recall that the premises of our proposition
requires the introduction of % scalar fields, k=1,
in addition to the #® ~ 1 longitudinal fields. Further-
more, k must be such that 5(#% +% ~ 1) is the com-
plex dimension of some representation of the gauge
group. Since the natural representation of a uni-
tary group can be so conveniently reflected in the
kinetic terms, we may ask whether the equations,
for unitary and unimodular unitary, respectively,

2 2

n 2+k -n, n +2k 1=n k=1), (5.5)
always have solution. In fact, they do not except
for U(1) and SU(2). In both cases we get k=1, For
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higher unitary groups 3(n® - 1) is by itself already
larger than the dimension of the natural represen-
tation of SU(n). Thus, adding the extra % scalar
fields forees the strictly gauge-invariant model to
incorporate a scalar multiplet belonging to a
representation of a higher dimensionality than the
natural one.

As a closing comment we wish to say that a
perhaps more significant aspect to our program,
provided it solidifies our present conclusions
once it is completed, could be the following, The
Higgs mechanism,?® in conjunction with spon-
taneous symmetry breaking, has played a key role
in gauge theoretical attempts toward unified field
theories. Whether a mechanism can be divorced
from a physical process is not totally clear.

There have, in fact, been questions voiced re-
garding the fundamental meaning, if any, of the
Higgs mechanism.?” However, the route we are
adopting does not have to employ the Higgs mech-
anism as such; rather, we show “equivalence” to
it and SBGT, in general, once renormalizability
and gauge content have been required of theories
which contain massive vector fields.
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